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Abstract. In 2016, Etingof defined the notion of a Yangian in a symmetric tensor category
and posed the problem to study them in the context of Deligne categories. This problem
was studied by Kalinov in 2020 for the Yangian Y (glt) of the general linear Lie algebra glt
in complex rank using the techniques of ultraproducts. In particular, Kalinov classified the
simple finite-length modules over Y (glt). In this paper, we define the notion of a twisted
Yangian in Deligne’s categories we extend these techniques to classify finite-length simple
modules over the twisted Yangians Y (ot) and Y (spt) of the orthogonal and symplectic Lie
algebras ot, spt in complex rank.
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1. Introduction

A symmetric tensor category (STC) is an abstraction of the representation category of a
group, or more generally, an affine supergroup scheme. However, not all symmetric tensor
categories arise as such representation categories; in other words, some do not fiber over the
category of complex super vector spaces sVecC. Working with these exotic categories yields
new forms of commutative algebra, algebraic geometry, and representation theory beyond
the realm of (super) vector spaces. Unless stated otherwise, all symmetric tensor categories
considered in this paper are defined over C.

The most prominent examples of STCs that do not fiber over sVecC are the Deligne cat-
egories, introduced in [DMOS82, Del90, Del02, Del07]. These categories generalize classical
representation categories such as Rep(GLn), Rep(On), and Rep(Spn) to the setting where
the rank parameter n is replaced by a complex parameter t ∈ C. An analogous construction
exists for symmetric groups. In recent years, Deligne categories have been the subject of
extensive study from multiple perspectives.
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2 A. S. KANNAN AND SHIHAN KANUNGO

The present work concerns Yangians in symmetric tensor categories. The notion was intro-
duced by Etingof in [Eti16], who showed that to any quadratic Lie algebra g in a symmetric
tensor category C, one can associate an algebra Y (g), called its Yangian. Although this is a
categorical rephrasing of Drinfeld’s original definition [Dri85], Etingof provided a streamlined
construction via R-matrices in the case of Y (glt), where glt = V ⊗ V ∗ and V is the tauto-
logical object in Rep(GLt). Etingof further posed the problem of classifying the irreducible
representations of Y (glt) that have finite-length when viewed as objects in Rep(GLt). This
question was solved by Kalinov [Kal20], who used ultrafilter and ultraproduct techniques to
bypass the lack of a triangular decomposition, following earlier applications of these methods
by Harman [Har16] and Deligne [Del07] to Deligne categories. Kalinov showed that simple
finite-length representations of Y (glt) are parametrized by pairs of sequences of Drinfeld
polynomials subject to a certain stabilization condition. Independently, Utiralova [Uti19]
proved a version of Olshanski’s centralizer construction in complex rank for Y (glt).

In this paper, we introduce the twisted Yangians Y (spt) and Y (ot), corresponding to the
categories Rep(Spt) and Rep(Ot), respectively. Extending Kalinov’s methods, we classify
their irreducible representations. As expected, irreducible modules are parametrized by
Drinfeld polynomials, analogous to those appearing in the integer-rank theory of Y (sp2n)
and Y (o2n). Specifically, these are highest weight representations, where the highest weight
µ(u) = (µ1(u), µ2(u), . . .) is an infinite sequence of µi(u) ∈ 1 + CJu−1K satisfying

µi+1(u)

µi(u)
=
Pi(u+ 1)

Pi(u)

for monic polynomials Pi(u), and the µi(u) eventually stabilize and equal some even se-
ries µm(u) ∈ 1 + u−2CJu−2K. This implies that the Pi(u) stabilize and equal 1. As in
the integer-rank case, the polynomials Pi(u) are called Drinfeld polynomials. Interestingly,
the classification has the exact same form for Y (spt) and Y (ot), even though Y (sp2n) and
Y (o2n) have different classification theorems. This is perhaps a consequence of the fact that
Rep(Ot) = Rep(Sp−t) as tensor categories.

The organization of this paper is as follows. In Section 2.1, we introduce the representa-
tions of the groups GLN , ON , SpN for an even integer N = 2n, discuss the simple objects and
the representations of the Lie algebras. We also discuss the positive-characteristic analogs
of these categories, as they will be important later on.

In Section 3, we first define the Yangians and twisted Yangians. We then prove positive-
characteristic versions of the classification theorems of finite-dimensional irreducible repre-
sentations of the twisted Yangians, similarly to how Kalinov in [Kal20, Section 3] proves a
positive-characteristic analog of the classification theorem of finite-dimensional irreducible
representations of Y (gln). In Section 4, we define the Deligne categories RepOt and RepSpt
and give their construction using ultraproducts. Finally, in Section 5, we assemble the re-
sults of Sections 3 and 4 together using ultraproducts to establish the final classification
theorem, Theorem 5.9. Finally, Appendix A proves the necessary results about the Sklyanin
determinant used for proving Theorem 3.4, an important tensor product decomposition that
relates representations of Y (gn) to those of SY (gn) (where gn = sp2n or o2n), the special
twisted Yangian, analogous to the Yangian Y (sln).

Several natural directions remain open. First, one may seek to describe the simple ob-
jects of Rep(GLt), Rep(Ot), and Rep(Spt) appearing in irreducible representations of Y (glt),
Y (ot), and Y (spt). Second, the categorical framework allows one to define a wide class of
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Yangians and twisted Yangians beyond the classical types, inviting further classification ques-
tions. Finally, it remains to be seen whether an analog of Olshanski’s centralizer construction
exists for twisted Yangians in complex rank, paralleling [Uti19].

Acknowledgements. This paper is the result of MIT PRIMES-USA, a program that pro-
vides high-school students an opportunity to engage in research-level mathematics and in
which the first author mentored the second author. The authors would like to thank the MIT
PRIMES-USA program and its coordinators for providing the opportunity for this research
experience. We are grateful to Pavel Etingof for his invaluable insights. We also thank
Sidarth Erat for many helpful discussions.

2. The representation categories Rep(GLN), Rep(SON), Rep(SpN)

In this section, we review some basic properties about representation categories of classical
groups and their Lie algebras. We assume all representations are finite-dimensional, and we
work over an algebraically closed field K of characteristic p ̸= 2. We freely reference [Jan03].

2.1. Representation categories of classical groups. Let G be a reductive algebraic
group with fixed choice of split maximal torus H and character lattice X(H). Every module
over M over H admits a weight-space decomposition M =

⊕
λ∈X(H)Mλ. In particular, the

Lie algebra g of G admits a weight-space decomposition given by

g = g0 ⊕
⊕
α∈R

gα,

where R is the set of roots, which are the non-zero weights of H such that gα ̸= 0. We will
let h denote the Cartan subalgebra of g corresponding to g. Each f : H → Gm ∈ X(H)
gives a Lie algebra map h 7→ K ∈ h∗; in particular, if we fix a basis for X(H), the image of
the basis under this map gives a basis of h∗. We will use the same symbols to describe both
bases, identified via this map. This will be convenient to pass from weights of G to those of
g. Now, let’s set up notation for the reductive algebraic groups we will consider.

Let GLN denote the general linear group scheme, which is the linear algebraic group of
N ×N invertible matrices, where N = 2n is an even integer. The Lie algebra glN of GLN is
the space of all N ×N matrices, for which we will use the usual elementary matrices Eij as
basis. However, rather than using the usual choice of 1, . . . , 2n to index rows and
columns, we will use IN := {−n, . . . ,−1, 1, . . . , n}. Consequently, all results we cite from
[Kal20] must first be translated to the indices −n, . . . ,−1, 1, . . . , n.

Our choices of split maximal torus H in GLN and Cartan subalgebra h in glN will be the
subgroup and subalgebra of diagonal matrices, respectively. We let {εi}i∈IN denote the basis
of X(H) where εi is the character diag(t−n, . . . , tn) 7→ ti. Any weight λ ∈ X(H) is therefore
of the form λ =

∑
i∈IN λiεi with λi ∈ Z. It follows by our convention that the same set of

symbols will denote the basis of h∗ dual to {Eii}i∈IN so that any glN -weight λ ∈ h∗ can also
be expressed λ =

∑
i∈IN λiεi except now with λi ∈ K. Finally, we will use the conventional

triangular decomposition on g where the simple roots are given by εi − εi+1, corresponding
to the root vector Ei,i+1 for i ∈ IN \ {−1}, and ε−1 − ε1, corresponding to the root vector
E−1,1.

The main groups in this paper, however, will be subgroup schemes of GLN preserving a
form. In particuar let G be an invertible symmetric (resp. skew-symmetric) matrix valued in
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K. The orthogonal group ON(G) (resp. symplectic group SpN(G)) is defined to be subgroup
scheme given by the relation

{x ∈ GLN |xtGx = G}.

Because ON(G) is not connected, at times it will be convenient to work instead with the
special orthogonal group SON(G) of determinant 1 matrices in ON(G). They both have
the same Lie algebra. For the symplectic case we point out that N has to be even for a
skew-symmetric form to exist. In fact, from now on we will assume N = 2n is even, as we
will not need to work with orthogonal groups for odd N .

Because different choices of G yield isomorphic groups, we choose a particular form for G
(defined below) and omit it from the notation. We define the N ×N matrix G = [gij] by

gij =

{
δi,−j in the orthogonal case

δi,−j · sgn i in the symplectic case.

The matrix G has the following forms in the orthogonal and symplectic cases, respectively:
0 0 · · · 0 1
0 0 · · · 1 0
...

... . .
. ...

...
0 1 · · · 0 0
1 0 · · · 0 0

 ,


0 0 · · · 0 1
0 0 · · · 1 0
...

... . .
. ...

...
0 −1 · · · 0 0
−1 0 · · · 0 0

 . (2.1)

This is not the most conventional choice (for instance, see [Hum12]), but it is what Molev
uses in [Mol07], which will be useful for our purposes. We let the set of diagonal matrices
H in G = SON , SpN be our maximal split torus in G and is given by matrices of the form
diag(t−1

n , . . . , t−1
1 , t1, . . . tn). We then define the character εi ∈ X(H) by sending such a

matrix to ti.
Let’s define the Lie algebras of these groups. Define E as the N ×N matrix whose (i, j)-

entry is Eij ∈ glN (we are using IN to index the rows and columns of glN as well). Next,
define the matrix F by:

F := E −G−1EtG,

from which a straightforward calculation shows that

Fij = Eij − θijE−j,−i,

where

θij :=

{
1 in the orthogonal case

sgn i · sgn j in the symplectic case.

Then, the Lie algebras oN and sp are the subalgebras of glN spanned the entries of F in the
orthogonal case and symplectic case, respectively. The Cartan subalgebra h corresponding
to the choice of torus H has basis given by Fi,i = Ei,i−θi,iE−i,−i for 1 ≤ i ≤ n; the basis dual
to this is precisely the basis induced h∗ by the basis {εi}ni=1 of X(H) given above. Finally,
if we let the span of the Fij for 1 ≤ i < j ≤ N denote the span of the positive root spaces,
then our choice of positive roots Φ+ is given by
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{
{−εi − εj, εi − εj}i<j G = SON

{−εi − εj, εi − εj}i<j ∪ {−2εi} G = SpN
, (2.2)

where i, j range over 1, 2, . . . , n.
Now, let’s discuss a little about the representation theory. Let G be any one of GLN , SON

or SpN with Lie algebra g. Call any weight λ ∈ X(H) dominant integral if it satisfies
⟨λ, α∨⟩ ∈ Z≥0 for all α ∈ Φ+, where α∨ is the coroot associated to α, and let X(H)+ be the
set of dominant integral weights. Explicitly, this is given by

λ−n ≥ · · · ≥ λn G = GLN
−|λ1| ≥ · · · ≥ λn−1 ≥ λn G = SON

0 ≥ λ1 ≥ · · · ≥ λn G = SpN

. (2.3)

with each λi ∈ Z.
Impose a partial ordering ⪯ on X(H) by µ ⪯ λ if λ− µ is the nonnegative linear combi-

nation of positive roots. Then, it is well-known that the simple modules all have a unique
maximal weight with respect to ⪯ called the highest weight. Moreover, it must be domi-
nant integral and for each dominant integral weight λ there is a simple module L(λ) with
that highest weight. In the case of G = GLN , we will also denote the simple module of
highest weight λ by L(λ) or L(λ, p) we if we want to emphasize the characteristic. For
G = SON , SpN , we will also denote this simple module by V (λ) or V (λ, p). This will be
so that we are consistent with the notations of Molev in [Mol07] later on when discussing
Yangians.

We will also consider another class of modules, called Weyl modules. For each dominant
integral weight λ ∈ X(H)+, we have a Weyl module by ∆(λ) or ∆(λ, p) defined by the
universal property that it admits a surjection to any module generated by its highest-weight
vector. In the case the characteristic p = 0, we have L(λ) = ∆(λ). For p > 2, it can loosely
be thought of as a mod p-reduction of the characteristic-zero module L(λ) (so its character is
also given by the Weyl character formula). For a more precise definition, see §II.2 in [Jan03].

Let’s also state classification simple ON -modules. Let G = SON and recall that N is even.
Then, the simple ON -modules are indexed by the following:

(1) the collection {λ | λ ∈ X(H)+, λ1 < 0}. In particular, the simple modules are
given by the induced modules indON

SON
V (λ) for λ ∈ X(H)+ with λ1 < 0. Moreover,

replacing λ1 by −λ1 and then inducing gives the same module;
(2) the collection {(λ, ε) | λ ∈ X(H)+, λ1 = 0, ε ∈ {−1, 1}}. In this case, the SON -

module structure on V (λ) lifts to the structure of an ON -module where a distin-
guished order-2 element acts by ε.

When it is clear we are working with ON , we will let X(H)+ for ON be the set of λ ∈ X(H)
such that 0 ≥ λ1 ≥ · · · ≥ λn and denote the simple module corresponding to λ with the
notation V (λ) or V (λ, p). As written, this is ambiguous when λ1 = 0, but we deliberately
ignore the sign ε for the case λn = 0 because it is not detectable at the level of the Lie algebra
oN and basically has no bearing on what is to come. Moreover, it will turn out we won’t
really be interested in the case where λ1 ̸= 0 due to stabilization with respect to a certain
limit as N → ∞, so in a loose sense we truly only care about the underlying SON -module
structure.
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We will not prove this classification here, but a proof is given in [GW00] (the proof therein
assumes characteristic p = 0 but only needs p ̸= 2).

Remark 2.1. For G = SON with N = 2n+1 odd, the root system for G is the same as the even
case except with the additional short roots of εi and −εi. The criteria for dominant integrality
for λ ∈ X(H) then becomes the same as that for SpN . Since we have ON = SON × Z/2Z,
it is clear that ON -representations are indexed by the set {(λ, ε) |λ ∈ X(H)+, ε ∈ {−1, 1}}.

2.2. Representations of classical Lie algebras. Continue to let G be one of GLN , SON

or SpN , and let g denote the Lie algebra of G. We are working towards describing the
representation theory of the Yangian Y (g), so it will also be useful to state some basic facts
about the representation theory of g. In characteristic zero, restricting a representation of G
to g is essentially the same, so we are mostly concerned with positive characteristic.

Let CZ denote the fundamental alcove of G, which is given by

CZ = {λ ∈ X(H) | 0 ≤ ⟨λ+ ρ, α∨⟩ < p′,∀α ∈ Φ+},

where p′ = p if p > 0 and p′ = ∞ if p = 0 and where ρ is half the sum of the positive roots.
For ON , we define its fundamental alcove to be that for SON . Then, we have the following
well-known fact (cf. §II.5.6 in [Jan03]):

Proposition 2.2. For any λ, µ ∈ CZ ∩X(H)+, we have L(λ) = ∆(λ), and moreover there
are no non-trivial extensions between L(λ) and L(µ).

Corollary 2.3. For λ ∈ CZ ∩X(H)+, the G-module ∆(λ) is irreducible upon restriction to
g.

Proof. If p = 0, this is well-known. So suppose p > 0. First of all, by Proposition 2.2,
∆(λ) is simple. Then, because G is reductive, the restriction of a simple G-module to g can
instead be thought of as module over the first Frobenius kernel over G. But λ is a restricted
dominant integral weight because it is both dominant integral and in the fundamental alcove,
so the claim follows by the Steinberg tensor product theorem (see §II.3.17 in [Jan03]). □

The following lemma will also be useful (recalling N = 2n) :

Lemma 2.4. Suppose p > 2, and let λ be a dominant integral weight for G = SON , SpN .
Then, the condition −2λn + 2n < p implies λ ∈ CZ.

Proof. We want to show that −2λn + 2n < p implies

0 ≤ ⟨λ+ ρ, α∨⟩ < p

for every positive root α. Let us first consider the case of G = SON , whose positive roots
are ±εi − εj for i < j. In this case, we have

ρ = −ε2 − 2ε3 − · · · − (n− 1)εn.

The condition that λ lies in the fundamental alcove is then equivalent to:

0 ≤ ⟨λ+ ρ, (±εi − εj)
∨⟩ = (±λi − λj) ∓ (i− 1) + (j − 1) < p.

Since λ is dominant integral, i < j means 0 ≥ λi ≥ λj, so the first inequality is satisfied.
Additionally, ±λi−λj ≤ −2λn and ∓(i− 1) + (j− 1) ≤ 2n, so if −2λn + 2n < p, the second
is satisfied, so −2λn + 2n < p implies λ lies in the fundamental alcove. The same argument
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applies, with minor adjustments, to the case of G = SpN , whose positive roots are ±εi − εj
for i < j and −2εi, and

ρ = −ε1 − 2ε2 · · · − nεn.

This completes the proof. □

2.3. Representation categories. We would like to define some useful notation for later
on. Let G be a reductive algebraic group with Lie algebra g. If A is some Lie algebra, affine
group scheme, or associative algebra algebra (in the category of vector spaces), let RepA
denote the category of finite-dimensional A-modules. For instance, we let RepG denote the
category of finite-dimensional representations of G, which obviously is a symmetric tensor
category. In characteristic 0, it is semisimple.

Now, let A be an associative unital algebra equipped with an algebra homomorphism
U(g) → A. Let us define RepG A to be the category of G-modules M that also admit the
structure of an A-module such that the action of g on M through G and through A coincide
(we will treat the G-module admitting multiple such structures as separate objects). The
morphisms will be G-module homomorphisms. For instance, if A = U(g) and the equipped
algebra homomorphism is the identity map, then this category is just the category RepG.
We will particularly be interested in the case where A is one the (twisted) Yangians Y (glN),
Y (oN), or Y (spN), defined in §3. We do so because we are interested only in representations
that lift to the group, after which we will take ultraproducts to construct representations in
complex rank.

3. Twisted Yangians

Before we can develop the theory of twisted Yangians in Deligne’s categories, we would
like to first discuss twisted Yangians in finite rank. We will review basic results in charac-
teristic zero. It will also be necessary to prove some basic results about twisted Yangians in
positive characteristic due to a limit construction later on that passes from fields of positive
characteristic to the complex numbers using ultrafilters. 1 We closely follow the presentation
in [Mol07]. Retain the notation from Section 2. In particular, we work over the algebraically
closed field K of characteristic p ̸= 2 and have N = 2n be some even positive integer.

3.1. The (twisted) Yangians Y (glN), Y (spN), Y (oN). We recall the definitions of the
Yangian of glN and the twisted Yangians of oN and spN , following Chapter 4 of [Mol07], as
well as some basic properties.

The Yangian Y (glN) is the associative algebra generated by the generators generators t
(r)
ij

for r ≥ 1 and i, j ∈ IN subject to the well-known ternary relation (see [Mol07] or (A.1)). It
will be useful to consolidate these and define the formal power series

tij(u) := δij + t
(1)
ij u

−1 + t
(2)
ij u

−2 + · · ·
and also to further assemble these into the N ×N matrix T (u) = [tij(u)], whose coefficients
can be viewed as elements of

Hom(V, V ⊗ Y (glN))Ju−1K,

where V = KN . It can be thought of as a generalization of the universal enveloping algebra
of U(glN).

1Discussion of twisted Yangians in positive characteristic appears to be virtually nonexistent (cf. [BT18] for
the ordinary Yangian of glN ), so we prove what we need here.
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Proposition 3.1. The map

tij(u) 7→ δij + Eiju
−1 (3.1)

defines a surjective homomorphism

πN : Y (glN) → U(glN).

Moreover, we have an embedding in : U(glN) ↪→ Y (glN) given by

Eij 7→ t
(1)
ij . (3.2)

Here Eij denotes the elementary N ×N matrix in glN which has a 1 in the (i, j) position
and zeros elsewhere. Moreover, Y (glN) is a Hopf algebra and the maps above are compatible
with the Hopf algebra structure on U(glN). A useful power series is the quantum determinant,
given by

qdetT (u) :=
∑
σ∈SN

sgn(σ) · t1,σ(1)(u−N + 1) · · · tn,σ(n)(u). (3.3)

In characteristic zero, the coefficients d1, d2, . . . of the quantum determinant are algebraically
independent and generate the center of Y (glN). In positive characteristic, this is not true.
However, as seen in [Kal20], the coefficients are still central and algebraically independent;
hence we can define ZHC(Y (glN)) to be the subalgebra generated by the coefficients of
qdetT (u). It will also be useful to work with the Yangian Y (slN) of slN . It is defined as
follows. It can be checked that for any power series f(u) ∈ 1 + u−1KJu−1K, the map

T (u) 7→ f(u)T (u) (3.4)

defines an automorphism of Y (glN). The Yangian Y (slN) of slN is defined as the subalgebra
of Y (glN) invariant under all such automorphisms. It was shown in [BT18] that

Y (glN) = ZHC(Y (glN)) ⊗ Y (slN). (3.5)

Now, let us define the twisted Yangians Y (oN) and Y (spN). Since we will be dealing with
both cases simultaneously, we let gn = oN or spN . Recall our choice of the matrix G from
2.1, and that we are using IN = {−n, . . . ,−1, 1, . . . , n} to index the rows and columns. For
an N ×N matrix A, we define the transpose operation ′ with respect to G by

A′ := G−1AtG. (3.6)

In contrast, [Mol07] defines A′ as GAtG−1. Our choice will make it easier to state definitions
categorically later on, as it coincides with the transpose with respect to the bilinear form
on V induced by G. However, since our choice of G satisfies G = ±G−1, the two definitions
are equivalent. Consequently, all results we cite from [Mol07] remain valid in our setting. If
A = [aij] and A′ = [a′ij], we can compute:

a′ij = θija−j,−i.

Then F = E − E′. We defined gn to be the algebra spanned by the Fij, but we can
alternatively describe it as the set of all all X ∈ glN satisfying X ′ = −X.

Next, define the R-matrix R(u), an N ×N matrix, by:

R(u) := 1 − Pn
u

∈ R(u) ∈ (End(V ) ⊗ End(V ))Ju−1K,
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where Pn is the N ×N matrix given by:

Pn =
∑
i,j

Eij ⊗ Eji.

Note that Pn is the flip map. The transposed R-matrix is then defined as:

R′(u) := G−1
1 Rt1(u)G1 = G−1

2 Rt2(u)G2,

where Gi and ti act on the i-th tensor component for i = 1, 2.

Similarly, we define the twisted Yangian by introducing a family of generators s
(r)
ij and the

formal series

sij(u) := δij + s
(1)
ij u

−1 + s
(2)
ij u

−2 + · · · .
We then assemble these into the N ×N matrix S(u) with entries sij(u). Writing

S(u) =
∞∑
i=0

Siu−i,

we note that S0 is simply the identity matrix.

Definition 3.1. The twisted Yangian Y (gn) is the associative unital algebra generated by

the elements s
(r)
ij , with defining relations given by

R(u− v)S1(u)R′(−u− v)S2(v) = S2(v)R′(−u− v)S1(u)R(u− v) (3.7)

S ′(−u) = S(u) ± S(u) − S(−u)

2u
. (3.8)

We call the first relation the quaternary relation and the second the symmetry relation.
The following standard results (again, proved in the same way as characteristic zero; see
[Mol07, Chapter 2]) will be useful.

Proposition 3.2. We define the evaluation homomorphism Y (gn) → U(gn) by

ϱn : sij(u) 7→ δij + Fij

(
u± 1

2

)−1

. (3.9)

Conversely, the embedding U(gn) ↪→ Y (gn) is given by

in : Fij 7→ s
(1)
ij . (3.10)

Proposition 3.3. For any series

g(u) = 1 + g1u
−2 + g2u

−4 + · · · ∈ 1 + u−2KJu−2K,

the mapping

S(u) 7→ g(u)S(u) (3.11)

defines an automorphism of Y (gn).

There is a natural inclusion Y (gn) ↪→ Y (glN) that aligns with the embedding gn ↪→ glN .
This inclusion is given by

S(u) 7→ T (u)T ′(−u). (3.12)
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We define the special twisted Yangian SY (gn) as the subalgebra of Y (gn) that remains
invariant under all automorphisms of the form (3.11). Equivalently, it can be characterized
as

SY (gn) = Y (slN) ∩ Y (gn).

We define the scalar αq(u) as follows:

αq(u) =

{
1 in the orthogonal case
2u+1

2u−q+1
in the symplectic case.

(3.13)

Next, define the special map φN : SN → SN , which acts on permutations as in [Mol07,
Section 2.7]. Let (a1, . . . , aN) be a permutation of IN .

Define

sdetS(u) := (−1)nαN(u)

×
∑
σ∈SN

sgnσσ′ · s′−aσ(1),aσ′(1)
(−u) · · · s′−aσ(n),aσ′(n)

(−u+ n− 1)

× s−aσ(n+1),aσ′(n+1)
(u− n) · · · s−aσ(N),aσ′(N)

(u−N + 1)

(3.14)

to be the Sklyanin determinant. In characteristic zero, the coefficients of the Sklyanin deter-
minant generate the center of Y (glN). In positive characteristic, this is not true. However,
as we will see below, they are still central, and hence we can define ZHC(Y (glN)) as the
algebra generated by the coefficients of sdetS(u). Write

sdetS(u) = 1 + c1u
−1 + c2u

−2 + · · · .

Theorem 3.4. There exists a series sdetS(u) ∈ 1+u−1Y (gn)Ju−1K such that the coefficients
of sdetS(u) are central, and the even coefficients c2, c4, . . . are algebraically independent and
generate ZHC(Y (gn)); so ZHC(Y (gn)) = K[c2, c4, . . .]. We have the following tensor product
decomposition:

Y (gn) = ZHC(Y (gn)) ⊗ SY (gn). (3.15)

See Appendix A for the proof. These results are all well-known in characteristic zero;
see [Mol07]. To prove the first statement in positive characteristic, we simply repeat the
same arguments as in characteristic zero. To prove the tensor product decomposition, we
use (3.5). We do not show that the series sdetS(u) in Theorem 3.4 matches (3.14) as it is
not important for our purposes.

3.2. Representations of Y (gn). Let Gn denote the algebraic group ON or SpN such that
its Lie algebra is gn. Molev derives the classification finite-dimensional simple modules over
Y (gn) in [Mol07] in characteristic zero. The goal of this subsection is to extend the results
therein to positive characteristic, imposing assumptions as needed. Due to the ultraproduct
construction later on, we mainly only care about representations detectable at the level of
G, so we will primarily work with representations in the category RepGn

Y (gn) (recall the
notation from §2.3).

Finally, we will need some facts about the representation theory of Y (glN) in positive
characteristic. For the definition and theory of highest weight modules for Y (glN) in positive
characteristic, see [Kal20] and [BT18].
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Definition 3.2. A representation V of the twisted Yangian Y (gn) is called a highest weight
representation if there exists a nonzero vector ξ ∈ V such that V is generated by ξ and the
following condition holds: for each i, there is a formal power series

µi(u) = 1 + µ
(1)
i u−1 + µ

(2)
i u−2 + · · · , µ

(r)
i ∈ K, (3.16)

such that

sij(u)ξ = 0 for i < j, (3.17)

sii(u)ξ = µi(u)ξ for 1 ≤ i ≤ n. (3.18)

The vector ξ is called the highest weight vector of V , and the tuple µ(u) = (µ1(u), . . . , µn(u))
is called the highest weight.

Notice that the symmetry relation gives

s−i,−i = sii(−u) ± sii(u) − sii(−u)

2u
(3.19)

for i = 1, . . . , n. Then (3.19) implies that ξ is an eigenvector for s−i,−i as well.

Definition 3.3. Let µ(u) = (µ1(u), . . . , µn(u)). The Verma module M(µ(u)) over Y (gn) is
the quotient of Y (gn) by the left ideal generated by the coefficients of the series{

sij(u) i < j

sii − µi(u) i = 1, . . . , n.

A standard argument shows that M(µ(u)) has a unique simple quotient, which we will
denote by V (µ(u)), and also has the universal property that it surjects onto any highest
weight module with the same highest weight.

Recall the notation for simple Gn and GLN -modules from §2.1. We have the following
proposition:

Proposition 3.5. Let V ∈ RepGn
Y (gn) be simple and such that V = V (λ1, p)⊕· · ·⊕V (λk, p)

for λi ∈ X(H)+ ∩ CZ with (λi)1 = 0. Then, the module V has a unique singular vector (up
to scaling), whose gn weight is maximal.

Proof. Let us first contextualize the assumptions. First of all, the condition (λi)1 = 0 is
only there to ensure that each Gn-module appearing above is irreducible when restricting to
SON and therefore to oN , when Gn = ON . The condition that λi ∈ X(H)+ ∩ CZ is so that
the character of V (λi, p) is given by the Weyl character formula, which loosely speaking is
to ensure that for a given λi, the module V (λi, p) “looks the same” as p varies (this will be
relevant when working with ultraproducts).

Now, let’s prove the statement. The problem here is to rule out the possibility of V not
having any singular vectors at all. Since we can regard V as a gn-module, we can repeat
verbatim the argument given in Theorem 4.2.6 of [Mol07]. □

Hence V must be a highest weight representation V = V (µ(u)) by the universal property
of M(µ(u)). We also get the following corollary (Corollary 4.2.7 in [Mol07]).

Corollary 3.6. If V satisfies the conditions of Proposition 3.5, and η ∈ V with sij(u)η = 0
for all i < j, then η is a scalar multiple of the highest weight vector ξ of V .
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Now, we will use what is known about Y (glN) to say more about representations of
Y (gn). As noted at the start of Section 3 in [Kal20], all the statements in Proposition
2.1.2 of [Kal20] except for (d) hold in any characteristic. In particular, Y (glN) is still a
Hopf algebra. Moreover, recall that we can view Y (gn) as a subalgebra of Y (glN) via the
embedding

S(u) = T (u)T ′(−u).

Letting ∆ denote the comultiplication on Y (glN), the following formula from [Mol07, Section
4.2]

∆(sij(u)) =
∑
a,b

θbjtia(u)t−j,−b(−u) ⊗ sab(u) (3.20)

holds in any characteristic. This gives us the following proposition:

Proposition 3.7. There is a functor RepGLN
Y (glN) ⊠ RepGn

Y (gn) → RepGn
Y (gn) in-

duced by ∆.

Proof. Notice that ∆ is an algebra homomorphism that maps Y (gn) to Y (glN) ⊗ Y (gn).
Moreover it sends U(gn) to U(gn) ⊗ U(gn). It follows that if M ∈ RepGLN

Y (glN) and
M ′ ∈M , then M ⊗M ′ is a Gn module where both gn actions are compatible. □

Let ζ be the highest weight vector of the Y (glN)-module L(λ(u)) (see [Kal20] for the
definition of a Y (glN)-highest weight module), where the highest weight is given by λ(u) =
(λ1(u), . . . , λN(u)). Similarly, let ξ denote the highest weight vector of the Y (gn)-module
V (µ(u)).

Proposition 3.8. The submodule Y (gn)(ζ⊗ξ) of the Y (gn)-module L(λ(u))⊗V (µ(u)) over
Y (gn) is a highest weight representation with highest weight vector ζ ⊗ ξ. Moreover, the
highest weight is λi(u)λ−i(−u)µi(u), for i = 1, . . . , n.

Proof. The proof is the same as the characteristic zero case; see [Mol07, Proposition 4.2.9].
□

The evaluation homomorphism (3.9) gives a functor RepGn → RepGn
Y (gn). Similarly,

there is a functor RepGLN → RepGLN
Y (glN). Let us call the image of any module under

these functors an evaluation module. We will use the same notation and not distinguish
between a module and its image under this functor.

Let L(λ(1)), . . . , L(λ(k)) be irreducible highest weight GLN -modules such that each λ(i) is
dominant integral and in the fundamental alcove for all i, and let V (µ) be an irreducible
Gn-module with µ dominant integral and such that µ1 = 0 and also in the corresponding
fundamental alcove. View these as evaluation modules, and consider their tensor product

L(λ(1)) ⊗ · · · ⊗ L(λ(k)) ⊗ V (µ), (3.21)

which lies in RepGn
Y (gn) by Proposition 3.7. Define

λi(u) = (1 + λ
(1)
i u−1) · · · (1 + λ

(k)
i u−1). (3.22)

Additionally, using the formula (3.9), we can get that the Y (gn)-module V (µ) is a highest-
weight representation, with highest weight

µi(u) =
1 + (µi ± 1

2
)u−1

1 ± 1
2
u−1

, i = 1, . . . , n (3.23)
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Let ζ be the tensor product of all the highest weight vectors of the modules in (3.21). Then
we have the following proposition.

Proposition 3.9. The submodule Y (gn)ζ of the Y (gn)-module (3.21) is a highest weight
representation with the highest weight vector ζ. Moreover, the i-th component of the highest
weight is given by λi(u)λ−i(−u)µi(u), where λi(u) is given by (3.22) and µi(u) is given by
(3.23).

Proof. The proof is the same as the characteristic zero case; see [Mol07, Proposition 4.2.11]
□

We can also consider modules of the form

L(λ(1)) ⊗ · · · ⊗ L(λ(k)). (3.24)

Let ζ be the tensor product of all the highest weight vectors of modules in (3.24). Then we
have the following immediate corollary of Proposition 3.9.

Corollary 3.10. The submodule Y (gn)ζ of the Y (gn)-module (3.24) is a highest weight
representation with the highest weight vector ζ. Moreover, the i-th component of the highest
weight is given by λi(u)λ−i(−u).

Proposition 3.11. The following holds:

(i) For any element η of the Y (gn)-module (3.21) and indices i, j, the expression(
1 ± 1

2
u−1

)
sij(u)η

is a polynomial in u−1 of degree at most 2k + 1.
(ii) For any element η of the Y (gn)-module (3.24), the expression sij(u)η is a polynomial

in u−1 of degree at most 2k.

Proof. Once again, the proof is the same as the characteristic zero case; see Propositions
4.2.13 and 3.2.11 in [Mol07]. □

The following is a consequence of (3.15).

Proposition 3.12. Every finite-dimensional irreducible representation of the twisted Yan-
gian Y (gn) remains irreducible when restricted to the special twisted Yangian SY (gn). More-
over, every finite-dimensional irreducible of SY (gn) is of this form.

We write ν(u) −→ µ(u) if there exists a monic polynomial P (u) such that ν(u)
µ(u)

= P (u+1)
P (u)

.

Proposition 3.13. If V (µ(u)) is finite-dimensional and satisfies the conditions of Proposi-
tion 3.5, then

µ1(u) −→ µ2(u) −→ · · · −→ µn(u). (3.25)

Proof. The proof closely parallels Proposition 4.2.8 in [Mol07]. Let J be the left ideal of
Y (gn) generated by the coefficients of s−i,j(u), for i, j = 1, . . . , n, and consider

V J = {η ∈ V (µ(u)) | s−i,j(u)η = 0 for all i, j ∈ {1, . . . , n}}.

The highest weight vector ξ ∈ V (µ(u)) belongs to V J . The defining relations give

[s−i,j(u), skl(v)] = 0 mod J,
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for i, j, k, l > 0, so the operators skl(u) with k, l > 0 preserve V J . Moreover for i, j, k, l > 0
the defining relations give

(u− v)[sij(u), skl(v)] = skj(u)sil(v) − skj(v)sil(u) mod J,

which is formally identical to that of Y (gln), so V J admits a Y (gln)-action by tij(u) 7→ sij(u).
The cyclic span L := Y (gln)ξ is thus a finite-dimensional highest weight module of Y (gln)
with weight (µ1(u), . . . , µn(u)).

Decomposing V (µ(u)) =
⊕

i V (µi, p) as a gn-module, and recalling that the Weyl group
stabilizes the weights, yields that for any gl2n-weight η appearing in V (µ(u)),

(η)−n − (η)n + n ≤ 2 max
i

−(µi)n + n < p.

This verifies the condition of Proposition 3.2.1 in [Kal20]. It follows from Theorem 3.2.5 in
[Kal20] that (3.25) holds. □

We now split into the separate cases of sp2n and o2n.

3.2.1. Finite-dimensional irreducible representations of Y (sp2n) in positive characteristic.

Proposition 3.14. Suppose V is irreducible and finite-dimensional, and as a sp2-representation
is isomorphic to V (µ1, p) ⊗ · · · ⊗ V (µk, p) with each µi is a non-positive integer and p >
2 max−µi + 2. Then V is a highest representation V = V (µ(u), p).

Proof. The condition implies that µi is in the fundamental alcove, and hence each V (µi, p) is
irreducible and highest weight. Then we can repeat the proof of Theorem 4.2.6 in [Mol07].

□

From now on, assume V satisfies the conditions of (3.14). Write

µ(u) = 1 + µ(1)u−1 + µ(2)u−2 + · · · , µ(r) ∈ K. (3.26)

Proposition 3.15. There exists an even formal series g(u) ∈ 1 + u−2KJu−2K such that
g(u)µ(u) is a polynomial in u−1.

Proof. The proof of Proposition 4.3.1 in [Mol07] carries over verbatim. □

Then composing the action of Y (sp2) on V (µ) with the automorphism (3.11) produces an
irreducible highest weight representation with polynomial highest weight. Thus, it suffices
to consider such representations. In this case,

µ(u) = (1 − γ1u
−1) · · · (1 − γ2ku

−2k).

As in [Kal20], for n ∈ Fp, let [n] denote the minimal non-negative representative of n modulo
p, inducing a total order 0 < 1 < · · · < p − 1 on Fp. If p = 0 let [n] = n for a nonnegative
integer n. Recall that if (α, β) is a restricted dominant integral weight forGL2, then L(α, β, p)
is a simple GL2-module and remains simple upon restriction to gl2.

Proposition 3.16. Suppose that for every i = 1, . . . , k the following condition holds: in
characteristic p > 0 (resp. p = 0), if the multiset {γp + γq | 2i − 1 ≤ p < q ≤ 2k} contains
elements of Fp (resp. elements of Z+), then γ2i−1 + γ2i is in Fp (resp. Z+) is minimal
amongst them. Then the representation V (µ(u), p) of Y (sp2) is isomorphic to the tensor
product

L(γ1,−γ2, p) ⊗ · · · ⊗ L(γ2k−1,−γ2k, p), (3.27)

regarded as a Y (sp2)-module obtained by restriction of the Y (gl2)-module.
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Proof. We adapt the proof of Proposition 4.3.2 in [Mol07] following the approach of Proposi-
tion 3.2.3 in [Kal20]. By Corollary 3.10, if we show the module in question is an irreducible
highest weight module, then it has highest weight µ(u).

Let V be the module (3.27), and consider the embedding (3.12). The (i, j)-entry of T ′(u)
is t−j,−i(u), so using (3.12)

s−1,1(u) = t−1,−1(u)t−1,1(−u) + t−1,1(u)t−1,1(−u).

Since t−1,1(u) acts nilpotentently and t−1,−1(u) acts semisimply (as in [Kal20, Prop. 3.2.3]),
it follows that s−1,1(u) acts nilpotently. Any submodule N ⊂ V must then contain a singular
vector for s−1,1(u). Thus, irreducibility reduces to showing V has a unique singular vector.

We use induction to prove that any singular vector is proportional to ζ := ζ1 ⊗ · · · ⊗ ζk,
where ζi are the highest weight vectors of the L(γ2i−1,−γ2i, p). The case k = 1 is clear. For
k ≥ 2, write

η =

q∑
r=0

(E1,−1)
rζ1 ⊗ ηr,

with ηr ∈ L(γ3,−γ4, p)⊗· · ·⊗L(γ2k−1,−γ2k, p), ηq ̸= 0, and q ≤ min{p−1, [γ1+γ2]} (if p = 0
then q < γ1 + γ2). Using (3.20) and the argument of [Mol07, Prop. 4.3.2], ηq is proportional
to ζ2 ⊗ · · · ⊗ ζk, so it remains to show q = 0.

If q ≥ 1, then the argument of [Mol07, Prop. 4.3.2] gives

q(γ1 + γ2 − q + 1)(γ1 + γ3 − q + 1) · · · (γ1 + γ2k − q + 1) = 0

which is impossible given the assumptions on the γi, since γ1 + γ2 is minimal among γ1 + γi
and q ≤ [γ1 + γ2]. Thus q = 0, so V has a unique singular vector.

Finally, this vector generates V by the same argument as in the characteristic zero case,
completing the proof. □

Lemma 3.17. Any γ1, . . . , γ2k ∈ K can be rearranged to satisfy the conditions of the previous
proposition.

Proof. First, pick the i, j such that [γi + γj] is minimal out of all the pairs i, j for which this
is defined. Then we can set γi, γj to be the new γ1, γ2. Repeat for the remaining γi. □

Hence, for any V satisfying the conditions of Proposition 3.5, V = V (µ(u), p) with

µ(u) = (1 − γ1u
−1) · · · (1 − γ2ku

−2k),

such that V (µ(u), p) is isomorphic to (3.27). Now we are ready to state the classification
theorem for Y (sp2).

Theorem 3.18. If the irreducible finite-dimensional representation V of Y (sp2) satisfies the
conditions of Proposition 3.5, then V = V (µ(u), p) such that there exists monic polynomial
P (u) such that P (u) = P (−u+ 1) and

µ(−u)

µ(u)
=
P (u+ 1)

P (u)
. (3.28)

Proof. We can simply repeat the first part of the proof of Theorem 4.3.3 in [Mol07]. □

For such µ(u) as in Theorem 3.18 satisfying equation (3.28) for sutiable monic polynomial
P (u), we write µ(−u) =⇒ µ(u). Now we generalize this to the Y (sp2n) case.
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Theorem 3.19. If V satisfies the conditions of Proposition 3.5 then V = V (µ(u)) with

µ1(−u) =⇒ µ1(u) −→ µ2(u) −→ · · · −→ µn(u) (3.29)

Proof. Consider the embedding Y (sp2) ↪→ Y (sp2n) given by sij(u) 7→ sij(u) for i, j ∈ {1,−1}.
If V satisfies Proposition 3.5, the induced Y (sp2)-module satisfies Proposition 3.14; its high-
est weight is µn(u). Since V is finite-dimensional, Theorem 3.18 gives µ1(−u) =⇒ µ1(u),
and Proposition 3.13 finishes the proof. □

We call the polynomials P1(u), . . . , Pn(u) corresponding to each of the arrows the Drinfeld
polynomials of V (µ(u)).

We also want to go the other way: to construct irreducible representations from Drinfeld
polynomials.

Theorem 3.20. Suppose p > 2. Given monic polynomials P1(u), . . . , Pn(u) with P1(u) =
P1(−u+ 1), there exists a finite-dimensional representation V (µ(u), p) of Y (sp2n) such that

µi(u)

µi+1(u)
=
Pi+1(u+ 1)

Pi+1(u)
, i = 1, . . . , n− 1

and

µ1(−u)

µ1(u)
=
P1(u+ 1)

P1(u)
.

Proof. We may repeat the argument from the second part of the proof of Theorem 4.3.8
in [Mol07]. The existence of an external grading as in the characteristic zero case ensures
that V (µ(u), p) appears as a subquotient in the cyclic Y (sp2n)-span of the highest vector of
L(λ(u)). □

Using the notation of the second part of the proof of Theorem 4.3.8 in [Mol07], the largest
value of −µn in a sp2n-weight µ appearing in L(λ(u), p) coincides with the maximum of λ−n−
λn for a gl2n-weight λ appearing in L(λ(u), p). From the remarks following Theorem 3.2.6
in [Kal20], this maximum is given by is the sum of the degrees of the Drinfeld polynomials
corresponding to λ(u), which are 1, . . . , 1, Q(u), P2(u), . . . , Pn(u). So the maximum value
of −µn in a sp2n-weight µ appearing in L(λ(u), p) is degQ(u) +

∑n
i=2 degPi(u). Note that

degP1(u) = 2 degQ(u). Therefore, if

degP1(u) + 2
n∑
i=2

degPi(u) + 2n < p,

the corresponding V (µ(u)) satisfies −2µn + 2n < p for all µ appearing in its decomposition
into simple gn-modules. By Lemma 2.4, V satisfies the conditions of Proposition 3.5 (and
vice versa).

As in the gln case, the Drinfeld polynomials Pi(u) are not unique. If

Pi(u+ 1)

Pi(u)
=
Qi(u+ 1)

Q(u)
,

then Pi

Qi
= Fi, where Fi(u) = Fi(u+ 1). Thus, Fi is a ratio of products of expressions of the

form

(u+ c)(u+ 1 + c) · · · (u+ c+ p− 1) = (u+ c)p − (u+ c)
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for some c ∈ Fp. Following [Kal20], we define qp(u) = up − u, so Pi(u), for i ≥ 2, is unique
up to multiplication or division by polynomials of the form qp(u+ c). However, if we impose
that

degP1(u) + 2
n∑
i=2

degPi(u) + 2n < p,

the polynomials Pi(u) are unique since deg qp(u+ c) = p.

Corollary 3.21. Every finite-dimensional irreducible representations of SY (sp2n) that sat-
isfies the conditions of (3.5) corresponds to a unique tuple (P1(u), . . . , Pn(u)) of monic poly-
nomials such that P1(u) = P1(−u+ 1) and degP1(u) + 2

∑n
i=2 degPi(u) + 2n < p.

Proof. This follows from the previous two theorems and Proposition 3.12. □

3.2.2. Finite-dimensional irreducible representations of Y (o2n) in positive characteristic. In
this section, we look at finite-dimensional irreducible representations of Y (o2n). We start by
looking at finite-dimensional irreducible representations of Y (o2).

Proposition 3.22. Suppose V is irreducible and finite-dimensional, and as an SO2 and
o2-representation is isomorphic to V (µ1, p) ⊗ · · · ⊗ V (µk, p) with each µi is a non-positive
integer and p > 2 max−µi + 2. Then V is a highest representation V = V (µ(u), p).

Proof. The condition implies that µi is dominant integral and in the fundamental alcove (and
therefore restricted, so we can freely interchange between the group and the Lie algebra),
and hence each V (µi, p) is irreducible and highest weight. Then we can repeat the proof of
Theorem 4.2.6 in [Mol07]. □

From now on, assume V satisfies the conditions of (3.22). Write

µ(u) = 1 + µ(1)u−1 + µ(2)u−2 + · · · , µ(r) ∈ Fp. (3.30)

Let V be an irreducible finite-dimensional representation of Y (o2) satisfying the conditions
of Proposition 3.5, so V = V (µ(u)) with

µ(u) = 1 + µ(1)u−1 + µ(2)u−2 + · · · , µ(r) ∈ Fp.

Proposition 3.23. There exists an even formal series g(u) ∈ 1 + u−2FpJu−2K such that
(1 + 1

2
u−1)g(u)µ(u) is a polynomial in u−1.

Proof. We may repeat the proof of Proposition 4.4.1 in [Mol07] without any changes. □

As in the characteristic zero case, define µ′(u) = (1 + 1
2
u−1)µ(u). Now we may focus on

the representations with µ′(u) a polynomial in u−1. Then write

µ′(u) = (1 − γ1u
−1) · · · (1 − γ2k+1u

−1)

for γi ∈ Fp. For any γ ∈ Fp, we can make the one-dimensional o2-representation V (γ) into
a representation of the twisted Yangian Y (o2) via the evaluation homomorphism, and the
corresponding highest weight is given by

1 + (γ + 1
2
)u−1

1 + 1
2
u−1

,

which follows from (3.23).



18 A. S. KANNAN AND SHIHAN KANUNGO

Proposition 3.24. Suppose that for every i = 1, . . . , k the following condition holds: In
positive characteristic (resp. characteristic zerp), if the multiset {γp + γq | 2i − 1 ≤ p <
q ≤ 2k + 1} contains elements of Fp (resp. Z+), then γ2i−1 + γ2i is in Fp (resp. Z+) and
is minimal amongst them. Then the representation V (µ(u)) of Y (o2) is isomorphic to the
tensor product

L(γ1,−γ2, p) ⊗ L(γ3,−γ4, p) ⊗ · · · ⊗ L(γ2k−1,−γ2k, p) ⊗ V (−γ2k+1 − 1/2, p). (3.31)

Proof. The proof is exactly analogous to the proof of Proposition 3.16. The characteristic
zero version is Proposition 4.4.2 in [Mol07]. □

As in the symplectic case, we can always reorder the γi to satisfy the conditions of this
proposition.

Theorem 3.25. If the irreducible highest weight representation V of Y (o2) is finite-dimensional
and satisfies the conditions of Proposition 3.23 then V = V (µ(u), p) and there is a pair
(P (u), γ), where P (u) is a monic polynomial in u with P (u) = P (−u + 1) and γ ∈ Fp with
P (γ) ̸= 0 such that

µ′(−u)

µ′(u)
=
P (u+ 1)

P (u)
· u− γ

u+ γ
, (3.32)

where µ′(u) = (1 + 1
2
u−1)µ(u).

Proof. We know from above that V = V (µ(u), p), and it suffices to consider those µ(u) for
which µ′(u) = (1 + γ1u

−1) · · · (1 + γ2k+1u
−1) is a polynomial. As a o2-module, we know V

has the form
L(γ1,−γ2) ⊗ · · · ⊗ L(γ2k−1,−γ2k) ⊗ V (γ2k+1 − 1/2).

Since this is finite-dimensional, we get that γ2i−1 + γi ∈ Fp as in [Kal20]. Then set

λ1(u) = (1 + γ1u
−1)(1 + γ3u

−1) · · · (1 + γ2k−1u
−1)

λ2(u) = (1 − γ2u
−1)(1 − γ4u

−1) · · · (1 − γ2ku
−1).

As in the symplectic case, we get a monic polynomial Q(u) in u such that

λ1(u)

λ2(u)
=
Q(u+ 1)

Q(u)
.

Then set
P (u) = Q(u)Q(−u+ 1)(−1)degQ,

and γ = −γ2k+1; it is easily checked this does the job. The P (γ) ̸= 0 condition follows from
the ordering of the γi in the same way as in the characteristic zero case. □

Now we look at the general case of finite-dimensional irreducible representations of Y (o2n),
where n ≥ 2 is a positive integer. We know that the irreducible highest weight representations
V (µ(u)) of Y (o2n) are parametrized by n-tuples

µ(u) = (µ1(u), . . . , µn(u)). (3.33)

We may regard Y (o2) as a subalgebra of Y (o2n) generated by sij(u), i, j ∈ {n, n+ 1}. Let ξ
be the highest weight vector of the Y (o2n)-module V (µ(u), p).

Lemma 3.26. The Y (o2)-module V = Y (o2)ξ is irreducible and isomorphic to the highest
weight module V (µn(u), p).
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Proof. We can use the same proof as Lemma 4.11 of [Mol07]. □

Consider the mapping i 7→ i′ for i ∈ IN that interchanges indices 1 and −1 while leaving all
other indices unchanged. Using the defining relations, it is easily checked that the mapping

sij(u) 7→ si′j′(u) (3.34)

is an automorphism of Y (o2n).
We now briefly return to the Y (o2) case. For the finite-dimensional representation V (µ(u))

of Y (o2), we know that V (µ(u)) is associated with a unique pair (P (u), γ). Let V (µ(u))♯ be
the composition of the Y (o2)-action on V (µ(u)) with the automorphism (3.34).

Lemma 3.27. The Y (o2)-module V (µ(u), p)♯ is isomorphic to V (µ♯(u), p), where the series
µ♯(u) is given by

µ♯(u) = µ(u) · u− γ + 1

u+ γ
.

In particular, the Y (o2)-module V (µ(u), p)♯ is associated with the pair (P (u),−γ + 1).

Proof. We use the same proof as Lemma 4.4.13 in [Mol07]. □

Now, we can state the main classification theorems. Given an admissible series µ(u), we
define µ♯(u) as above.

Theorem 3.28. If V is a finite-dimensional irreducible Y (o2n)-module, n ≥ 2, and satisfies
the conditions of Proposition 3.5, then V = V (µ(u), p), the series µ1(u) is admissible, and
one of the following relations holds:

µ1(−u) =⇒ µ1(u) −→ µ2(u) −→ · · · −→ µn(u) (3.35)

µ♯1(−u) =⇒ µ♯1(u) −→ µ2(u) −→ · · · −→ µn(u). (3.36)

Moreover, in positive characteristic, the first one will always hold.

Proof. Consider the module V (µ1(u), p) of Lemma 3.26. Examining the o2-weights and
using that V (µ(u), p) satisfies the conditions of Proposition 3.5, we see that this module
meets the conditions of Proposition 3.22. Suppose V (µn(u)) is associated with the number
γ ∈ Fp. Since V satisfies the conditions of Proposition 3.5, it follows that the o2-weights of
V (µn(u), p) must all be in Fp. Now V (µ1(u)) must be given by (3.31). Since the L(γ2i−1,−γ2i)
must be finite dimensional, γ2i−1 + γ2i ∈ Fp. It follows that the o2-weights of L(γ2i−1,−γ2i)
are all in Fp. Thus, we must have that −γ2k+1 − 1/2 is in Fp, which is equivalent to γ being
1/2 plus an integer. Proceeding as in the characteristic zero case, it follows that the module
V (µ(u))♯ has highest weight

µ♯(u) = (µ1(u), µ2(u), . . . , µ♯n(u))

cf. the beginning of the proof of Theorem 4.4.14 in [Mol07]. Moreover, composing the auto-
morphism (3.34) (restricted to Y (o2n)) with the action of o2n on V (µ(u), p) yields another
irreducible highest weight representation, so V (µ(u))♯ also satisfies the conditions of Propo-
sition 3.5.

Using (3.32), we obtain

µ1(−u)

µ1(u)
=
P (u+ 1)

P (u)
·
u+ 1

2

u+ γ
· u− γ

u− 1
2

=
P (u+ 1)

P (u)
·

u+ 1
2

u− δ + 1
2

·
u+ δ − 1

2

u− 1
2

.
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where δ = −γ + 1
2

and P (u) = P (−u + 1). Note that δ is an integer from our previous
discussion. In positive characteristic, or in characteristic zero, and γ ∈ 1/2 − Z+, δ is a
non-negative integer, so we can set

Q(u) = P (u)(u− δ + 1
2
) · · · (u− 1

2
)(u− 1

2
) · · · (u+ (δ − 1) − 1

2
).

Since we have multiplied by an even number of linear factors, we have Q(u) = Q(−u + 1).
We also have

µ1(−u)

µ1(u)
=
Q(u+ 1)

Q(u)
,

so the first condition holds. If γ ∈ 1/2 + Z+ then δ is a non-positive integer. Consider the
δ♯, γ♯ associated with V ♯. By Lemma 3.27, γ♯ = −γ+1, so δ♯ = −γ♯+1/2 = −(−γ+1)+1/2 =
γ − 1/2 = −δ. Hence V ♯ satisfies the first condition, so V satisfies the second. □

As before, we want to go the other way as well.

Theorem 3.29. Suppose p > 2. Given monic polynomials P1(u), . . . , Pn(u) with P1(u) =
P1(−u+ 1), there exists a finite-dimensional representation V (µ(u), p) of Y (o2n) such that

µi(u)

µi+1(u)
=
Pi+1(u+ 1)

Pi+1(u)
, i = 1, . . . , n− 1

and

µ1(−u)

µ1(u)
=
P1(u+ 1)

P1(u)
.

Proof. Completely analogous to the proof of Theorem 3.20. □

In characteristic zero, it follows that the irreducible representations of Y (o2n) are indexed
by Drinfeld polynomials P1(u), . . . , Pn(u) with P1(u) = P1(−u + 1) and a choice of the
parameter γ in one of the three subsets

{1/2},−1/2 − Z+, 3/2 + Z+, (3.37)

where the first subset corresponds to both conditions (since δ = 0 = −δ = δ♯), the second
corresponds the first condition, and the third corresponds to the second condition.

In positive characteristic, similarly to the symplectic case, we can get that V (µ(u)) satisifies
the conditions of Proposition 3.5 if and only if degP1(u) + 2

∑n
i=2 degPi(u) + 2n < p.

Corollary 3.30. Finite-dimensional irreducible representations V of SY (o2n), n ≥ 2, sat-
isfying the conditions of Proposition 3.5 are highest weight modules V = V (µ(u)) and are
parametrized by tuples (P1(u), . . . , Pn(u)) of monic polynomials with P1(u) = P1(−u+1) and
in positive characteristic, degP1(u) + 2

∑n
i=2 degPi(u) + 2n < p, and in characteristic zero,

a choice of one of the subsets in (3.37).

4. Deligne’s categories for classical groups

We will assume in this section that the reader has at least a basic understanding of
symmetric tensor categories (STCs) and in particular has some familiarity with the Deligne
category RepGLt. A comprehensive reference is [EGNO16], and a quick expository reference
is [EK23], whose notations and conventions we will mainly follow. Our primary reference
for this section will be [Eti16]. We will work over a fixed, algebraically closed field K of
characteristic zero, and we will use the bold-face notation RepG to denote the ordinary
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representation category of finite-dimensional representations for a subgroup G of the general
linear group GLN for a positive integer N .

4.1. The Deligne categories Rep(Ot) and Rep(Spt). Let V = Kn denote the natural
representation of GLN . As an ON -module, V is faithful and self-dual and therefore generates
the category RepOn, so every simple ON -module appears in some V ⊗r for a sufficiently large
r. By tensor-hom adjunction and self-duality, we see that

HomON
(V ⊗r, V ⊗s) = HomON

(V ⊗r+s,1),

where 1 is the trivial representation. By the First Fundamental Theorem of invariants forON ,
multilinear ON -invariant forms on V ⊗r+s are given by the algebra generated by contractions
(see [DLZ18] for more details), which means that r + s must be even. By semisimplicity of
RepON , one can conclude that RepON is the Karoubian closure of the subcategory given
by objects of the form [r] := V ⊗r and hom spaces given as above.

It can be show via Brauer duality that a spanning set for HomON
([r], [s]) are the perfect

matchings on a set of (r+ s) dots, which can be visualized as diagrams with a row of r dots
below and a row of s dots above, with an arc connecting the two dots which are perfectly
matched. Composition is given by first stacking diagrams vertically, then concatenating arcs
in the natural way, and finally erasing loops; for each loop we multiply the diagram by n.

As an example, here is the composition of a diagram A in HomON
([3], [5]) and a diagram

B in HomON
([5], [3]) to give a diagram A ◦B ∈ HomON

([5], [5]):

A = B =

with composition given by

= N ·

( )

For arbitrary t ∈ C, we can define the category R̃ep(Ot) with objects [r], with r ∈ Z+.
The space of morphisms Hom([r1], [r2]) is spanned by the Brauer diagrams as above, with the
same composition law, where if we remove a loop, we multiply by t. The category Rep(Ot) is

defined to be the Karoubian closure of R̃ep(Ot). We define R̃ep(Spt) similarly. In both cases,
we let V be the fundamental object [1]. For t ̸∈ Z, the categories Rep(Ot) and Rep(Spt) are
semisimple. We will not consider the case of t ∈ Z in this paper.2

Then V is equipped with a symmetric or alternating isomorphism ψ : V → V ∗. If ψ is
symmetric, the group O(V ) is cut out inside V ⊗ V ∗ by the equations AA′ = A′A = Id,
where A′ is the adjoint of A with respect to ψ. The map θ ∈ End(V ⊗ V ∗) that sends A to
A′ is given by

V ⊗ V ∗ 1⊗ψ−1

−−−−→ V ⊗ V
σ−−→ V ⊗ V

1⊗ψ−−→ V ⊗ V ∗, (4.1)

where σ exchanges factors in the tensor product. This can be thought of as taking the
adjoint with respect to the symmetric bilinear form on V that is induced by ψ, analogously
to (3.6). In the integral rank case, if G is the matrix representation of ψ, then θ sends A to

2In the case t ̸∈ Z, semisimplicity implies that these categories are abelian and therefore are symmetric
tensor categories. On the other hand, when t ∈ Z, they are not abelian, and it is much more difficult to
show the abelian envelope exists (see [EAHS18, Cou21]).
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G−1AtG. Our choice of θ is the negative of that in [Eti16]. If ψ is alternating, the group
Sp(V ) is defined in the same way.

This definition works if V is replaced with any object that has a symmetric/alternating
form. So when V is the fundamental object of Rep(G), we write Ot = O(V ) or Spt = Sp(V )
corresponding to the orthogonal and symplectic cases, respectively.

We next define the Lie algebras ot and spt. First, gl(V ) = V ⊗ V ∗ is naturally an
associative algebra, and thus also a Lie algebra, using the commutator. In the orthogonal
(resp. symplectic) case, o(V ) (resp. sp(V )) is defined as ker(−θ − Id). When V is the
fundamental object, we get

ot = o(V ) = LieO(V ) = LieOt in the orthogonal case

spt = sp(V ) = LieSp(V ) = LieSpt in the symplectic case.

Set g = ot or spt, corresponding to G = Ot or Spt. We define the universal enveloping
algebra to be a quotient of the tensor algebra of g:

U(g) := T (g)/(f(g⊗ g)),

where f = i2 − i2σ − i1c, and ik is the inclusion of the k-th graded component, and c is the
commutator. Note that θ ◦ θ = Id implies (−θ − Id) ◦ (1 − θ) = 0, so the image of V ⊗ V ∗

under 1 − θ lies in g. Consequently, we have the map

V ⊗ V ∗ 1−θ−−→ g ↪→ U(g).

Thus, for an algebra, A, with generators given by a set of maps Ai : V ⊗ V ∗ → A, an
algebra homomorphism A → U(g) is specified by giving a function sending each Ai to an
element of Hom(V ⊗ V ∗, U(g)).

4.2. Ultraproduct construction. We will employ an alternative presentation of Rep(G)
using ultraproducts. Throughout, let F be a fixed non-principal ultrafilter. For background
on ultrafilters and ultraproducts, see [Kal20, Section 1.2].

Consider the ultraproduct of countably infinite copies of Q:
∏

F Q. By  Loś’s theorem,∏
F Q is a field. Moreover, it has characteristic 0 since for any k ∈ Z̸=0, k =

∏
F k. Addi-

tionally, it has cardinality of the continuum. By Steinitz’s Theorem, it follows that∏
F

Q ∼= C. (4.2)

We start with the case of t being a transcendental number. By composing the (non-canonical)
isomorphism (4.2) with a suitable automorphism of C (considered as a vector space over Q),
we may assume that the isomorphism (4.2) maps

∏
F 2n to t. See [Kal20] for details.

Set tn = n, so that
∏

F 2tn = t and set Gn = Otn or Sptn correspondingly. Next, let

Rep(Gn) = Rep(Gn,Q), and set Ĉ =
∏

F Rep(Gn). Let Vtn denote the fundamental
representation of Gn, and let V =

∏
F Vtn . We have the following theorem (cf. [Eti16,

Theorem 2.11 (ii)]).

Theorem 4.1. If C is a rigid tensor category, then isomorphism classes of (possibly non-
faithful) symmetric tensor functors Rep(G) → C are in bijection with isomorphism classes
of objects X ∈ C of dimension t with a symmetric/alternating (in the orthogonal/symplectic
cases) isomorphism X → X∗. The bijection is given by F = F (Vt).
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Here Vt is the fundamental object of Rep(G). We now give the ultraproduct construction
of Rep(G).

Theorem 4.2. The full subcategory of the
∏

F Q-linear category Ĉ generated by V under
tensor products, direct sums, and direct summands is equivalent to the C-linear category
Rep(G) under the isomorphism

∏
F Q ∼= C with

∏
F 2tn = t.

Proof. We will use Vt to refer to the tautological object of Rep(G), and V =
∏

F Vtn to

denote the generator of the full subcategory of Ĉ in the statement of the theorem.

Let C be the full subcategory of Ĉ generated by V under tensor products, direct sums,
and direct summands. The object V =

∏
F Vtn has dimension t as the dimension of Vtn is

2tn and
∏

F 2tn = t. Additionally, since V ∗
tn = Vtn , by  Loś’s thoerem we have V = V ∗. Using

Theorem 4.1, we obtain a tensor functor F : Rep(G) → Ĉ with F (Vt) = V . Since Rep(G)
is generated by Vt under tensor products, direct sums, and direct summands, it follows that

the image of Rep(G) is the full subcategory C of Ĉ. So we know that F : Rep(G) → Ĉ is
essentially surjective, and we need to show that F is fully faithful. To do this, we show

HomRep(G)(V
⊗r1
t , V ⊗r2

t ) = HomC(V ⊗r1 , V ⊗r2) (4.3)

and that the composition maps are the same. This implies the result because Rep(G) and
C can be obtained as the Karoubian envelope of the additive envelope of V ⊗r

t and V ⊗r,
respectively. Note that by  Loś’s theorem we have

HomC(V ⊗r1 , V ⊗r2) =
∏
F

HomGn(V ⊗r1
tn , V ⊗r2

tn )

Now if r1 + r2 is odd, then both sides of Equation (4.3) are empty, as HomGtn
(V ⊗r1

tn , V ⊗r2
tn )

is empty. Otherwise, r1 + r2 = 2m. For sufficiently large n, HomGn(V ⊗r1
tn , V ⊗r2

tn ) has a basis
which can be represented by the Brauer diagrams matching r1 dots in the top row to r2 dots

in the bottom row. In particular, there are (2m)!
m!2m

such diagrams, and HomGn(V ⊗r1
tn , V ⊗r2

tn ) has

dimension (2m)!
m!2m

, for sufficiently large n. Thus
∏

F HomGn(V ⊗r1
tn , V ⊗r2

tn ) has a basis consisting

of these Brauer diagrams. Since by definition, they are a basis of HomRep(G)(V
⊗r1
t , V ⊗r2

t ),
(4.3) follows.

Now we show that the composition maps are the same. In both categories, composition
is given by vertical concatenation of diagrams. So we only need to look at what happens
when we delete a loop. Each loop deletion can be simplified to coev ◦ ev, which corresponds
to multiplication by 2tn in the Gn case. So in C, we multiply by

∏
F 2tn, which is just t, and

this matches the rule in Rep(G). This completes the proof. □

Next, consider the case where t is algebraic. It follows a similar story as the transcendental
case, except instead of taking the ultraproduct of Rep(G) over copies of Q, we take them
over copies of Fpn , with pn being an increasing sequence of primes. As shown in [Kal20], we
can choose an increasing sequence p1, p2, . . . of primes, and an increasing sequence t1, t2, . . .
of positive integers such that:

∏
F Fpn ∼= C, and under this isomorphism,

∏
F 2tn = t.

Moreover, the minimal polynomial q(x) of t satisfies q(2ti) = 0 in Fpi . Then, we can repeat
the argument of the above proof to get the following theorem.

Theorem 4.3. The full subcategory of the
∏

F Fpn-linear category Ĉ generated by V under
tensor products, direct sums, and direct summands is equivalent to the C-linear category
Rep(G) under the isomorphism

∏
F Fpn ∼= C with

∏
F 2tn = t.
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We now state the classification of irreducible objects in Rep(G), see [UH21] and [Eti16].

Theorem 4.4. The simple objects of Rep(G) are labeled by tuples λ = (λ1, . . . , λk) of nega-
tive integers with λ1 ≥ · · · ≥ λk. Moreover, if Vλ is the simple object corresponding to some
negative partition λ, we have

Vλ =
∏
F

V
(n)
λ ,

where for sufficiently large n we define V
(n)
λ to be the simple Gn-module with the highest

weight [λ]tn given by

[λ]tn =
n∑

i=n−k+1

λn+1−iεi ∈ En.

Note that for sufficiently large n the weight λ is indeed integral and dominant.

5. Twisted Yangians in complex rank

5.1. The twisted Yangian Y (g). Let g = ot or spt, and let G = Ot or Spt, respectively.
There is a G-equivariant isomorphism ψ : V → V ∗, symmetric in the orthogonal case and
alternating in the symplectic case. Set

(±,∓) =

{
(+,−) if g = ot,

(−,+) if g = spt.

For each i ∈ Z>0, let Vi ∼= V be a copy of V in Rep(G). Consider the tensor algebra

B = T

(
∞⊕
i=1

Vi ⊗ V ∗
i

)
,

which is an ind-object of Rep(G). Note that B is generated by images of the maps

Si : V ⊗ V ∗ → Vi ⊗ V ∗
i ⊂ B.

We introduce the formal power series

S(u) = 1 +
∑
i>0

Siu−i ∈ Hom(V ⊗ V ∗, B)Ju−1K,

where 1 is regarded as an element of Hom(V ⊗ V ∗, B) via the inclusion 1 ↪→ B. For
convenience, set S0 = 1. Via tensor-hom adjunction, we may also view

S(u) ∈ Hom(V, V ⊗B)Ju−1K.

Define the R-matrix

R(u) = 1 − σ

u
∈ Hom(V ⊗ V, V ⊗ V )Ju−1K,

where σ is the flip map on V ⊗ V .
Define

S ′(u) =
∑
i≥0

S ′
iu

−i, S ′
i = Si ◦ θ,

so that S ′(u) ∈ Hom(V ⊗ V ,B)Ju−1K. By tensor-hom adjunction, σ may be regarded as an
element of Hom(V ⊗ V ∗ ⊗ V ⊗ V ∗,1). Define

σ′ = σ ◦ (1V⊗V ∗ ⊗ θ) ∈ Hom(V ⊗ V ∗ ⊗ V ⊗ V ∗,1),
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and set

R′(u) = 1 − σ′

u
.

Let VI ∼= VII ∼= V be two copies of V . For i ∈ I, II, let

S i(u) ∈ Hom(VI ⊗ VII , VI ⊗ VII ⊗B)Ju−1K

be the series S(u) acting on the Vi component. Set

Q(u, v) = (u− v)(−u− v)
[
R(u− v)SI(u)R′(−u− v)SII(v)

− SII(v)R′(−u− v)SI(u)R(u− v)
]

as an element of Hom(VI ⊗VII , VI ⊗VII ⊗B)Ju−1, v−1K. Via tensor-hom adjunction, we may
also regard Q(u, v) as an element of Hom(VI ⊗ V ∗

I ⊗ VII ⊗ V ∗
II , B)Ju−1, v−1K.

Finally, define

K(u) = S ′(−u) ∓ S(u) − S(u) − S(−u)

2u
∈ Hom(V, V ⊗B)Ju−1K,

which, again by adjunction, may be regarded as an element of Hom(V ⊗ V ∗, B)Ju−1K.
Write

Q(u, v) =
∑
i,j

Qi,ju
−iv−j and K(u) =

∑
i

Kiu
−i.

Then, the definition of the Yangian is as follows.

Definition 5.1. The twisted Yangian of g, denoted Y (g), is the algebra which is the quotient
of B by the quadratic relations given by the Qij and the Kij.

We now will use ultraproducts and  Loś’s theorem to generalize Proposition 3.2. Since our
definition reduces to Section 3.1 in integer rank, we can use  Loś’s theorem to get

Y (g) =
∏
F

Y (gn).

Moreover, θ and θtn satisfy the same relations in their corresponding categories, so again,
by  Loś’s theorem, we get

θ =
∏
F

θtn .

Proposition 5.1. We have the embedding i : U(g) ↪→ Y (g) given by

(1 − θ) 7→ S1. (5.1)

Here (1−θ) is a map V ⊗V ∗ → U(g), which generates U(g), and S1 is a map V ⊗V ∗ → Y (g).
Furthermore, we have the evaluation map ϱ : Y (g) → U(g) given by

S(u) 7→ 1 + (1 − θ) ·
(
u+

1

2

)−1

. (5.2)

Here the coefficients of S(u) are maps from V ⊗ V ∗ → Y (g), which generate Y (g), and the
coefficients of the right hand side are maps from V ⊗ V ∗ to U(g).
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Proof. First of all, consider the map (5.1). In integer rank, this map factors through U(gn).
Since factoring through is a first order property, we can conclude from  Loś’s theorem that
this map factors through for the ultraproduct Y (g) as well.

Next, consider the map (5.2), which immediately gives an algebra homomorphism from
B to U(gt). This map factors through in integer rank when we pass from B to Y (gt), and
since factoring through by the Qij and the Ki is a first-order property, it follows from  Loś’s
theorem that we have a map from Y (g) → U(g) that extends the original map. □

Proposition 5.2. If g(u) = 1 + g1u
−2 + g2u

−4 + · · · ∈ CJu−2K is an even power series, then

S(u) 7→ g(u)S(u) (5.3)

defines an automorphism of Y (g).

Proof. Replacing S(u) with g(u)S(u) in the defining relations Q(u, v) and K(u, v) just mul-
tiplies by some power of g(u), so the defining relations continue to hold. □

The twisted Yangian Y (g) embeds naturally into the Yangian Y (glt). The Yangian Y (glt)
can be defined within both Rep(Ot) and Rep(Spt) exactly as in [Kal20]. Similarly, we define
the series T ′(u) analogously to S ′(u). We record the following useful fact.

Proposition 5.3. We have the embedding Y (g) ↪→ Y (glt) given by

S(u) 7→ T (u)T ′(−u). (5.4)

Proof. Consider the map in the integral rank case, which is just (3.12). This defines an
embedding Y (gn) ↪→ Y (gltn). Being an embedding is a first-order property, so it follows
from  Loś’s theorem, that (5.4) defines an embedding. □

This map also embeds the special twisted Yangian SY (g) into Y (slt).

5.2. Finite-length representations of Y (g). Here again we set t to be transcendental
and g = ot or spt. Recall gn = o2tn or sp2tn and Gn = O2tn or Sp2tn correspondingly. Also,
when t is transcendental, set pn = 0.

First we define the category of Y (g)-modules.

Definition 5.2. Denote by Rep0(Y (g)) the category with objects being objects M ∈ Rep(G)
together with an element µM ∈ Hom(Y (g) ⊗M,M) such that

(1) M is a representation of Y (g), i.e. if µ is the product map of the Yangian, then
µM ◦ (1 ⊗ µM) = µM ◦ (µ⊗ 1) as elements of Hom(Y (g) ⊗ Y (g) ⊗M,M).

(2) The map µM ◦ (i⊗ 1) gives the standard structure of a g representation on M .

The morphisms in Rep0(Y (g)) are morphisms of Rep(G), which commute with the repre-
sentation structure. Note that we consider only honest objects of Rep(G) and not ind-objects.

Similarly to Theorems 4.2 and 4.3, we can give an ultraproduct construction of Rep0(Y (g)).

Lemma 5.4. The category Rep0(Y (g)) is defined as the full subcategory of∏
F

Rep0(Y (gn), pn)

consisting of those objects whose image in
∏

F Reppn(Gn) lies in Rep(G). Moreover, the
irreducible representations of Y (g) correspond to collections of representations of Y (gn) such
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that almost all are irreducible. In other words, Irr(Rep0(Y (g))) is the full subcategory of∏
F

Irr(Rep0(Y (gn), pn)),

whose image is contained in Rep(G).

Proof. The proof is exactly the same as [Kal20, Lemma 4.2.2]. □

The same statement of course holds for representations of the special twisted Yangian.
It follows that for M ∈ Rep0(Y (g)), we can write M =

∏
F Mn, where Mn is a represen-

tation of Y (gtn). If M is irreducible, by  Loś’s theorem, almost all of the Mn are irreducible.
The analogous statement holds for the special twisted Yangian.

Consider the case where t is transcendental and g = ot. Suppose that M ∈ Rep0(SY (g)).
Then, almost all of the Y (gn)-modules Mn corresponding to M must be irreducible. Conse-
quently, for almost all n, Mn corresponds to a choice of the parameter γ belonging to one of
the three sets in (3.37). We refer to them as types A, B, and C, respectively.

Recall the ♯-automorphism of Y (o2n) defined in (3.34). We also denote by ♯ its ultraprod-
uct, which, by  Loś’s theorem, defines an automorphism of Y (ot). If M is of type C, let
M ♯ be the Y (ot)-module obtained by composing the ♯-automorphism with the action on M .
Then M ♯ is of type B. Finally, if t is algebraic, we regard all irreducible representations of
Y (ot) as being of type A.

Lemma 5.5. Fix c ∈ Z. For algebraic t and for almost all n, we have pn − 2tn > c.

Proof. Suppose to the contrary that pn − 2tn ≤ c for almost all n. Since there are finitely
many possibilities, pn − 2tn = d for some d. This means

q(2tn) = q(−d) (mod pn),

so q(−d) has an infinite number of prime divisors, implying q(−d) = 0. However, q(x), being
the minimal polynomial of t, cannot have integral roots, a contradiction. □

Proposition 5.6. Suppose M ∈ Rep0(SY (g)) is irreducible. Then, M ⊏ L(λ(u)) unless
g = ot and M is type C, in which case M ♯ ⊏ L(λ(u)). Here L(λ(u)) is a irreducible Y (slt)-
module, considered as a SY (g)-module via the embedding (5.4) and λ(u) is a highest weight
for Y (glt), which is a pair of sequences (λ•i (u), λ◦i (u)).

Proof. Since every irreducible module of the special twisted Yangian arises as the restriction
of an irreducible Y (g)-module (a consequence of  Loś’s theorem, as the claim holds in integral
rank), consider the irreducible Y (g)-module corresponding to M , which we also denote by
M . Let {Mn} be the sequence of Y (gtn)-modules associated with M . Since M is irreducible,
 Loś’s theorem implies that Mn is irreducible for almost all n.

As an object of Rep(G), M decomposes as a finite direct sum of highest-weight irreducible
representations, i.e.,

M =
K⊕
j=1

V (µj),

for some negative partitions µj. Then, for almost all n, we have

Mn =
K⊕
j=1

V ([µj]tn , pn). (5.5)
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Symplectic Case: Suppose Mn is irreducible as a Y (gtn) = Y (sp2tn)-module. Since
maxi−([µi]tn)tn stabilizes for large n, it follows from Lemma 5.5 that Mn satisfies the con-
ditions of Proposition 3.5 for almost all n.

By Theorem 3.19 and the proof of Theorem 3.20 (cf. [Mol07, the second part of Theorem
4.3.8]), Mn is obtained by composing an automorphism S(u) 7→ gn(u)S(u), where

gn(u) = 1 + g
(n)
1 u−2 + g

(n)
2 u−4 + · · ·

is an even series, with the action on a subquotient M ′
n of the finite-dimensional irreducible

Y (gl2tn)-module L(λ(n)(u)), regarded as a Y (sp2tn)-module via the embedding (3.12).
Since SY (sp2tn) is invariant under the automorphism S(u) 7→ gn(u)S(u), we may replace

Mn with M ′
n, obtaining isomorphic SY (spt)-modules via ultraproducts:

M =
∏
F

Mn
∼=
∏
F

M ′
n = M ′.

Furthermore, the embedding sends SY (sp2tn) into Y (sl2tn), allowing us to view L(λ(n)(u))
as a Y (sl2tn)-module.

By construction, λ(n)(u) has a sequence of Drinfeld polynomials. Moreover, if another
weight µ(n)(u) has the same Drinfeld polynomials, then λ(n)(u) and µ(n)(u) differ by multi-
plication by some even power series, so L(λ(n)(u)) ∼= L(µ(n)(u)) as Y (sl2tn)-modules.

By [Kal20, Theorem 3.2.6], L(µ(n)(u)) decomposes as a tensor product of evaluation mod-
ules:

L(µ(n)(u)) ∼= L(λ
(n)
1 , pn) ⊗ · · · ⊗ L(λ

(n)
kn
, pn).

It follows that:

Mn ⊏ L(λ(n)(u)) ⊏ L(λ
(n)
1 , pn) ⊗ · · · ⊗ L(λ

(n)
kn
, pn),

where the second subquotient is to be interpreted as Y (sl2tn)-modules, and the λ
(n)
i are

dominant integral gl2tn-weights.

The highest weight of M with respect to the sp2tn-action is λ̃
(n)
1 + · · · + λ̃

(n)
kn

, where

(λ̃
(n)
j )i = (λ

(n)
j )i − (λ

(n)
j )−i.

We can restrict to n with 2tn > max(l(µj)), since all cofinite subsets are in F .
Since Mn has a unique highest weight vector, this highest weight must be [µj]2tn for some

j. Moreover, for all larger n, this remains the highest weight, as it depends only on the
support of [µj]2tn . Let µ be the corresponding negative partition, so that:

[µ]tn = λ̃
(n)
1 + · · · + λ̃

(n)
kn
.

Since [µ]tn , λ̃
(n)
1 , . . . , λ̃

(n)
kn

are all negative partitions, and the negative partition associated

to [µ]tn is constant for large n, there are finitely many choices for the λ̃
(n)
j , so one such choice

must occur for almost all n. Denote these limiting negative partitions by λ̃1, . . . , λ̃k.

For each λ
(n)
i , we have the decomposition

λ
(n)
i = χ

(n)
i + d

(n)
i ,

where χ
(n)
i is a gl2sn-weight with (χ

(n)
i )1 = 0 for large enough n, and d

(n)
i ∈ Fpn is constant

along all components. Then, λ̃i = χ̃
(n)
i .
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For large enough n, we must have (χ̃
(n)
i )1 = 0 so (χ

(n)
i )1 = 0 implies (χ

(n)
i )−1 = 0. Similarly,

we get (χ
(n)
i )k = 0 for k = −tn + l(µ), . . . , tn − l(µ); so the entries of χ

(n)
i have at most l(µ)

positive and l(µ) negative parts. Thus there are finitely many possibilities for χ
(n)
i , so it is

eventually fixed for almost all n. Hence there exists a bipartition ηi such that [ηi]2tn = χ
(n)
i

for almost all n. Thus,

Mn ⊏ L([η1]2tn + c
(n)
1 , pn) ⊗ · · · ⊗ L([ηk]2tn + c

(n)
k , pn)

for some constants c
(n)
i . Setting ci =

∏
F c

(n)
i , and using  Loś’s theorem, we get:

M ⊏ L(η1 + c1) ⊗ · · · ⊗ L(ηk + ck).

Additionally, we have the following:

L(λ(n)(u)) ⊏ L([η1]2tn + c
(n)
1 , pn) ⊗ · · · ⊗ L([ηk]2tn + c

(n)
k , pn),

so the ultraproduct L =
∏

F L(λ(n)(u)) lies in Rep(GLt). By [Kal20, Definition 4.2.9], L is
isomorphic to L(λ(u)) for some Y (glt)-highest weight λ(u), where λ(u) is a pair of sequences
(λ•i (u), λ◦i (u)). Then, by  Loś’s theorem:

M ⊏ L(λ(u)).

Orthogonal Case: The argument is analogous. For algebraic t (i.e., in positive charac-
teristic), the proof proceeds identically. In characteristic zero, it applies for types A and
B modules since, if Mn is type A or B, the second part of the proof of [Mol07, Theorem
4.4.14] implies that Mn is a subquotient of L(λ(n)(u)), which in turn is a subquotient of

L(λ
(n)
1 ) ⊗ · · · ⊗ L(λ

(n)
kn

). If Mn is type C, then M ♯
n is of type B, and M ♯

n ⊏ L(λ(u)). □

Also, note that the Y (slt)-module L(λ(u)) completely determines M , by the same argu-
ment as in [Kal20, Corollary 4.2.8]. Let M ♮ = M , M ♮

n = Mn unless M is type C in which
case set M ♮ = M ♯ and M ♮

n = M ♯
n. Then we have

M ♮ ⊏ L(λ(u)) ⊏ L(η1 + c1) ⊗ · · · ⊗ L(ηk + ck),

where L(λ(u)) is the finite-dimensional irreducible highest-weight representation of Y (glt),
and λ(u) is a pair of sequences (λ•i (u), λ◦i (u)) in CJu−1K given by

λ•i (u) =
k∏
j=1

(1 + [(η•j )i + cj]u
−1) and λ◦i (u) =

k∏
j=1

(1 + [(η◦j )i − cj]u
−1)

along with an element

λm =
∏
k

(1 + cku
−1).

These are defined up to simultaneous multiplication by any f(u) ∈ CJu−1K. We define the
highest weight of M ♮, as a Y (g)-module, as a sequence CJu−1K equal to

µi(u) = λ•i (−u)λ◦i (−u)

along with an element
µm(u) = λm(−u)λm(u).

Set l(µ) = l(λ). Note that multiplying λ by f(u) ∈ CJu−1K multiplies µ by f(u)f(−u) ∈
CJu−2K. Thus µ is defined up to simultaneous multiplication by g(u) ∈ CJu−2K. Since µm(u)
is an even sequence, we may assume that µm(u) = 1. So with this assumption, µ(u) is
uniquely determined.
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We can relate the highest weight of M ♮ to the highest weights of M ♮
n in the following way.

For n > l(µ), define

([µ]tn)tn+1−i =

{
µi(u) for i ≤ l(µ),

µm(u) otherwise,

where the coefficients are also reduced to Fpn , i.e. cj is replaced with c
(n)
j , etc.

By  Loś’s theorem, for almost all n, we have

M ′
n ⊏ L([λ]2tn(u)) ⊏ L([η1]2tn + c

(n)
1 , pn) ⊗ · · · ⊗ L([ηk]2tn + c

(n)
k , pn).

From [Mol07, Corollary 4.2.12], the tn + 1 − i-th component of the highest weight of M ♮
n is

simply

([λ]2tn)−tn−1+i(−u)([λ]2tn)tn+1−i(u),

which is easily checked to equal ([µ]tn)tn+1−i.
We can now prove the main classification theorems.

Theorem 5.7. For every irreducible M ∈ Rep0(SY (spt)), there exists a sequence of monic
polynomials, denoted by P (u) = P1(u), P2(u), . . . such that

• the corresponding highest weight satisfies

µi+1(u)

µi(u)
=
Pi(u+ 1)

Pi(u)
. (5.6)

• for sufficiently large i, the µi(u) stabilizes and equals µm(u) = 1, and the Pi(u)
stabilize and equal 1.

Moreover, for any such P (u), there is M with highest weight satisfying (5.6). This also gives
a one-to-one corresponence between irreducible modules and sequences of monic polynomials
P (u).

The polynomials in the sequence P (u) are referred to as the Drinfeld polynomials corre-
sponding to M .

Proof. For the first part, consider the corresponding sequence of modulesMn ∈ Rep0(SY (spt)),
almost all of which are irreducible with highest weight equal to [µ]tn(u), where µ(u) is the
highest weight of M . Let the Drinfeld polynomials corresponding to [µ]tn(u) be

Q(n)(u), Ptn−1(u), . . . , P
(n)
1 (u).

Then, we have

([µ]tn)tn+1−(i+1)(u)

([µ]tn)tn+1−(i)(u)
=
P

(n)
i (u+ 1)

P
(n)
i (u)

.

Since

degQ(n)(u) + 2
tn−1∑
i=1

degP
(n)
i (u) + 2tn < p,

the same argument as in the proof of [Kal20, Theorem 4.2.11] applies to show that there
exist polynomials P1(u), P2(u), . . . such that (5.6) holds. Moreover, as µi(u) stabilizes and
equals µm(u) = 1 for sufficiently large i, it follows that Pi(u) = 1 for all sufficiently large i.

For the second statement, we may simply use an analogous argument to the second part
of the proof of [Kal20, Theorem 4.2.11].
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Finally, note that the highest weight of M is unique subject to the condition µm(u) = 1,
so the Drinfeld polynomials are uniquely determined. □

Theorem 5.8. For every irreducible M ∈ Rep0(SY (ot)), M is type A and there exists a
sequence of monic polynomials, denoted by P (u) = P1(u), P2(u), . . ., such that

• the corresponding highest weight satisfies

µi+1(u)

µi(u)
=
Pi(u+ 1)

Pi(u)
. (5.7)

• for sufficiently large i, the µi(u) stabilizes and equals µm(u) = 1, and the Pi(u)
stabilize and equal 1.

Moreover, for any such P (u), there is M with highest weight satisfying (5.7). This also gives
a one-to-one correspondence between irreducible modules and sequences of monic polynomials
P (u).

Proof. If t is algebraic, the proof is identical to that for the symplectic case. Now suppose t is
transcendental. We know that µm(u) = 1. Thus, for sufficiently large n, the highest weight
([µ]n)(u) of M ♮

n satisfies ([µ]n)1(u) = 1. It also must satisfy (3.32). The γ corresponding to
it is in one of the first two subsets in (3.37), since M ♮

n is type A or B. However, for γ in the
second subset, (3.32) impossible for µ(u) = 1, i.e. µ′(u) = 1 + 1/2u−1. So γ = −1/2, and
M ♮

n is type A. Thus M ♮
n is type A for almost all n, so M is type A. The rest of the proof is

exactly as in the symplectic case. □

Finally, let us discuss the classification of Y (g)-modules. We know that

Y (g) = SY (g) ⊗ ZHC(Y (g)).

Hence a representation of Y (g) is given by a tensor product of a representation of SY (g)
with a representation of CJz2, z4, . . .K. This is simply a sequence of complex numbers, rep-
resented as an even series g(u) ∈ CJu−2K. Two such representations corresponding to the
same irreducible representations of SY (g) differ by multiplication by a one-dimensional rep-
resentation of Y (g). Thus, a specific choice of g(u) ∈ 1 + u−2CJu−2K, determines a unique
representation of Y (g). Thus we have the following.

Theorem 5.9. Irreducible objects of Rep0(Y (g)) are in one-to-one correspondence with tu-
ples (P (u), g(u)), where P (u) = P1(u), P2(u), . . . is a sequence of Drinfeld polynomials and
g(u) ∈ 1 + u−2CJu−2K.

It is interesting to note that the classification does not depend on whether g = ot or spt.
One may expect this given that Rep(Ot) = Rep(Sp−t) as tensor categories, and only a slight
modification needs to be made to the braiding for them to be equivalent as symmetric tensor
categories.
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Appendix A. The Sklyanin determinant in positive characteristic

In this appendix, we define the Sklyanin determinant in positive characteristic and prove
Theorem 3.4. Our approach follows Sections 2.5–2.9 of [Mol07]. Since many proofs mir-
ror those in the positive characteristic setting, we will only provide brief outlines where
appropriate.

Consider the R-matrix R(u), which takes values in (EndCN)⊗2. We define the R-matrices
Rij(u), acting on the ith and jth components of (CN)⊗m. Similarly, for an N ×N matrix

M ∈ (EndCN) ⊗ Y (gn)Ju−1K,

we define
Mi ∈ (EndCN)⊗m ⊗ Y (gn)Ju−1K

as acting on the ith component of (CN)⊗m. We will refer to the following equation as the
ternary relation

R(u− v)T1(u)T2(u) = T2(u)T1(u)R(u− v), (A.1)

where T (u) is from section 3.1 and the subscript indicates which components it acts on. We
now introduce the rational function R(u1, . . . , um) with values in (EndCN)⊗m, defined as

R(u1, . . . , um) = (Rm−1,m)(Rm−2,mRm−2,m−1) · · · (R1m · · ·R12), (A.2)

where u1, . . . , um are independent variables, and we abbreviate Rij = Rij(ui − uj). Here,
Rij(u) denotes the R-matrix acting on the ith and jth components of (EndCN)⊗m. Using
the Yang-Baxter equation (see (A.8)) and the fact that we may commute Rij and Rkl for
pairwise distinct i, j, k, l, a simple induction shows

R(u1, . . . , um) = (R12 · · ·R1m) · · · (Rm−2,m−1Rm−2,m)(Rm−1,m). (A.3)

Define
Ti = Ti(ui), Si = Si(ui), 1 ≤ i ≤ m

and
R′
ij = R′

ji = R′
ij(−ui − uj).

For an arbitrary permutation (p1, . . . , pm) of the indices 1, . . . ,m, we abbreviate

⟨Sp1 , . . . ,Spm⟩ = Sp1(R′
p1p2

· · ·R′
p1pm

)Sp2(R′
p2p3

· · ·R′
p2pm

) · · · Spm . (A.4)

Proposition A.1. We have the identity

R(u1, . . . , um)T1 · · ·Tm = Tm · · ·T1R(u1, . . . , um).

Proof. First, by repeated application of the ternary relation (A.1) and the fact that Rij and
Tk are permutable for i, j, k distinct, we get

(R1m · · ·R12)T1(T2 · · ·Tm) = (T2 · · ·Tm)T1(R1m · · ·R12).

Since
R(u1, . . . , um) = R(u2, . . . , um)(R1m · · ·R12),

by induction on m we are done. □

Proposition A.2. We have the identity

R(u1, . . . , um) ⟨S1, . . . ,Sm⟩ = ⟨Sm, . . . ,S1⟩R(u1, . . . um). (A.5)
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Proof. Let i, j, k be distinct indices in {1, . . . ,m}. Note that we have

RijSiR′
ijSj = SjR′

jiSiRij (A.6)

RijR
′
ikR

′
jk = R′

jkR
′
ikRij. (A.7)

Indeed, (A.6) is simply the quaternary relations, and for (A.7), we start with the Yang-Baxter
equation

RijRikRjk = RjkRikRij. (A.8)

Then apply the transposition with respect to the matrix G on the k’th component to get

RijR
′
jkR

′
ik = R′

ikR
′
jkRij. (A.9)

Now we have PijR
t
jkPij = Rt

ik, where P is the permutation operator and

Rt
jk = Rt

jk(−uj − uk).

Then we get that

(G−1
k PijGk)R

′
jk(G

−1
k PijGk) = (G−1

k PijGk)(G
−1
k Rt

jkGk)(G
−1
k PijGk) = G−1

k Rt
ikGk

which is simply R′
ik. So we conjugate both sides of (A.9) by (G−1

k PijGk), and since conju-
gating Rij gives us Rij again, since Rij and Gk commute, and PijRijPij = Rij, we get (A.7).
From here, we can proceed in exactly the same way as the proof of Proposition 2.5.1 in
[Mol07], replacing “At” transpose symbols with the “A′” transpose with respect to G. □

Consider the symmetric group Sm acting on {1, . . . ,m}. The anti-symmetrizer in the
group algebra of Sm is given by ∑

σ∈Sm

sgn(σ) · σ ∈ C[Sm].

Let Am be the image of this anti-symmetrizer under the natural action of Sm on (CN)⊗m.
We use e1, . . . , eN to be the standard basis vectors of CN , we get

Am(ei1 ⊗ · · · ⊗ eim) =
∑
σ∈Sm

sgn(σ) · eiσ(1)
⊗ · · · ⊗ eiσ(m)

. (A.10)

Note that we have A2
m = m!Am. For m ≤ N the right hand side is nonzero because we

assume N < p, see Proposition 3.5.

Proposition A.3. For m ≤ N , if ui − ui+1 = 1 for all i = 1, . . . ,m− 1, then

R(u1, . . . , um) = Am.

Proof. We can use the same proof as Proposition 1.6.2 in [Mol07]. There are no division by
zero problems because all denominators are ≤ m ≤ N < p. □

Now set m = N and
ui = u− i+ 1, i = 1, . . . , N.

By the previous propositions,

ANT1 · · ·Tm = Tm · · ·T1AN (A.11)

and

AN ⟨S1, . . . , SN⟩ = ⟨SN , . . . , S1⟩AN . (A.12)
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The image of AN on (CN)⊗N is one-dimensional. Indeed, for any basis element ei1 ⊗ · · · ⊗
eiN , if ik = iℓ for some k ̸= ℓ, then by (A.10),

AN(ei1 ⊗ · · · ⊗ eiN ) = 0.

Thus, AN is nonzero only on pure tensors indexed by permutations of (1, . . . , N), where it
evaluates to ∑

σ∈SN

sgn(σ) · eσ(1) ⊗ · · · ⊗ eσ(N).

It follows that (A.11) and (A.12) reduce to AN multiplied by a scalar series with coefficients
in Y (glN) or Y (gn), respectively.

Definition A.1. The quantum determinant (resp. Skylanin determinant) of the matrix
T (u) (resp. S(u)) is the formal series with coefficients in Y (glN) (resp. Y (gn)) given by

qdetT (u) = d0 + d1u
−1 + d2u

−2 + · · · ,

respectively

sdetS(u) = c0 + c1u
−1 + c2u

−2 + · · · ,
such that the element (A.11) (resp (A.12)) equals AN qdetT (u) (resp. AN sdetS(u)).

Proposition A.4. We have for any permutation π ∈ SN

qdetT (u) = sgn(π)
∑
σ∈SN

sgn(σ) · tσ(1),π(1)(u) ⊗ · · · ⊗ tσ(N),π(N)(u−N + 1)

= sgn(π)
∑
σ∈SN

sgn(σ) · tπ(1),σ(1)(u−N + 1) ⊗ · · · ⊗ tπ(N),σ(N)(u).

Proof. The characteristic zero proof works just as well in positive characteristic, see the proof
of Proposition 1.6.6 in [Mol07]. □

Due to this, we see that this definition of the quantum determinant matches the one in
[Kal20], so we know that its coefficients are central and algebraically independent.

Theorem A.5. Under the embedding (3.12),

sdetS(u) = αN(u) qdetT (u) qdetT (−u+N − 1),

where αN(u) is given by (3.13).

Proof. Consider the mappings

T (u) 7→ G−1T (u)G,

T (u) 7→ T t(u),

T (u) 7→ T (−u).

The first is an automorphism, while the second and third are anti-automorphisms by Proposi-
tions 1.3.1 and 1.3.3 in [Mol07] ((1.22), (1.26), (1.25)). The proof follows from the characteristic-
zero case. Their composition yields

T (u) 7→ G−1T t(−u)G = T ′(−u), (A.13)

an automorphism denoted τN .
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From (3.12), we obtain Si = TiT
′
i , where Ti = Ti(u − i + 1) and T σi = T ′

i (−u + i − 1).
Thus, the left-hand side of (A.12) rewrites as

ANT1T
σ
1 R

′
12 · · ·R′

1NT2T
σ
2 R

′
23 · · ·R′

2N · · ·TN−1T
σ
N−1R

′
N−1,NTNT

σ
N , (A.14)

where R′
ij = Rij(−2u+ i+ j− 2). Applying the ternary relation (A.1) and partial transpose

with respect to G on the first component,

T ′
1(u)R′(u− v)T2(v) = T2(v)R′(u− v)T ′

1(u).

Thus,

T σi R
′
ijTj = TjR

′
jiT

σ
i . (A.15)

For i ̸= j, k, both Ti and T σi commute with R′
jk, allowing us to rewrite (A.14) as

ANT1(T
σ
1 R

′
12T2)R

′
13 · · ·R′

1N(T σ2 R
′
23T3) · · · (T σN−1R

′
N−1,NTN)T σN . (A.16)

Applying (A.15) repeatedly, we obtain

ANT1 · · ·TNR′
12 · · ·R′

1NR
′
23 · · ·R′

2N · · ·R′
N−1,NT

σ
1 · · ·T σN .

This simplifies to

qdetT (u)AN ⟨I1, I2, . . . , IN⟩T σ1 · · ·T σN ,
where Ii is the identity operator. Since the mapping S(u) 7→ I defines a representation of
T (gn), we obtain from (A.12)

AN ⟨I1, . . . , In⟩ = ⟨IN , . . . , I1⟩AN = ANβN(u), (A.17)

for some scalar function βN(u). Applying τN to (A.11),

ANT
σ
1 · · ·T σN = ANτN(qdetT (u)).

Since
qdetT (u) =

∑
σ∈SN

sgn(σ) · tσ(1),1(u) · · · tσ(N),N(u−N + 1),

and τN maps T (u) 7→ T ′(−u), we find

τN(qdetT (u)) =
∑
σ∈SN

sgn(σ) · tN,N+1−σ(1)(−u) · · · t1,N+1−σ(N)(−u+N − 1).

Introducing π(i) = N + 1 − i, this rewrites as∑
σ∈SN

sgn(σ) · tπ(1),(π◦σ)(1)(−u) · · · tπ(N),(π◦σ)(N)(−u+N − 1)

= sgn(π)
∑
σ′∈SN

sgn(σ′) · tπ(1),σ′(1)(−u) · · · tπ(N),σ′(N)(−u+N − 1).

Thus, τN(qdetT (u)) = qdetT (−u+N − 1), leading to

AN sdetS(u) = ANβN(u) qdetT (u) qdetT (−u+N − 1).

Applying this to e1 ⊗ · · · ⊗ eN ,

sdetS(u)
∑
σ∈SN

sgn(σ)eσ(1) ⊗ · · · ⊗ eσ(N)

=βN(u) qdetT (u) qdetT (−u+N − 1)
∑
σ∈SN

sgn(σ)eσ(1) ⊗ · · · ⊗ eσ(N).
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It follows that

sdetS(u) = βN(u) qdetT (u) qdetT (−u+N − 1).

To show βN(u) = αN(u), consider first the orthogonal case. With

R(u) = 1 − P

u
, P =

∑
i,j

eij ⊗ eji,

we obtain

R′(u) = 1 − P ′

u
, P ′ =

∑
i,j

eij ⊗ eN+1−i,N+1−j.

By direct computation, PP ′ = P ′, so

(1 − P )R′(u) = (1 − P ).

For i < j, this implies
ANR

′
ij = AN .

Thus, αN(u) = 1, agreeing with (3.13). In the symplectic case, applying R′
jk to the basis

vector
v = e1 ⊗ e2 ⊗ · · · ⊗ en ⊗ en+1 ⊗ · · · ⊗ e2n

yields
2u− 2n+ 3

2u− 2n+ 1
A2nv.

Continuing this process leads to
2u+ 1

2u− 2n+ 1
A2nv,

matching (3.13) and proving βN(u) = αN(u). □

As a consequence of this theorem, the coefficients of sdetS(u) are central, allowing us to
define ZHC(gn) as the algebra generated by these coefficients.

Applying Theorem A.5, we immediately obtain

αN(−u+N − 1) · sdetS(u) = αN(u) · sdetS(−u+N − 1).

From this, it follows that all the odd coefficients can be expressed in terms of the even ones.
Consequently, ZHC(Y (gln)) is generated by the even coefficients. Finally, the fact these
coefficients are algebraically independent follows in the same way as the characteristic zero
case; see the proof of Theorem 2.8.2 in [Mol07].

Next, we construct a series d̃(u) ∈ 1 + u−1ZHC(Y (gln))Ju−1K satisfying

d̃(u)d̃(u− 1) · · · d̃(u−N + 1) = qdetT (u) = 1 + d1u
−1 + d2u

−2 + · · · .
Writing

d̃(u) = 1 + d̃1u
−1 + d̃2u

−2 + · · · ,
expanding the power series reveals that the u−k coefficient of d̃(u−m) takes the form d̃k plus

terms depending only on d̃i for i < k. Thus, the u−k coefficient of d̃(u)d̃(u−1) · · · d̃(u−N+1)

is Nd̃k plus terms involving only d̃i for i < k. Since N < p, we can recursively determine
the di starting from k = 1.

By Proposition A.4, automorphisms of the form (3.4) map

d̃(u) 7→ f(u)d̃(u).
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Finally, we define

t̃ij(u) = d̃(u)−1tij(u).

It follows that t̃ij(u) remains invariant under automorphisms of the form (3.4), implying that

t̃ij(u) ∈ Y (slN).
Now we can finish the proof of Theorem 3.4.
First, we establish the decomposition

Y (gn) = ZHC(Y (gn))SY (gn). (A.18)

We regard Y (gn) as a subalgebra of Y (glN) via the embedding (3.12). Under this embedding,
we have

sij(u) =
∑
k

θkjtik(u)tN+1−j,N+1−k(−u).

Define the series
s̃ij(u) = (d̃(u)d̃(−u))−1sij(u).

Since d̃(u) has central coefficients, it follows that

s̃ij(u) =
∑
k

θkj t̃ik(u)t̃N+1−j,N+1−k(−u).

Now, we compute

αN(u)−1 sdetS(u) = qdetT (u) qdetT (−u+N − 1)

= (d̃(u)d̃(−u))(d̃(u− 1)d̃(−u+ 1)) · · · (d̃(u−N + 1)d̃(−u+N − 1)).

From this, it follows that all coefficients of d̃(u)d̃(−u) can be expressed as polynomials in

the coefficients of sdetS(u), implying that d̃(u)d̃(−u) ∈ ZHC(gn).
Similarly to how t̃ij(u) belongs to Y (slN), we deduce that s̃ij(u) ∈ SY (gn). Thus, the

decomposition

sij(u) = d̃(u)d̃(−u)s̃ij(u)

yields the desired result (A.18).
Finally, the tensor product decomposition follows from the relation

Y (glN) = ZHC(Y (glN)) ⊗ Y (slN),

along with the inclusions ZHC(Y (gn)) ⊂ ZHC(Y (glN)) (which follows from Theorem A.5)
and SY (gn) ⊂ Y (slN) (by the same argument as in characteristic zero).

This completes the proof of (3.4).
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