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Abstract. The cactus group Jn, generated by the Bender–Knuth involutions ti,
acts on standard and semistandard Young tableaux by swapping entries of i and
i+ 1. The action Jn is a combinatorial abstraction of the problem of finding natu-
ral bijections between bases of irreducible representations of the group Sn and the
group Sn × GL(N). We fully classify the orbits of the action of the cactus group
on standard Young tableaux and pairs of standard Young tableaux. In particular,
we show that the action of Jn is transitive on standard Young tableaux and nearly
transitive on pairs, and we conjecture that the image of Jn on standard Young
tableaux is either the permutation group or the alternating group. Although stan-
dard Young tableaux are transitive under Jn, semistandard Young tableaux are not.
We establish several invariants, and we find a sufficient condition for one of these
invariants to be a complete invariant.

1. Introduction

In this paper, we study the orbits of k-tuples of standard and semistandard Young
tableaux under the cactus group Jn. The cactus group Jn is a Coxeter group which
can be defined by the generators si,j where 1 ≤ i < j ≤ n under the following
relations:

(1) s2i,j = 1 for all 1 ≤ i < j ≤ n;
(2) si,jsk,ℓ = sk,ℓsi,j if j < k;
(3) si,jsk,ℓsi,j = si+j−ℓ,i+j−k if i ≤ k < ℓ ≤ j.

There exists a correspondence s1,i = t1(t2t1)(t3t2t1) · · · (ti · · · t1) from Schützenberg
involutions s1,i to Bender–Knuth involutions ti as given in [5], and it can be checked
that the Bender–Knuth involutions generate Jn. A generator ti acts on a standard
Young tableau by permuting the entries i and i + 1 if the resulting table is a valid
standard Young tableau. This action generalizes to semistandard Young tableaux as
follows: ti replaces the ak free entries of i and bk free entries of i+1 with the bk entries
of i and ak entries of i+ 1 for every row k in the Young tableau, in the only possible
way to preserve horizontally non-decreasing entries. (Under the action ti, an entry i
is considered “free” if there is no instance of i + 1 in the same column; similarly, an
entry i+ 1 is considered “free” if there is no instance of i in the same column.)
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The study of the irreducible representations of the symmetric group Sn and the
duality between Sn and GL(N) is widespread and closely related to partitions and
their standard and semistandard Young tableaux ([1, 2, 10]). In particular, since the
conjugacy classes of a symmetric group Sn correspond to the partitions of n (each
part is a disjoint cycle), the number of irreducible representations of a symmetric
group Sn equals the number of partitions of n. In fact, Schur’s construction provides a
natural correspondence between these two sets, which preserves several nice properties
between the partition and the irreducible representation of Sn. In particular, for a
partition λ of n and the corresponding irreducible representation Vλ of Sn, the vector
space Vλ as an Sn−1 representation is the direct sum of all Vλ′ where λ′ corresponds
to a Young diagram of λ with one box removed.
Following [9], the subsequent restriction of an irreducible representation in an in-

ductive chain Sn ⊃ Sn−1 ⊃ · · · ⊃ S1 gives rise to a Young–Gelfand–Tsetlin basis. As
there are i choices for each restriction Si ⊃ Si−1, there are in general many different in-
ductive chains, which give rise to distinct bases for a single irreducible representation.
However, although there are many ways to relate these bases, there is no canonical
bijection between these bases. There are several natural bijections which arise from
1-parametric families of bases connecting different Young–Gelfand–Tsetlin basis, as
studied in [4, 7, 12], which generate the cactus group Jn via the correspondence given
in [5]. Because each basis element corresponds to a standard Young tableau of the
partition associated with the irreducible representation as given by Schur’s construc-
tion, this problem can be realized purely combinatorially through the action of the
cactus group on standard Young tableaux. It is of interest to study the transitivity of
this action in order to understand its capability to relate the Young–Gelfand–Tsetlin
bases of irreducible representations of Sn to each other.

In Section 2, we recall definitions and terminology relevant to this paper.
In Section 3, we discuss the orbits of k-tuples standard Young tableaux of partitions

of n under the group action of Jn. We first show that single standard Young tableaux
are completely transitive under Jn. We find, however, that the orbits are more com-
plicated for pairs of standard Young tableaux. In particular, we show that for pairs of
certain types of partitions (which we call hook-shaped), there are several orbits, and
otherwise, the action of Jn is transitive except for pairs of transposed standard Young
tableaux. All of our proofs are constructive, and we demonstrate with an example
that the transitivity of pairs of standard Young tableaux is not elementary, as in the
case of single standard Young tableaux. We conjecture that the image of Jn on the
set of standard Young tableaux of a given partition is either the alternating group or
the symmetric group, a result that would imply at least (N − 2)-transitivity, where
N is the number of standard Young tableaux for a particular partition.

In Section 4, we discuss the orbits of semistandard Young tableaux of partitions of n
under the group action of Jn. We begin by introducing several invariants, and we show
that even single semistandard Young tableaux are not transitive under Jn, Bender–
Knuth involutions preserve the set of counts of each entry in a semistandard Young
tableaux (Proposition 4.8). We call a semistandard Young tableaux “semi-transitive”
if it is maximally transitive under this invariant. We show that semistandard Young
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tableaux are also not always semi-transitive, and we illustrate this fact with an ex-
ample. We present a property of 2-row semistandard Young tableaux which implies
semi-transitivity, and we propose a generalization of this property to semistandard
Young tableaux with 3 or more rows.

2. Preliminaries and Background

In this section, we introduce the notation and terminology that will be used in this
paper. Following standard notation, we let N denote the set of nonnegative integers.
For m,n ∈ N, we set [[m,n]] := {k ∈ N | m ≤ k ≤ n}.

2.1. Partitions. A partition λ of a positive integer n is a multiset of positive inte-
gers a1, a2, . . . , ak which sum to n. We sometimes write the partition partition λ as
a1/a2/ · · · /ak where a1 ≥ a2 ≥ · · · ≥ ak. When referring to a partition, we inter-
changeably refer to its Young diagram, using terms such as “rows,” “columns,” and
“boxes” to refer to the coordinates of the Young diagram of the partition. We denote
by ri(λ) the number of boxes in row i and by cj(λ) the number of boxes in column j
of the standard Young diagram of λ (where rows and columns are non-increasing in
length).

We denote by λ′ the transpose partition of λ where ri(λ) = ci(λ
′) for 1 ≤ i ≤ c1(λ)

and cj(λ) = rj(λ
′) for 1 ≤ j ≤ r1(λ).

Moreover, a partition λ is said to be “hook-shaped” if it does not include a box at
(2,2). If λ can be written as a hook-shaped partition plus a box at (2,2), it is said to
be “almost-hook-shaped.”

We show several examples to illustrate these definitions.

Example 2.1. The following partition λ has the shape 6/4/3/1.

0

0

Its transposed partition λ′ has the shape 4/3/3/2/1/1.

0

0
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Example 2.2. The partition 5/1/1/1 is hook-shaped (left), and 5/2/1/1 is almost-
hook-shaped (right).

0

0

0

0

2.2. Standard and Semistandard Young Tableaux. Let λ be an integer parti-
tion of n, and let I := {(i, j) | i ∈ [[1, c1(λ)]], j ∈ [[1, i]]}.A semistandard Young tableau
of λ with entries up to N is a function A : I → [[1, N ]] where for all (i, j1), (i, j2) ∈ I
with j1 < j2, we have A(i, j1) < A(i, j2) and for all (i1, j), (i2, j) ∈ I with i1 < i2, we
have A(i1, j) ≤ A(i2, j); in other words, the entries in the rows are non-decreasing
and the entries in the columns are strictly increasing. A standard Young tableau is a
semistandard Young tableau where the final inequality is strict; in other words, the
entries in the rows and columns are strictly increasing. Consequently, standard Young
tableaux must have exactly one entry of each number, so it follows that n = N . We
denote by SYT(λ) and SSYT(λ,N) the set of standard Young tableaux of λ and the
set of semistandard Young tableaux of λ with entries up to N , respectively.
If λ is a partition of n, and A ∈ SYT(λ), we denote by A \ n the standard Young

tableau of λ with the box A−1(n) removed such that (A \ n)−1(k) := A−1(k) where
k ∈ [[1, n]]. Furthermore, we denote by A′ ∈ SYT(λ′) the transpose standard Young
tableau of A, where A′(i, j) = A(j, i) for all possible i, j.
We call a box (i, j) of λ a “corner” if there exists a standard Young tableau A of

this shape such that A−1(n) = (i, j). We additionally call (i, j) an “extended corner”
if there exists a standard Young tableau A of shape λ such that A−1(n) = (i, j) and
either A−1(n− 1) = (i− 1, j) or A−1(n− 1) = (i, j − 1). If (a, b) is a corner of λ, we
denote λ \ (a, b) as λ with the box at (a, b) removed, a partition of n− 1.
For a semistandard Young tableau A, we denote by rk(i)A the number of occur-

rences of i in row k. When A is unambiguous, we may simply refer to this value as
rk(i). Moreover, we call Lk(i) the number of locked columns in row k under ti.

3. Standard Young Tableaux

In this section, we discuss the nature of the diagonal action of Jn on k-tuples
of standard Young tableaux. In particular, we show that pairs of standard Young
tableaux are nearly transitive, and we classify the orbits when they are not. In
addition, we provide an example which illustrates the complexity of this transitivity
even in the case of pairs. Finally, we conjecture a that for non-hook-shaped partitions,
the image of Jn is either the permutation group or the alternating group, which
generalizes our result of 2-transitivity.
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Recall that a Bender–Knuth involution ti swaps the entries i and i+1 if the result
is a valid standard Young tableau. We begin with the elementary fact that the action
of Jn is transitive on the standard Young tableaux of any partition of n.

Theorem 3.1. Let λ be an integer partition of n. Then, SYT(λ) is transitive under
Jn.

Proof. Let A ∈ SYT(λ). It suffices to show there exists some g ∈ Jn such that
gA = T , where T (i, j) = j + r1(λ) + r2(λ) + · · · + ri−1(λ). Let (i, j) be the first
coordinate (ordered lexicographically) where A(i, j) ̸= T (i, j). We show that we can
always find some h ∈ Jn such that the first coordinate that hA and T do not agree on
is greater than (i, j). Observe that A(i, j) > T (i, j) and so tT (i,j) · · · tA(i,j)−2tA(i,j)−1A
agrees with T at the coordinate (i, j), but leaves all previous coordinates untouched,
so the first coordinate they do not agree on must be greater than (i, j). □

We now turn to discuss the action of Jn on pairs of standard Young tableaux of
partitions of n (which are not necessarily the same). When the partitions are not both
hook-shaped, the action is transitive except in when the standard Young tableaux are
the same or transposed. However, if the partitions are both hook-shaped, there are
several orbits, as we now describe. We make use of a few lemmas, which we present
first.

Definition 3.2. Let λ1, λ2 be hook-shaped partitions, and let A ∈ SYT(λ1), B ∈
SYT(λ2). We denote by SA,B = {k | A−1(k) = (a, 1), B−1(k) = (b, 1) for some a, b}
the set of shared values in the first rows of A and B.

Lemma 3.3. The value I := |SA,B| is invariant under Jn.

Proof. Let λ1, λ2 be hook-shaped partitions, and let A ∈ SYT(λ1), B ∈ SYT(λ2). It
suffices to show that I is invariant under any tk. If A and B are both fixed under tk,
clearly I is fixed. If neither A nor B are fixed under tk, then it must be the case that
k and k + 1 are swapped between the first row and the first column: If either k or
k+1 are shared in the first row, then which of k or k+1 is shared is simply swapped
in tkA and tkB; if neither k nor k + 1 are shared in the first row, then tk preserves
that neither are shared. If A is fixed under tk and B is not, then either k and k + 1
are both in the first row of A or both in the first column of A. In the former case, tk
maintains that one of k or k + 1 is shared in the first row, and in the latter case, tk
maintains that neither are shared in the first row. The proof is symmetric for if B is
fixed and A is not. □

Lemma 3.4. Let λ1, λ2 be hook-shaped partitions of n, and let A ∈ SYT(λ1), B ∈
SYT(λ2). The value m(A,B) := max(SA,B) exists and is not equal to n if and only
if there exists some g ∈ Jn such that m(gA, gB) > m(A,B).

Proof. The reverse direction follows directly. Now, let k = m(A,B). Clearly, k+ 1 is
not in the first row of both A and B. If k + 1 is not in the first row of either, then
m(tkA, tkB) = k + 1, since k + 1 is swapped to the first row of both. Otherwise, if
k + 1 is in the first row of either A or B but not the other, then tk leaves fixed the
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standard Young tableau with k and k+1 in the first row and swaps k+1 to the first
row of the other, and hence, m(tkA, tkB) = k + 1. □

We are now in a position to describe the orbits of pairs standard Young tableaux
of hook-shaped partitions under Jn.

Theorem 3.5. Let λ1, λ2 be hook-shaped integer partitions of n. If λ1, λ2 are both
hook-shaped, the set of pairs (A,B) for A ∈ SYT(λ1), B ∈ SYT(λ2) under the group
Jn has min(r1(λ1), c1(λ1), r1(λ2), c1(λ2)) orbits.

Proof. We proceed by induction. Suppose without loss of generality that r1(λ1) ≤
c1(λ1), r1(λ2), c1(λ2), and let A ∈ SYT(λ1), B ∈ SYT(λ2). Let Ir(A,B) denote the
number of shared values in the first row of A and the first row of B (that is, the size
of the set {k | A−1(k) = (a, 1), B−1(k) = (b, 1) for some a, b}). Similarly, let Ic(A,B)
denote the number of shared values in the first row of A and the first column of
B (that is, the size of the set {k | A−1(k) = (a, 1), B−1(k) = (1, b) for some a, b}).
Observe that Ir(A,B) + Ic(A,B) = r1(λ1), and there exist pairs of standard Young
tableaux for which Ir, Ic attain values from 1 to r1(λ1). By Lemma 3.3, since Ir, Ic
are invariant under Jn, it suffices to show that Ir is a full invariant: Given a fixed
value of Ir, any two pairs of standard Young tableaux of shapes λ1, λ2 with this value
are in the same orbit.

Without loss of generality, we assume Ir(A,B) > 1 (otherwise, we do a symmetric
proof on the row of A and the column of B, as Ic(A,B) > 1). If r1(λ1) = 1, then
observe that A is fixed under any action of Jn, and so by Theorem 3.1, there is indeed
1 orbit. Now, suppose r1(λ1) > 1. By Lemma 3.4, there exists g ∈ Jn such that
(gA)−1(n) = (r1(λ1), 1), (gB)−1(n) = (r1(λ2), 1). Observe that the number of values
shared in the first row of A \ n and the first row of B \ n is Ir − 1, and since this is
a full invariant for the shapes λ1 \ (r1(λ1), 1) and λ2 \ (r1(λ2), 1), we have that Ir is
also a full invariant. □

When λ1 = λ2, we can deduce the sizes of the orbits purely combinatorially, since
the orbits are defined by the number of shared entries in the first rows of both standard
Young tableaux.

Remark 3.6. Let λ be a hook-shaped partition of n. The lengths of the orbits of pairs
of elements of SYT(λ) under the group Jn are N ·

(
k−1
0

)(
ℓ−1
0

)
, N ·

(
k−1
1

)(
ℓ−1
1

)
, . . . , N ·(

k−1
k−1

)(
ℓ−1
ℓ−k

)
, where k := min(r1(λ), c1(λ)), ℓ := max(r1(λ), c1(λ)), and N := |SYT(λ)|.

We now show that pairs of standard Young tableaux of partitions which are not
both hook-shaped are almost transitive under Jn.

Theorem 3.7. Let λ1, λ2 be integer partitions of n which are not both hook-shaped.
The following statements are true about the set of pairs (A,B) for A ∈ SYT(λ1), B ∈
SYT(λ2) under the group Jn:

(1) If λ1 = λ2 and λ1 = λ′
1, there are 3 orbits (where A = B, A′ = B, and

A,A′ ̸= B).
(2) If λ1 = λ2 and λ1 ̸= λ′

1, there are 2 orbits (where A = B and A ̸= B).
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(3) If λ1 ̸= λ2 and λ1 = λ′
2, there are 2 orbits (where A′ = B and A′ ̸= B).

(4) If λ1 ̸= λ2 and λ1 ̸= λ′
2, there is 1 orbit.

Proof. We proceed by induction. We begin by showing that the theorem hold for
pairs of partitions λ1, λ2 of n such that

(i) both λ1 and λ2 are almost-hook-shaped or
(ii) either λ1 or λ2 is almost-hook-shaped and the other partition is hook-shaped.

Let’s assume that λ1 is almost-hook-shaped and λ2 is either almost-hook-shaped or
hook-shaped. If we have λ1 = λ2 = 2/2, or we have λ1 = 3/2 and λ2 = 3/2
λ2 = 3/1/1, λ2 = 2/1/1/1, or λ2 = 1/1/1/1/1, or we have λ1 = 3/2/1 and λ2 = 4/2,
λ2 = 4/1/1, λ2 = 3/2/1, λ2 = 3/1/1/1, λ2 = 2/2/1/1, λ2 = 2/1/1/1/1, or λ2 =
1/1/1/1/1/1, we can manually verify that the theorem holds.
Otherwise, observe that max(r1(λ1), c1(λ1)) > 3, and suppose that the theorem

holds for pairs of partitions of n− 1 which satisfy (i) or (ii). Let A ∈ SYT(λ1), B ∈
SYT(λ2), and without loss of generality, suppose r1(λ1) ≥ c1(λ1) and r1(λ2) ≥ c1(λ2).
It suffices to show that there exists some g ∈ Jn such that (gA)−1(n) = (r1(λ1), 1)
and (gB)−1(n) = (r1(λ2), 1). By Theorem 3.1, there exists some h ∈ Jn such that
(hA)−1(n) = (r1(λ1), 1). If (hB)−1(n) = (r1(λ2), 1), we are done. Otherwise, observe
that since r1(λ1) > 3, it follows that λ1 with the box (hA)−1(n) taken away is either a
hook-shaped partition or an almost-hook-shaped partition with max(r1(λ1), c1(λ1)) ≥
3 and λ2 with the box (hB)−1(n) taken away is hook-shaped, so there exists some
h′ ∈ Jn such that (h′hA)−1(n−1) = (r1(λ1)−1, 1) and (h′hB)−1(n−1) = (r1(λ2), 1).
Then, (tn−1h

′hA)−1(n) = (r1(λ1), 1) and (tn−1h
′hB)−1(n) = (r2(λ1), 1), as desired.

Now, let λ1, λ2 be partitions of n which are not both hook-shaped, and let A ∈
SYT(λ1), B ∈ SYT(λ2). We assume statement (2) holds for all pairs of partitions of
n− 1. It is clear that if A = B (or A′ = B) then gA = gB (resp., gA′ = gB) for all
g ∈ Jn. Furthermore, by Lemma 3.1, if there exist C ∈ SYT(λ1), D ∈ SYT(λ2) such
that C = D (resp., C ′ = D), there exists some g ∈ Jn such that gA = C, gB = D.

We now show that all other cases are in one orbit; that is, for any C ∈ SYT(λ1), D ∈
SYT(λ2) where A ̸= B,A′ ̸= B and C ̸= D,C ′ ̸= D, there exists some g ∈ Jn such
that gA = C, gB = D.
We now show that there exists h1 ∈ Jn such that h1A\n ̸= h1B\n and (h1A\n)′ ̸=

h1B \ n.
Case 1: λ1 = λ2 or λ′

1 = λ2. If A \ n = B \ n, then clearly A = B, and if
(A\n)′ = B\n, then clearly A′ = B, so we have that A\n ̸= B\n and (A\n)′ ̸= B\n,
and we are done.

Case 2: λ1 ̸= λ2. Observe that either λ1 or λ2 must have at least 2 corners—
without loss of generality, suppose it is λ1. By Theorem 3.1, there exists some h ∈ Jn
such that (hA)−1(n−1) is a corner. Let λ∗

1 be the shape λ1 with the box at (hA)−1(n)
removed, and let λ∗

2 be the shape λ2 with the box at (hB)−1(n) removed. If λ∗
1 ̸= λ∗

2

and (λ∗
1)

′ ̸= λ∗
2, then we are done, as clearly hA \ n ̸= hB \ n and (hA \ n)′ ̸= hB \ n.

If λ∗
1 = λ∗

2 and (λ∗
1)

′ = λ∗
2, then observe that λ1 with the box (tn−1hA)

−1(n) taken
away cannot be the same or transposed shape as λ2 with the box (tn−1hB)−1(n) taken
away, so we are done. If λ∗

1 = λ∗
2 and (λ∗

1)
′ ̸= λ∗

2, and if hA \ n ̸= hB \ n, we are
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done since (hA \ n)′ ̸= hB \ n. However, if hA \ n = hB \ n, then observe that
(tn−1hA \ n)′ ̸= tn−1hB \ n and tn−1hA \ n ̸= tn−1hB \ n because λ1 with the box
(tn−1hA)

−1(n) taken away is not the same shape as λ2 with the box (tn−1hB)−1(n)
taken away, so we are also done.

Let h1, h2 ∈ Jn such that h1A \ n ̸= h1B \ n, (h1A \ n)′ ̸= h1B \ n and similarly, let
h2C \ n ̸= h2D \ n, (h2C \ n)′ ̸= h2D \ n. We now select a position to move n− 1 to
in λ1 for h1A and h2C.

If λ1 has more than two corners, we choose the corner (i, j) for both h1A and
h2C such that (i, j) ̸= (h1A)

−1(n) and (i, j) ̸= (h2C)−1(n). If λ1 has two corners or
fewer, then observe that λ1 has an extended corner (k, l). Without loss of generality,
suppose (k, l) = (h1A)

−1(n). For h1A, we select (k, l− 1) or (k− 1, l) (whichever it is
possible to place n − 1 in by the definition of an extended corner), and for h2C, we
select (k, l).
We do the same process to select a position to move n − 1 to in λ2 for h1B and

h2D. Since h1A\n, h2C \n, h1B\n, h2D\n are in non-same, non-transposed orbits of
partitions of n− 1, there exist g1, g2 ∈ Jn such that (g1h1A)

−1(n− 1), (g1h1B)−1(n−
1), (g2h2C)−1(n−1), (g2h2D)−1(n−1) are in the specified positions as given above, so
that (tn−1g1h1A)

−1(n) = (tn−1g2h2C)−1(n) and (tn−1g1h1B)−1(n) = (tn−1g2h2D)−1(n).
Since tn−1g1h1A\n ̸= tn−1g1h1 B\n, (tn−1g1h1A\n)′ ̸= tn−1g1h1B\n and tn−1g2h2C \
n ̸= tn−1g2h2D \n, (tn−1g2h2C \n)′ ̸= tn−1g2h2D \n, there exist f1, f2 ∈ Jn such that
f1tn−1g1h1A = f2tn−1g2h2C and f1tn−1g1h1B = f2tn−1g2h2D, so the group action
f2tn−1g2h2f1tn−1g1h1 transforms the pair (A,B) into (C,D), as desired.

□

Corollary 3.8. Let λ be a partition of n which is not hook-shaped. Under the group
Jn, the set of pairs (A,B) for A,B ∈ SYT(λ) has 3 orbits (where A = B, A′ = B,
and A,A′ ̸= B) when λ = λ′ and 2 orbits (where A = B and A ̸= B) otherwise.

We have provided constructive proofs for Theorem 3.5 and Theorem 3.7, but the
path from one pair of standard Young tableaux to another is not straightforward, as
the following example illustrates.

Example 3.9. Let λ = 5/2, an integer partition of 7, and let A,B,L ∈ SYT(λ) as
given in Figure 1. The minimal group element which takes the pair (A,B) to (A,L)
is 12 Bender–Knuth involutions long: (A,L) = t4t5t4t3t4t3t2t4t3t5t4t6(A,B).

We observe computationally that when λ is not hook-shaped, the image of Jn in
S|SYT(λ)| has index at most 2, as demonstrated in Table 1 (Appendix A) for partitions
up to 18 boxes.

Conjecture 3.10. Let λ be a non-hook-shaped partition of n with λ ̸= λ′. Then
either SN

∼= Jn(SYT(λ)) or AN
∼= Jn(SYT(λ)) (where N = |SYT(λ)|).

Given that Conjecture 3.10 holds for a partition λ, we can ascertain whether
SN

∼= Jn(SYT(λ)) or AN
∼= Jn(SYT(λ)) by verifying whether each ti is an even

permutation. This calculation is less computationally demanding, so we show the
distribution of even and odd images Jn(SYT(λ)) of partitions from 19 to 52 boxes
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1 2 3 4 5

6 7 A

1 2 3 4 6

5 7 B

1 2 3 5 6

4 7 C

1 2 4 5 6

3 7 D

1 3 4 5 6

2 7 E

1 2 3 4 7

5 6 F

1 2 3 5 7

4 6 G

1 2 4 5 7

3 6 H

1 3 4 5 7

2 6 I

1 2 3 6 7

4 5 J

1 2 4 6 7

3 5 K

1 3 4 6 7

2 5 L

1 2 5 6 7

3 4 M

1 3 5 6 7

2 4 N

t5

t4

t3

t2

t4

t3

t2

t3

t2 t2

t6

t6

t6

t6

t5

t5

t5

t4

t4

Figure 1. All 14 standard Young tableaux of the partition 5/2 and
the interactions under nontrivial group operations of J7.

in Table 2 (Appendix A). We include two tables, one which considers all non-hook-
shaped partitions λ where λ ̸= λ′, and the other which only considers “generic” such
shapes.

Definition 3.11. Let λ be a partition of n. We say that λ is “generic” if c1(λ), r1(λ) ≤
2
√
2 ·

√
n.

This definition of generic accounts for all randomly chosen partitions of n in the
limit according to the Plancherel measure [11]. We conjecture that for generic parti-
tions, the number of even permutations will eventually dominate the number of odd
partitions.

Conjecture 3.12. Let Sn be the set of all generic partitions λ of n whose image
Jn(SYT(λ)) is SN , and similarly, let An be the set of all generic partitions λ whose
image is AN (where N = |SYT(λ)|). Then

lim
n→∞

|An|
|Sn +An|

= 1.
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When a partition is the same as its transpose, it is easy to see that the image of
its standard Young tableaux under Jn must be even.

Proposition 3.13. Let λ be a partition of n > 1 with λ = λ′. Then Jn(SYT(λ)) ⊆
AN (where N = |SYT(λ)|).

Proof. This follows readily from the fact that for any A ∈ SYT(λ), if tiA ̸= A, then
tiA

′ ̸= A′ and A ̸= A′. □

4. Semistandard Young Tableaux

In this section, we discuss the behavior of semistandard Young tableaux under the
cactus group. We prove a condition for 2-row semistandard Young tableaux to be
semi-transitive, and we propose a generalization for semistandard Young tableaux
with 3 or more rows.

To generalize Bender–Knuth involutions to semistandard Young tableaux as fol-
lows, we introduce the following notion of a “free” entry in a semistandard Young
tableaux.

Definition 4.1. For an specified index i, we say that i is “free” if the box below it
does not contain the entry i + 1, and we say that i + 1 is “free” if the box above it
does not contain the entry i.

The Bender–Knuth involution ti acts on a semistandard Young tableaux by replac-
ing ak free entries of i and bk free entries of i+1 with bk entries of i and ak entries of
i+ 1 for every row k in the Young tableau.

Example 4.2. Consider the following semistandard Young tableaux.

1 1 2 2 3

2 3 3 3

The only free boxes containing the entries 2 or 3 are (1, 5), (2, 1), and (2, 2). Since
the first row has a single free 3 and no free 2s and the second row has one free 2 and
3, applying t2 yields the following.

1 1 2 2 2

2 3 3 3

Unlike standard Young tableaux, the set of semistandard Young tableaux of a
partition of n is not even transitive under Jn.

We now introduce three invariants which help to distinguish these orbits.

Definition 4.3. Call R the set of rk(i) (the number of occurrences of i in row k) for
all possible k and i.

Lemma 4.4. The number of locked columns Lk(i) in row k under ti is a multiple of
gcd(R).
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Proof. Observe that Lk(i) =
∑i+1

j=1 rk+1(j)−
∑i−1

j=1 rk(j), a linear combination of ele-
ments of R. □

We are now in a position to prove our first invariant.

Proposition 4.5. The value gcd(R) is invariant under JN .

Proof. Let A be a semistandard Young tableau. It follows from Lemma 4.4 that
gcd(R) is invariant under ti for an arbitrary row k since the number of occurrences
of i and i+1 in row k of tiA are rk(i+1)+Lk(i) and rk(i)−Lk(i), respectively, and
the number of occurrences of i and i + 1 in row k + 1 of tiA are rk+1(i + 1) − Lk(i)
and rk+1(i) + Lk(i), respectively. □

Our second invariant only applies to semistandard Young tableaux with two rows.

Proposition 4.6. For 2-row semistandard Young tableaux, the value min(R, {
∑j

i=1

(r1(i)− r2(i+ 1)) | 1 ≤ j < N}) is invariant under JN .

Proof. Let A be a 2-row semistandard Young tableau, and let w = min(R, {
∑j

i=1

(r1(i)− r2(i+ 1)) | 1 ≤ j < N}). Call r′1(j) the number of occurrences of j in row 1
of tiA. Then r′1(i) = r1(i+ 1) + L1(i) ≥ w and r′2(i+ 1) = r2(i) + L1(i) ≥ w. Also,

r′1(i+ 1) = r1(i)− L1(i)

= r1(i) +
i−1∑
j=1

(r1(j)− r2(j))− r2(i)− r2(i+ 1)

= r1(i) +
i−2∑
j=1

(r1(j)− r2(j + 1)) + r1(i− 1)− r2(i)− r2(i+ 1)

=
i∑

j=1

(r1(j)− r2(j + 1))

≥ w.

Similarly,

r′2(i) = r2(i+ 1)− L1(i)

= r2(i+ 1) +
i−1∑
j=1

(r1(j)− r2(j))− r2(i)− r2(i+ 1)

= r2(i+ 1) +
i−2∑
j=1

(r1(j)− r2(j + 1)) + r1(i− 1)− r2(i)− r2(i+ 1)

=
i−1∑
j=1

(r1(j)− r2(j + 1))

≥ w.
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To see that min({
∑j

i=1(r1(i) − r2(i + 1)) | 1 ≤ j < N}) is preserved under ti,
observe that

i∑
j=1

(r′1(j)− r′2(j + 1)) =
i−2∑
j=1

(r1(j)− r2(j + 1)) + r1(i− 1)

− r′2(i) + r′1(i)− r′2(i+ 1)

=
i−2∑
j=1

(r1(j)− r2(j + 1)) + r1(i− 1)

− (r2(i+ 1)− L1(i)) + (r1(i+ 1) + L1(i))− (r2(i) + L1(i))

=
i−2∑
j=1

(r1(j)− r2(j + 1)) + r1(i− 1)

− r2(i+ 1) + r1(i+ 1)− r2(i) + L1(i)

=
i−1∑
j=1

(r1(j)− r2(j + 1))− r2(i+ 1) + r1(i+ 1)

+
i−2∑
j=1

(r2(j + 1)− r1(j))− r1(i− 1) + r2(i) + r2(i+ 1)

= r1(i− 1)− r2(i)− r2(i+ 1) + r1(i+ 1)

− r1(i− 1) + r2(i) + r2(i+ 1)

= r1(i+ 1)

≥ w.

□

As arc diagrams are analogous to semistandard Young tableaux of partitions with
two rows (under Jn) (see [5, 7]), Proposition 4.5 and Proposition 4.6 may be proved
with different methods using [3](Lemma 3) and [3](Lemma 2), respectively.

Our third and final invariant is the most natural invariant on semistandard Young
tableaux.

Definition 4.7. Let A ∈ SSYT(λ,N). We denote by ℓi(A) the number of times i
occurs in A, and we call L(A) the “set of counts” of entries in A, defined as the
multiset {ℓi(A) ̸= 0}.

Proposition 4.8. Let A ∈ SSYT(λ,N). Then, L(A) = L(gA) for any g ∈ Jn.

Proof. This trivially follows from the observation that the number of occurrences of
i and i+ 1 are swapped under the Bender–Knuth operation ti. □

As a consequence of Proposition 4.8, we can extend our definition of the “set of
counts” to orbits of semistandard Young tableaux.
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Definition 4.9. If O is an orbit of SSYT(λ,N)/JN , we define L(O) := L(A), where
A is any semistandard Young tableaux in O.

Although semistandard Young tableaux are not transitive, we can still analyze
when a semistandard Young tableau is transitive under the invariant presented in
Proposition 4.8.

Definition 4.10. We say that A ∈ SSYT(λ,N) is “semi-transitive” under Jn if for
all A∗ ∈ SSYT(λ,N) such that L(A) = L(A∗), there exists some g ∈ Jn such that
gA = A∗.

However, in general, semistandard Young tableaux are not even semi-transitive, as
the following counterexample shows.

Example 4.11. Let λ = 4/2. The elements

1 1 2 2

3 3
and 1 1 2 3

2 3

of SSYT(λ, 3) are not in the same orbit since the latter semistandard Young tableaux
is fixed under all elements of Jn (as it is fixed under both t1 and t2).

We now present a condition on 2-row semistandard Young tableaux which guaran-
tees semi-transitivity. In order to do this, we first prove the following lemma.

Lemma 4.12. Let A be a 2-row semistandard Young tableau such that A−1(1) =
{(1, 1)}, S(2, 1) = 2, and ℓ2(A) ≥ ℓ3(A). Then, there exists some g ∈ JN such that
gA−1(1) = {(1, 1)}, gA(2, 1) = 3, ℓ2(A) = ℓ2(gA), and ℓ3(A) = ℓ3(gA).

Proof. If ℓ2(A) = ℓ3(A), then t2 is our desired group element. Otherwise, ℓ2(A) >
ℓ3(A), and we show that (t2t1)

3 is our desired group element. It is easy to see that
ℓ2(A) = ℓ2((t2t1)

3A) and ℓ3(A) = ℓ3((t2t1)
3A), and since ℓ1(A) = 1, it must be that

((t2t1)
3A)−1(1) = {(1, 1)}. Now let us show that ((t2t1)

3A)(2, 1) = 3. Let a = ℓ2(A),
and let b1 and b2 be the number of 3s in the first and second row, respectively (so that
b1 + b2 = ℓ3(A)). Let T be a function from a semistandard young tableau to a tuple
(w1,1, w2,1, w2,2, w3,1, w3,2) where wi,j refers to the number of occurrences of i in the
row j. Observe that T (A) = (1, a− 1, 1, b1, b2). So, we have the following sequence:

T (t1A) = (a, 0, 1, b1, b2)

T (t2t1A) = (a, b1, b2, 0, 1)

T (t1t2t1A) = (b, a− b2, b2, 0, 1)

T (t2t1t2t1A) = (b, 0, 1, a− b2, b2)

T (t1t2t1t2t1A) = (1, b− 1, 1, a− b2, b2)

T (t2t1t2t1t2t1A) = (1, a, 0, b1 − 1, b2 + 1),

as desired (the last step is because b − 1 ≥ b2). Since there are no 2s in the second
row, it is indeed true that ((t2t1)

3A)(2, 1) = 3. □
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Theorem 4.13. Let λ be a 2-row partition of n, and let A ∈ SSYT(λ,N). If there
is some 1 ≤ i ≤ N such that ℓi(A) = 1, then A is semi-transitive.

Proof. We proceed by induction. Suppose the theorem holds for semistandard young
tableaux in SSYT(λ∗, N) where (r1(λ

∗), r2(λ
∗)) < (r1(λ), r2(λ)) under the lexico-

graphic order. Our base case is when N ≤ 2, which is trivially semi-transitive since
if ℓ1 = 1, there is only one possible arrangement.

We first set ℓ1(A) = 1 (by applying t1 · · · ti where ℓi(A) = 1). We then set ℓ2(A) =
maxL(A) (by applying t2 · · · tj where ℓj(A) = maxL(A)), which leaves ℓ1(A) = 1.
Let k = minL(A) \ {1}, and set ℓ3(A) = k by the same process. If A(2, i) = 3 for
all 1 ≤ i ≤ min(r2, k) (i.e., there is a maximal number of 3s in row 2), we apply
tN · · · t3and induct on the resulting semistandard young tableau.
Otherwise, it suffices to show that we can increase the number of 3s in the second

row. If A(2, 1) = 2, we can do this by Lemma 4.12. Let a be the smallest entry
which is not a 3 in the second row. Applying ta−1, . . . , t4, the smallest entry becomes
a 4 (since A(1, i) ∈ {1, 2}, which is true since ℓ2(A) = maxL(A)). Suppose i is the
smallest value such that A(2, i) = 4. We outline a procedure to make each value at
(2, j) a 3 for all 1 ≤ j ≤ i while maintaining the counts ℓ1(A), ℓ2(A), and ℓ3(A). Let v
be the number of 3s in row 2, and let w be the number of 4s in row 2. We first apply
t3, which swaps the values v and w. Applying Lemma 4.12, we have one 2, w− 1 3s,
and v 4s in the second row. Applying t3 again, we have one 2, v 3s, and w − 1 4s in
the second row. Lastly, we apply Lemma 4.12, which gives us v+1 3s and w−1 4s in
the second row, as desired. It is straightforward to see that the counts ℓ1(A), ℓ2(A),
and ℓ3(A) remain unchanged since Lemma 4.12 does not modify the counts.

Since we can always increase the number of 3s in the second row (while keeping
the count ℓ3(A) fixed as k) until the second row has a maximal number of 3s, we
can apply induction on the same shape for A, which shows that SSYT(λ,N) is semi-
transitive. □

Again, using the translation from arc diagrams to 2-row semistandard Young
tableaux given in [5, 7], we can separately prove Theorem 4.13 using [3](Theorem
2).

We conjecture that Theorem 4.13 holds for 3-row semistandard Young tableaux,
which we computationally confirmed for all semistandard Young tableaux with n ≤ 48
and N ≤ 6.

Conjecture 4.14. Let λ be a 3-row partition of n, and let A ∈ SSYT(λ,N). If
|L(A)| > 3 and if there is some 1 ≤ i ≤ N such ℓi(A) = 1, then A is semi-transitive.

Theorem 4.13 does not generalize past 3 rows, as the following example illustrates.

Example 4.15. The semistandard Young tableaux

are not in the same orbit, as the orbit of A consists of the following semistandard
Young tableaux:

1-2-2-2-3-4/2-3-3-4/3-4/4-5, 1-2-2-2-3-5/2-3-3-5/3-4/5-5,
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1 2 2 2 3 4

2 3 3 4

3 4

4 5

A = 1-2-2-2-3-4/2-3-3-4/3-4/4-5

1 2 2 2 4 4

2 3 3 3

3 4

4 5

B = 1-2-2-2-4-4/2-3-3-3/3-4/4-5

1-2-2-2-4-5/2-3-4-5/4-4/5-5, 1-2-3-3-4-5/3-3-4-5/4-4/5-5,
1-1-1-1-4-5/2-3-4-5/4-4/5-5, 1-1-1-1-3-5/2-3-3-5/3-4/5-5,
1-1-1-1-3-4/2-3-3-4/3-4/4-5, 1-1-1-1-2-4/2-2-2-4/3-4/4-5,
1-1-1-1-2-5/2-2-2-5/3-4/5-5, 1-1-1-1-2-3/2-2-2-3/3-3/4-5,

none of which are equal to B.

The orbit of A in the above example is minimal in the sense that there is only one
semistandard Young tableaux per assignment of numbers [[1, 5]] to L(A). In fact, the
length of any orbit must be a multiple of the number of possible such assignments.

Proposition 4.16. Let O be an orbit of SSYT(λ,N), for some partition λ of n. Let
mk := |{ℓi = k | ℓi ∈ L(O)}|, for 1 ≤ k ≤ max ℓi. Then

|O|(
N

m1,...,mmax ℓi

)
is an integer.

Proof. Let ∼ be the relation defined on O such that for A,B ∈ O, we have A ∼ B
if ℓi(A) = ℓi(B) for all 1 ≤ i ≤ N . Observe that ∼ is an equivalence relation, so it
partitions O into

(
N

m1,...,mmax ℓi

)
equivalence classes. Let S be some equivalence class of

O. Observe that for any g ∈ JN , the map ϕg : S → S ′ given by A 7→ gA is injective
and surjective, and the image S ′ of ϕg is an equivalence class. Hence, each equivalence

class of O is the same size, and consequently, O is a multiple of
(

N
m1,...,mmax ℓi

)
. □

We observe through computations that counterexamples as in Example 4.15 are
rare and have small orbits, so we conjecture these become negligible as the number
of boxes in a partition tends towards infinity.

Definition 4.17. Let λ be a partition of n, and let A,B ∈ SSYT(λ,N) with L(A) =
L(B) such that |L(A)|, |L(B)| > c1(λ) and there are some 1 ≤ i, j ≤ N such that
ℓi(A) = 1, ℓj(B) = 1. If A and B are not in the same orbit, then we call the orbits of
both A and B “rigid orbits.” We use Rλ to denote the set of rigid orbits of λ.

Conjecture 4.18. Let λ be a k-row partition of n where k > 3, and let N be some
nonnegative integer. Then

lim
n→∞

|Rλ|
|SSYT(λ,N)/JN |

= 0,
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and if R ∈ Rλ, then

lim
n→∞

|R|
|SSYT(λ,N)|

= 0.
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Appendix A. Computational data on the image Jn(SYT(λ))

|λ| # SN # AN # other
2 0 0 0
3 0 0 0
4 0 0 0
5 2 0 0
6 4 0 0
7 8 0 0
8 10 2 0
9 16 4 0
10 30 0 0
11 38 6 0
12 48 14 0
13 72 14 0
14 100 18 0
15 148 10 0
16 186 24 0
17 244 32 0
18 318 44 0

Table 1. The number of images which are AN , SN , or other of Jn on
SYT(λ) for all non-hook-shaped λ where λ ̸= λ′.
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|λ| # odd # even
19 400 66
20 486 114
21 620 144
22 756 216
23 970 254
24 1208 332
25 1536 386
26 1834 564
27 2174 796
28 2666 1008
29 3044 1476
30 3636 1920
31 3758 3034
32 4740 3554
33 5942 4144
34 6976 5274
35 9164 5656
36 10928 6980
37 13878 7688
38 15480 10460
39 18514 12592
40 22650 14602
41 28492 16002
42 32416 20664
43 40348 22814
44 47580 27488
45 53206 35816
46 54832 50608
47 41542 83088
48 51610 95528
49 64016 109368
50 71824 132254
51 96470 143316
52 114716 166704

|λ| # odd # even
19 358 62
20 420 106
21 516 132
22 654 202
23 806 244
24 980 304
25 1298 368
26 1504 528
27 1720 732
28 2056 900
29 2424 1378
30 2830 1740
31 2638 2818
32 3592 3366
33 4426 3864
34 5026 4838
35 6488 5182
36 7556 6234
37 10430 7008
38 11404 9166
39 13430 10740
40 16120 12222
41 21542 14014
42 23956 17706
43 29580 19060
44 34112 22588
45 36846 29042
46 40120 42082
47 28400 67078
48 34666 76036
49 42074 85966
50 49826 108688
51 66464 116772
52 77248 134248

Table 2. Number of images which are odd and even Jn on SYT(λ)
for all non-hook-shaped λ where λ ̸= λ′ (left) and all generic non-hook-
shaped λ where λ ̸= λ′ (right).
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