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Abstract. No-regret learning algorithms are an important component of advances in solv-
ing large-scale games. These algorithms are commonly used to solve games such as Diplo-
macy, an AI benchmark with a large action space where agents compete to dominate a map
of Europe. We introduce Multi-Stage Multiplicative-Weights Update (MS-MWU), which
shows an improvement upon existing external-regret minimizing algorithms such as MWU
across all our experiments. We also perform an empirical evaluation of classic no-regret
algorithms such as Multiplicative-Weights Update (MWU) and Optimistic Multiplicative-
Weights Update (OMWU). Furthermore, we test swap regret minimization algorithms such
as the no swap-regret algorithm of Blum & Mansour (2007) and the TreeSwap algorithm
of Dagan et al (2024). We play these algorithms against each other and randomized adver-
saries on hundreds of subgames of Diplomacy along with Kuhn Poker and random games.
Across all these games, our experiments show that MS-MWU converges significantly faster
than MWU/OMWU. We experimentally show that swap regret and external regret remain
very similar at all iterations. In other words, external regret minimization algorithms such
as MWU outperform swap regret minimization algorithms such as BM in terms of rate of
convergence and time complexity, even for very large time horizons.

1. Introduction

No-regret learning provides a principled framework for repeated decision-making and
multi-agent interactions. In this setting, agents repeatedly choose actions and receive payoffs
or losses, adjusting their strategies over time based on observed feedback. The fundamental
objective is to ensure that an agent’s performance, as measured by its cumulative payoff, is
competitive with the best single action in hindsight. When the agent’s regret (the difference
between these two quantities) grows sublinearly in the total number of rounds, the algorithm
is said to be no-regret.

Within no-regret learning, external regret is one of the most commonly studied variants.
By ensuring that the agent does nearly as well as any single fixed action, external regret
minimization drives repeated games toward a coarse correlated equilibrium (CCE). CCE can
be viewed as a natural generalization of the classical Nash equilibrium, allowing for corre-
lated strategies recommended by an external mediator. Nonetheless, while coarse correlated
equilibria are appealing for their generality and relative tractability, some game-theoretic
analyses focus on swap regret, which requires the learner to compete against the best func-
tion mapping from its actual played actions to alternative actions. Minimizing swap regret
guarantees convergence to a correlated equilibrium (CE), offering a tighter solution concept
than a CCE but often demanding more involved algorithms.

1.1. Challenges with complex action spaces. A variety of regret-minimizing methods
for external and swap regret have been proposed in the literature. Among the most notable
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are the Multiplicative-Weights Update (MWU) (Nisan et al. (2007)) algorithm and its opti-
mistic variant, Optimistic Multiplicative-Weights Update (OMWU) (Syrgkanis et al. (2015)),
and the improved algorithm, Kernelized OMWU (KOMWU)(Farina et al. (2022)), which are
widely used for external regret. For swap regret, classic approaches include the algorithm
of Blum and Mansour (2007) (Blum and Mansour (2007)) and the more recent TreeSwap
(Dagan et al. (2024)) algorithm by Dagan et al. (2024) and Multi-Scale MWU algorithm
by Peng et al. (Peng and Rubinstein (2023)). While these methods provide important the-
oretical guarantees, practitioners often encounter slow convergence or high computational
costs when the action space is very large or the strategic structure is complex (Daskalakis
et al. (2023)). This limitation is particularly evident in challenging environments such as
Diplomacy, and even in simpler settings like Kuhn Poker or randomly generated games.

1.2. Main Result: Multi-Stage Multiplicative-Weights Update. In response to the
challenges regarding large action spaces, we propose a new external-regret minimizing algo-
rithm called Multi-Stage Multiplicative-Weights Update (MS-MWU). Our approach parti-
tions the time horizon into multiple stages, where each stage uses a carefully tuned learning
rate and transition criterion. This staged framework mitigates the drawbacks of a single
fixed-rate update, allowing the agent to adapt more effectively to changing payoff structures
or adversarial conditions. In our experiments, MS-MWU consistently converges faster than
MWU and OMWU across Diplomacy subgames, Kuhn Poker, and random games, even for
very large time horizons. Moreover, we observe that while swap regret guarantees a stronger
equilibrium concept in theory, external-regret algorithms such as MWU often converge at
a similar or faster rate in practice, suggesting that stronger theoretical guarantees do not
always translate into better empirical performance.

To provide intuition for why MS-MWU achieves sublinear regret with improved conver-
gence, we offer a sketch of its proof. We begin by dividing the total number of rounds,
T , into S stages, each stage operating for Ts rounds with a fixed learning rate ηs. Within
each stage, we apply a multiplicative-weights update rule that guarantees a regret bound
proportional to

√
Ts logN , where N is the number of available actions. Between stages, we

adjust ηs based on observed performance, effectively allowing the algorithm to “reset” or
recalibrate. Summing over all stages yields a total regret of O(

√
T logN), matching stan-

dard MWU theoretical guarantees, but our staged approach tends to yield faster empirical
convergence because it dynamically adapts to the problem’s feedback structure and avoids
overly aggressive or overly conservative updates.

In this paper, we introduce our new algorithm Multi-Stage Multiplicative-Weights Up-
date. We begin by establishing the preliminaries in section 2. We then provide a detailed
explanation of our algorithm in section 3. In section 4, we provide our experimental results.
Finally in section 5, we provide our conclusions and suggest future directions.

2. Preliminaries

2.1. Game-Theoretic Setup. A normal-form (or strategic-form) game represents a simultaneous-
play setting in which each player chooses an action from a finite set without knowing the
other players’ choices. Formally, let P = {1, 2, . . . , n} be the set of players. Each player i ∈ P
has a finite action set Ai. A joint action is a tuple a = (a1, a2, . . . , an) with ai ∈ Ai for each
i. Given a joint action a, each player i receives a payoff ui(a). The normal-form game is
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then specified by

G =
(
P , {Ai}i∈P , {ui}i∈P

)
.

Players may also randomize by selecting mixed strategies : a mixed strategy πi for player i
is a probability distribution over Ai. Let Σi denote the set of all such distributions, and
Σ =

∏
i∈P Σi. When a profile of mixed strategies π = (π1, . . . , πn) is played, the expected

payoff to player i is ui(π) =
∑

a∈A
(∏

j πj(aj)
)
ui(a).

Normal-form games can represent an enormous variety of strategic interactions, from clas-
sic two-player matrix games (like Rock–Paper–Scissors) to larger multi-player settings in
domains such as online advertising, cybersecurity, or board/card games. Of particular in-
terest are large-scale multi-agent problems such as Diplomacy, Poker, or Avalon, in which
modern AI breakthroughs use computationally efficient algorithms from the field of no-regret
learning to approximate equilibria.

2.2. Equilibrium Concepts. A Nash equilibrium (NE) in a normal-form game is a mixed
strategy profile π∗ = (π∗

1, . . . , π
∗
n) such that no player can improve their expected payoff by

unilaterally deviating to another strategy. Formally,

max
i∈P

(
max
π̂i∈Σi

ui

(
π̂i, π

∗
−i

)
− ui

(
π∗
i , π

∗
−i

))
≤ 0.

Finding a Nash equilibrium can be computationally hard, motivating the search for other,
more tractable solution concepts.

A correlated equilibrium is a distribution p over joint actions A = A1×· · ·×An. A mediator
draws an action profile a = (a1, . . . , an) from p, then privately recommends action ai to each
player i. The distribution p constitutes a CE if no player can profitably deviate from the
recommended action in expectation. Equivalently, for each i and any mapping ϕ : Ai → Ai,∑

a∈A

p(a)
(
ui

(
ϕ(ai), a−i

)
− ui

(
ai, a−i

))
≤ 0.

Because CE can be computed via linear programming, it is often easier to find than NE,
especially in large games.

A coarse correlated equilibrium assigns a probability distribution p over joint actions but
employs a weaker incentive constraint: each player must decide on a single alternative action
before seeing their recommended action. Formally, for each i and each potential action
âi ∈ Ai, ∑

a∈A

p(a)
(
ui

(
âi, a−i

)
− ui

(
ai, a−i

))
≤ 0.

In summary, we have the inclusion

Nash Equilibrium ⊆ Correlated Equilibrium ⊆ Coarse Correlated Equilibrium,

where each successive concept enlarges the set of possible equilibria. For two-player zero-sum
games, these sets coincide in terms of payoffs due to the minimax theorem.

2.3. Regret Minimization and Equilibrium Computation. A primary technique for
approximating equilibria in large or complex games is no-regret learning. Suppose that over
T rounds, player i repeatedly chooses a mixed strategy πt

i . An adversary (or environment)
then assigns payoffs (or losses) for each action. The external regret of player i measures
how much better they could have done by committing to a single best action in hindsight.
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Formally, if

LT
i =

T∑
t=1

ui(π
t
i , π

t
−i) and LT

i (ai) =
T∑
t=1

ui(ai, π
t
−i),

then the external regret is

RE,T
i = max

ai∈Ai

LT
i (ai) − LT

i .

An algorithm is no-regret if RE,T
i = o(T ), ensuring that its average regret 1

T
RE,T

i goes to
zero as T → ∞. Crucially, when all players use no-external-regret strategies, their joint play
converges to a coarse correlated equilibrium.

Stronger notions, such as swap regret, permit more flexible comparisons and yield con-
vergence to a full correlated equilibrium if all players minimize swap regret. Although this
notion is more powerful, algorithms that control swap regret can be more complex or slower
in practice.

Algorithms like Multiplicative-Weights Update (MWU) and regret matching provide stan-
dard ways to achieve sublinear external (or internal) regret. In each round, MWU updates a
“weight” for each action, reducing the weight of high-loss actions and increasing the proba-
bility of picking actions that have performed well historically. These methods have powered
significant breakthroughs in large-scale game-solving, including poker variants, security set-
tings, and board games like Diplomacy.

Despite the fact that MWU and other no-regret methods theoretically guarantee conver-
gence to equilibrium, they can converge slowly in practice, especially in high-dimensional
games with a large number of actions. This has sparked interest in refinements—such as the
Multi-Stage Multiplicative-Weights Update (MS-MWU) algorithm we introduce—aimed at
accelerating convergence while maintaining no-regret performance guarantees.

3. Multi-Stage Multiplicative-Weights Update

While classical Multiplicative-Weights Update (MWU) algorithms guarantee sublinear
regret, they can exhibit slow convergence in practice, particularly for large or complex ac-
tion spaces. In this section, we introduce Multi-Stage Multiplicative-Weights Update (MS-
MWU), a variant of MWU that uses staged re-initialization to speed up convergence. The

high-level idea is to divide the total time horizon into ≈
√
T stages, update strategies within

each stage using MWU, and then reset or re-initialize the weights based on cumulative per-
formance at the end of each stage. By periodically re-initializing the algorithm’s internal
state, MS-MWU avoids becoming “stuck” with an outdated learning rate or misguided
weight distribution when the environment changes or when certain actions prove much more
profitable than others.
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Algorithm 1 MS-MWU

1: Input: Number of actions N , time horizon T , decay rate r

2: Initialize: block size M ≈
√
T , η =

√
logN
M

, Pcum = (0, . . . , 0)

3: for t = 1 to T do
4: Normalize weights: pti =

wt
i∑N

j=1 w
t
j

for all i ∈ {1, . . . , N}
5: Choose action: Randomly select action i with probability pti
6: Receive loss: ℓti for each action i
7: Update weights: wt+1

i = wt
i · (1− η)ℓ

t
i for each action i

8: Accumulate strategies: Pcum = Pcum + pt

9: if t (mod M) = 0 then
10: wt = Pcum

M
, η = η

r
, Pcum = 0

11: end if
12: end for

3.1. Algorithm Description.
Learning Rate and Block Updates. In each block of length M , we run a standard MWU
procedure with a fixed learning rate η. At the end of the block, we re-initialize the weight
vector wt to be the average distribution encountered during that block. This ensures the
algorithm “resets” to a representative strategy rather than fully preserving historical bias.
Simultaneously, we reduce the learning rate η by a decay factor r > 1 to mitigate overshooting
in later stages.

3.2. Rationale and Advantages. By partitioning the horizon into
√
T stages, MS-MWU

proactively combats the potential stagnation that arises from using a single global learning
rate over the entire time horizon. Early stages, when losses and payoff structures may not
yet be well understood, permit more exploratory behavior. As stages progress, the refined η
and more informed “average distribution” help the algorithm quickly hone in on high-payoff
actions.

Compared to vanilla MWU, which updates weights continuously without reset,MS-MWU
stabilizes faster in many empirical settings (see Section 4). Even against optimistic variants
(OMWU), staging often yields improved performance, especially in environments where loss
vectors shift or where multiple actions become advantageous at different times. The key
insight is that accumulating strategies and averaging across a block can jump-start the al-
gorithm’s distribution at each stage, preventing it from lingering on suboptimal actions or
inefficient updates.

3.3. Computational Complexity and Extensions. The computational overhead of MS-
MWU is comparable to MWU: each round requires O(N) work to update weights and choose
an action. The additional resetting steps at each stage involve re-initializing with a simple
average, incurring negligible extra cost. Overall, MS-MWU retains the O(T · N) time
complexity of MWU.

One can generalize MS-MWU by adjusting:

• Block scheduling: Instead of fixed-length blocks M ≈
√
T , employ adaptive stage

lengths (e.g., halving M upon detecting slow convergence).
• Adaptive decay: Tune η non-uniformly depending on realized losses or regret levels
within each block.
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• Hybrid approaches: Combine MS-MWU with other advanced regret minimizers,
such as OMWU or Regret Matching, for potentially tighter theoretical guarantees.

3.4. Proof of Convergence Bound. [MS-MWU Convergence] Let T be the total number

of iterations andM =
√
T for the MS-MWU algorithm. Then the MS-MWU updates achieve

last-iterate convergence as T → ∞. Furthermore, for finite but large T , choosing M = ATB

with B ∈ (0, 1) (close to 1) and a sufficiently large constant A ensures that the algorithm’s
error bound converges to 0 as T → ∞.

Proof. First, recall that the standard Multiplicative Weights Update (MWU) algorithm has
the property that its average probability distribution converges to an equilibrium as T → ∞.

In our MS-MWU algorithm, we set M =
√
T . Over the first block of M iterations, as T

grows, M also grows, which drives the regret in that block close to 0. For the subsequent
blocks (each also of lengthM), the regret remains 0, so the probability distribution effectively
stops changing, hence yielding last-iterate convergence. This behavior is observed empirically
in small games such as Kuhn Poker.

Next, consider a large but finite T . We generalize the choice of M to

M = ATB,

where A is a constant, and B ∈ (0, 1) is close to 1. Choose A and B such that T ≤ CM
for some sufficiently large constant C. In the first block of M iterations, we do not obtain

the usual error bound ϵ =
√

lnN
T

, but instead a somewhat larger error bound ϵ2 =
√

lnN
M

.

In the next (at most) C blocks of length M , the standard MWU analysis ensures that the
regret does not increase (further aided by the decay rate r). Hence the total error after these
blocks is bounded by √

lnN

M
× rC .

Since M increases with T , this error bound decreases as T increases. Therefore, MS-MWU
enjoys a theoretical error bound that converges to 0 as T → ∞. □

3.5. Summary. MS-MWU modifies MWU to incorporate multi-stage resets, improving
empirical convergence in diverse settings. The staged updates allow it to exploit patterns in
each block of rounds while avoiding the risk of running with a single suboptimal rate across
the entire time horizon. As Section 4 demonstrates, these design choices lead to faster regret
reduction in practice, paving the way for more efficient approximate equilibria in large-scale
or adversarial multi-agent scenarios.

4. Experimental Results

In this section, we present our empirical findings comparing classic no-regret algorithms
(MWU, OMWU, Blum–Mansour, TreeSwap) to our proposed Multi-Stage Multiplicative-
Weights Update (MS-MWU). Experiments were performed on both Kuhn Poker and on
subgames of the Diplomacy environment.

Diplomacy is an extensive form game with normal-form subgames where there are 7 players
and each chooses their action simultaneously. We used Gray et al. (2020)’s neural network,
which scans and searches the 11-14 best actions for each power, and made modifications
to obtain utility matrices. In total, we obtained over 500 2-player subgames for 6 pairs of



AN EMPIRICAL EVALUATION OF CONVERGENCE TO EQUILIBRIA: INTRODUCING MS-MWU 7

powers and the remaining 4 powers’ actions randomly selected from the filtered actions. We
also obtained several 7-player subgames.

Unless otherwise specified, each trial was repeated multiple times with different random
seeds, and we plot the average external regret (or another convergence measure) over the
number of iterations T .

4.1. Kuhn Poker. In figure 1, we measure external regret over T iterations. Notably, MWU
consistently converges more quickly than BM. Although BM provides swap-regret guaran-
tees theoretically, it incurs higher computational overhead in practice. Consequently, the
simpler external-regret minimization approach (MWU) displays lower regret after relatively
few rounds.

Figure 1. Kuhn Poker: MWU vs. Blum–Mansour. MWU converges faster,
suggesting that external-regret minimization can be more efficient in practice
than swap-regret algorithms like BM.

Figure 2 compares MWU and MS-MWU in Kuhn Poker. MS-MWU exhibits faster con-
vergence throughout the entire learning horizon. This improvement is due to the staged
re-initialization of strategy weights, which allows the algorithm to respond adaptively to
changing payoffs and avoid getting stuck with suboptimal learning rates.

In Figure 3, we contrast MS-MWU with Optimistic MWU (OMWU). Although OMWU
often outperforms standard MWU in adversarial settings, MS-MWU consistently achieves
lower regret and converges more quickly. Intuitively, OMWU attempts to predict the next
loss vector, whereas MS-MWU accumulates block-level statistics and re-initializes aggres-
sively, resulting in more rapid adaptation.

4.2. Diplomacy Subgames. We next evaluate performance on selected two-player sub-
games extracted from the complex, multi-player game Diplomacy. These subgames have
larger action spaces than Kuhn Poker, and they frequently involve more intricate payoff
structures.



8 MICHAEL HAN AND ASHLEY YU

Figure 2. Kuhn Poker: MWU vs. MS-MWU. The proposed MS-MWU algo-
rithm accelerates convergence by periodically re-initializing weights, outper-
forming vanilla MWU.

Figure 3. Kuhn Poker: OMWU vs. MS-MWU. Even compared to OMWU,
MS-MWU shows a faster rate of convergence, highlighting the benefits of multi-
stage updates.

4.2.1. MWU vs. Blum–Mansour (BM). Figure 4 shows a typical result comparing MWU
and BM in a Diplomacy subgame. As with Kuhn Poker, MWU converges more quickly,
suggesting that for practical computation of approximate equilibria in normal-form sub-
games, external-regret minimization is more efficient empirically than swap-regret minimiza-
tion—even though swap-regret is theoretically stronger.
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Figure 4. Diplomacy subgame: MWU vs. BM. MWU again demonstrates
a faster decrease in regret, reinforcing the idea that simpler external-regret
methods can be advantageous in practice.

4.2.2. MWU vs. MS-MWU. Finally, in Figure 5, we compare MWU to our MS-MWU algo-
rithm on a Diplomacy subgame. The gap is even more pronounced here than in Kuhn Poker,
indicating that MS-MWU’s staged updates are particularly beneficial in environments with
large, highly variable action spaces. Across a wide range of settings (different subgames,
various payoff structures), MS-MWU consistently exhibited lower regret and faster conver-
gence.

Figure 5. Diplomacy subgame: MWU vs. MS-MWU. Staging and adaptive
re-initialization in MS-MWU lead to faster convergence compared to standard
MWU in these larger, more complex subgames.

4.3. Summary of Experimental Observations. Overall, our experiments indicate three
main takeaways:

• Faster Convergence for MS-MWU. The multi-stage strategy update consistently
outperforms classical MWU/OMWU across both Kuhn Poker and Diplomacy sub-
games.
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• External vs. Swap Regret. While swap-regret algorithms (e.g., BM) hold stronger
theoretical guarantees, they often converge more slowly in practice than simpler
external-regret algorithms like MWU and MS-MWU.

• Scalability. MS-MWU maintains strong performance even in large, complex payoff
matrices, underscoring its potential for broader multi-agent AI applications where
the action space and strategic complexity can be significant.

5. Conclusions and Further Research

We have presented a new no-regret learning algorithm, Multi-Stage Multiplicative-Weights
Update (MS-MWU), designed to accelerate convergence in large-scale game-theoretic set-
tings. By splitting the time horizon into stages and adaptively re-initializing strategy weights,
MS-MWU enjoys empirical speedups over standard Multiplicative-Weights Update (MWU)
and its optimistic variant (OMWU). Moreover, our results indicate that, although swap-
regret algorithms such as Blum–Mansour and TreeSwap offer stronger theoretical guaran-
tees for correlated equilibrium, they often converge more slowly in practice than simpler
external-regret minimization methods.

Extensive experiments on Kuhn Poker and Diplomacy subgames confirm that MS-MWU
reduces regret faster than baseline methods, thereby facilitating quicker approximate equi-
librium computation. In both domains, the improvement is particularly noteworthy for large
or complex action spaces, highlighting the practical advantages of staged updates. These
findings underscore the potential for MS-MWU to be applied in broader multi-agent AI
settings, where scalable equilibrium computation is vital.

Looking ahead, it remains an open theoretical question to establish tighter regret bounds
for MS-MWU and to explore the algorithm’s performance under more adversarial conditions
or in multiplayer extensive-form games. Future work may also involve integrating MS-MWU
with additional refinements—such as dynamic learning rates or advanced gradient-based
optimizations—to further enhance its adaptability and robustness. We believe that continued
research along these lines will help bridge the gap between strong theoretical guarantees and
efficient performance in real-world multi-agent systems.
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