
Unlearning Mechanisms in Graph Models and

Document Classification

Adam Ge, Aadya Goel
Mentor: Mayuri Sridhar

MIT PRIMES 2024

Abstract

We look at Machine Unlearning, the concept of making AI models “for-
get” about a particular section of data. In our research, we look at how
the use of graphs helps in the convergence of two problems: unlearning
a document classification label and unlearning the edges of a graph. We
consider a graph containing nodes of words and documents, with edges in-
dicating whether there is a relationship between a word and a document,
or between two documents. Current state-of-the-art algorithms randomly
reclassify the documents, but we argue that this decreases model utility.
Instead, we use similarity scores to reclassify the documents into the next
best class. We refine the model further by ensuring the privacy guaran-
tee of the unforgotten class by making sure it is indistinguishable from
the remaining classes. Additionally, we introduce edge/relation unlearn-
ing to refine this process. The current state-of-the-art method for edge
unlearning, called GNNDelete, decreases the predicted probability of an
unlearned edge to very close to 0 and assumes there is no latent rela-
tionship, which we argue decreases model utility. Instead, we refine this
assumption and forget only solely the information we want to forget.

1 Introduction

Deep learning models can recognize patterns in images, text, and other data
mediums and give accurate insights and predictions. Deep learning and neural
network models are formed by the composition of multiple non-linear transfor-
mations and can create more useful representations [1]. These representations
consist of latent features that are learned in representation learning from data
and/or supervision signals.

Many applications that use these learning models involve analyzing data
collected from individuals. This data is often sensitive and can include infor-
mation such as medical records, personal connections, and private activities.
Recent legislation, such as the California Consumer Privacy Act (CCPA) [2] re-
quire the so-called right to be forgotten [3]. This requirement requires companies
to take the necessary steps to achieve the erasure of personal data if requested.

1

Unlearning Mechanisms in Graph Models and Document Classification 2

Additionally, the data used for training models changes, and new data is used
to update the models continually.

Therefore, for both privacy and data quality reasons, there is often a need to
unlearn some part of the training data from an existing model, which may have
taken a significant amount of resources to train in the first place. This created
the strong motivation for the concept of machine unlearning [4], which achieves
the right to be forgotten efficiently without retraining the whole model from
scratch. Thus, a possible theoretical guarantee of an unlearned model is that it
is indistinguishable from a retrained model. New methods for unlearning have
emerged, but have many implications, such as decreasing the training data’s
privacy [17], to hurting the efficacy of the model itself [6].

Evaluating the success of an algorithm can be difficult, creating the need
for benchmarks to measure the knowledge and accuracy of the model. Two
of the most common benchmarks are Model Utility and Forget Quality [6] [7].
Model Utility measures how usable the model is after unlearning a point, and
Forget Quality is how well the model can learn specific information. Datasets
for unlearning algorithms are split into two sections: forget set and the retain
set. The forget set is a set of data points to test whether the specific knowledge
has been unlearned. The retain set is a set of data points to ensure the data
that is unrelated to the unlearned data is not forgotten.

2 Related Works

2.1 Graph Unlearning

Modeling data and information as graphs can capture the intrinsic intercon-
nections of the data naturally, which makes graphs a powerful way to represent
data. Compared to tabular data in standard databases, data modeled as graphs
has a richer representation, containing information not only within the data’s
attributes but also in the structures of the graphs (edge connections). Moreover,
unlike tabular data that has a fixed data schema, graphs are more flexible and
can more easily combine data of various formats from different sources.

Bourtoule et al. [25] proposed the SISA (Sharded, Isolated, Sliced, and Ag-
gregated) training approach that makes the unlearning process for general deep
learning models more efficient. The method divides the training data into mul-
tiple disjoint shards such that each data point is included in exactly one shard.
Then, there is a base model on each of these shards, which are trained sepa-
rately. This way, when a request for a training point to be unlearned is received,
we only need to retrain the affected model.

There have been proposals to adopt a similar strategy for graph unlearning.
Chen et al. [26] proposed a method called GraphEraser that first partitions the
graph based on community detection, similar to the “sharding” in SISA above,
and unlearning is performed only in the affected partitions. They also proposed
a learning-based aggregation method to combine the inference results from the

Unlearning Mechanisms in Graph Models and Document Classification 3

base models.
A fundamental issue with GraphEraser, and with the SISA approach in

general, is that the original neural network model is changed. The submodels
based on partial data can be inaccurate, and the edges between partitions are
discarded in training. Additionally, as the unlearning rate increases or if the
unlearning data is scattered in the graph, most (or even all) of the partitions
may have to be retrained, decreasing efficiency.

Cong and Mahdavi proposed GraphEditor [27] that provides a closed-form
solution for linear GNNs to guarantee deletion, including node deletion, edge
deletion, and node feature update. They also proposed additional fine-tuning
that can improve predictive performance. A major issue with GraphEditor is
that it only applies to linear structures, and therefore it can not be used to
perform unlearning on nonlinear GNN models (which are the most common
type of GNN).

Chien et al. [28] proposed a certified graph unlearning method for GNNs.
The method provides a theoretical guarantee for approximate graph unlearning,
but their method is limited to certain GNN structures; it requires future work
to make it applicable to GNNs in general.

In this work, we look at two aspects of graph unlearning: class unlearning
and edge unlearning. For class unlearning, we specifically look at document
classification models. Unlearning can be extremely important for document
classification models, as these documents can contain a large amount of per-
sonal data. We consider an adversary who has black-box access to the model,
meaning they can observe the input and the output, but not the process of the
algorithm. Thus, the model should remove any aspects of the document that
may correspond to the forgotten class. For example, say the unlearned class is
“bank documents,” and the adversary uses one as an input. The classification
process should result in an output that is not “bank documents” (e.x. it could
return “formal document”).

The model is crucial to the adversary as they do not have the capabilities to
comprehend and classify the document themselves. This could occur for multiple
reasons: the document has redacted information, meaning sensitive information
is obscured making interpretation hard; technical jargon is used, making the
language of the document too complex for the adversary to understand; there
are too many documents making manual reading impractical. By finding the
class label, the adversary can exploit potential vulnerabilities in the document.
Thus, the goal of our model is to unlearn a certain class. By removing a category,
the privacy of these data points can increase, but we make the trade-off of a
decrease in the model’s accuracy. It serves that there is a need to find a balance
between model efficacy and data privacy for these models.

For edge unlearning, we consider a different problem. Edges represent any
kind of (possibly private) interaction/relation between two nodes in graphs.
Edge unlearning is important for protecting privacy in graph-structured data,
such as graph neural networks, as individuals may request to conceal certain
private connections from an already trained graph neural network model.

Unlearning Mechanisms in Graph Models and Document Classification 4

2.2 Document Classification

Document classification is the process of assigning documents to different cate-
gories or classes, to help with the management, storing, and analyzing. For our
scenario, a document is an item of content, that contains information of a spe-
cific category (e.g. a letter or medical record). Document classification serves as
one of two ways in helping to organize large texts/documents [10]. This provides
a balance between technical feasibility, practical applicability, and user-centric
impact, making it the state-of-the-art technique for long document analysis.

Document classification can be thought of as two categories, image classifi-
cation and text classification. Classifying images into different categories works
with high efficacy using deep residual learning [8]. We focus on the idea of text
classification. Text classification is a large task in natural language processing
(NLP) [9].

DNNs (Deep Neural Networks) [11] are commonly used for NLP. These are
a subset of machine learning methods, based on the ideas of neural networks.
The term ”deep” refers to the use of multiple layers within the network, which
allows for the model to understand problems better, and provide optimal so-
lutions to complex issues. One of the most commonly used methods for NLP
is word embedding [5]. This is a pre-processing stage where each input token
is transformed into some fixed-sized, dense vector, which is typically called a
“word embedding.” Figure 1 demonstrates a simple example of word embedding
where the vector is reduced from 7D to 2D:

Figure 1: Dimensionality Reduction from 7D to 2D Through Word Embeddings

Word embeddings are then used for training the model, and also in the
model’s inference stage. The most trivial way to employ the tactic is by ap-

Unlearning Mechanisms in Graph Models and Document Classification 5

pending an embedding layer into the DNN structure.
Through the use of algorithms, the field has been able to use document

classification for numerous ideas, such as classification for non-native handwrit-
ten characters [12], classifying mathematical documents [13], and even financial
documents [14].

Unlearning algorithms mainly conform to image classification problems, with
little research being done on document classification models. Kang et al. [15]
find a new approach for machine unlearning with documents through text clas-
sification, the first and only of the field. The paper explores a scenario where a
user wants to delete a few categories of documents. For this task, the categories
are deleted, and the documents from those classes are randomly distributed
throughout the remaining labels.

Though the paper finds the model to work with high accuracy after unlearn-
ing in such a method, one could argue otherwise. The authors of the paper find
high accuracy for the documents in the retain set, yet there is still a decrease
in the model utility. In addition, a user would find an accuracy near zero for
documents in the forget set, making the classification nearly useless for practical
purposes. This occurs as the documents are randomly sorted throughout the
other categories. Not only could this negatively impact documents that would
be sorted in the forgotten category, but could even result in the misplacement
of documents in the other categories. Thus, in our research, we aim to fix this
problem by sorting the documents into the next best classes by finding similar-
ities within the other labels.

We consider a graphical approach for our document classification model;
specifically, we use a graph-of-docs [16]. Here, nodes are either documents or
keywords, and there are three different kinds of edges between the nodes: “CON-
NECTS” exists between two keywords if they coexist, “INCLUDES” between
a document and keyword if the document contains the word, and “SIMILAR”
between two documents if they share any keywords. The “SIMILAR” edge has
a corresponding score assigned to it, depending on the number of words the two
documents share. Figure 2 demonstrates the structure of the model.

2.3 Edge Unlearning

The two current state-of-the-art edge unlearning methods for GNNs are GN-
NDelete [29] and Unlink to Unlearn [30]. In GNNDelete [29], let (u, v) be an
edge to be unlearned. For each node in the l-hop enclosing subgraph around
nodes u and v, it inserts an MLP layer ϕ called the deletion operator, and the
layer-l embedding of that node is changed from hl to ϕl(hl). The embeddings
of other nodes remain unchanged. The authors propose two loss functions to
train the parameters in the deletion operator ϕ, namely the Deleted Edge Con-
sistency (DEC) loss and the Neighborhood Influence (NI) loss. The DEC loss is
to minimize the difference between the predicted probability of forgotten (i.e.,
unlearned) edges euv and that of randomly-chosen node pairs. The NI loss is
based on the idea that removing edge should not affect the predictions of its
enclosing subgraph. It guides the unlearned embedding to match the original

Unlearning Mechanisms in Graph Models and Document Classification 6

Figure 2: Graph-of-Docs Model Representation

one for prediction utility.
In Unlink to Unlearn [30], the authors use a minimalist approach that does

nothing to the GNN model and training, but only removes an unlearned edge
during inference. The authors show by experiments that UtU delivers privacy
protection as effectively as a retrained model does while preserving high accuracy
in downstream tasks.

The major problem with GNNDelete [29] is its key assumption in the Deleted
Edge Consistency loss that the predicted probability of a forgotten (i.e., un-
learned) edge (u, v) and that of a hypothetical edge of a randomly-chosen node
pair should be about the same. Since nodes u and v had an edge between them
in the first place, the probability of them being connected should be higher than
the probability of two random nodes in the graph being connected, whether or
not the edge (u, v) exists. (This is the underlying principle of link prediction
and recommender systems.) Thus, GNNDelete has the issue of erasing too
much information by using the deletion operator, which compromises the model
performance.

The authors of Unlink to Unlearn [30] recognize this problem. However, their
proposal goes to the other extreme. They do not change the GNN model or its
parameters, but rather “unlink” the unlearned edges so that they are not used
during message passing or during forward propagation of the model (making
a prediction). This method ignores the insight of how much the GNN model

Unlearning Mechanisms in Graph Models and Document Classification 7

parameters encode the graph data, in particular the structural information of
the graph. This problem is not obvious when the amount of unlearned data
is small compared to the entire graph (which is the case in the experiments
of [30]) or when the unlearned data has redundant patterns elsewhere in the
retained graph. If a good portion of edges are unlearned, or if the unlearned
edges contain critical patterns, then the GNN model parameters will have to be
changed. This fact is clear as is the case with the golden standard of machine
unlearning (training the retained graph from scratch).

3 Methods

3.1 Document Classification

We use the Graph-of-Docs model for our classification and the 20newsgroup
dataset. This dataset contains over a hundred thousand documents over 20
classes. We utilize the key words of a document for its classification. The model
creates a class importance for each word node based on the distribution of the
documents containing each keyword. Using such a classification process, they
are classified similarly to documents with the same important words, indicating
similar or same categories. For example, if a keyword is contained in 3 docu-
ments in Class A, 1 in Class B, and 1 in Class C, the class importance would
be [0.6, 0.2, 0.2]. Using these class importances, future documents are classified
according to their keywords. In essence, each keyword “votes” for a specific
class. Figure 3 illustrates an example of this classification. We consider a case
where the purple words all have a high importance number for the green class,
and the blue words have a high importance for the red class. A new document
being classified contains 3 blue nodes and 1 purple node, classifying it as the
red class as it aligns more closely with the features of that category.

Now, we look at the problem of unlearning a class. Having the model forget
the class entails no document should be mapped to it. Thus, to unlearn a class,
the model removes its importance from keywords, by setting it to 0. Going
back to our example above, if we unlearn Class B, the new distribution of class
importances would become [0.75, 0, 0.25]. Through this method, no document
can ever be classified as Class B as no keyword has any recognition to it. In
other words, no node is ”voting” for the unlearned class. We argue this fixes the
problem of randomness in current algorithms, as the document is still classified
similarly to the other nodes.

We now consider the privacy guarantee of our model and the indistinguisha-
bility of the unlearned class from the remaining classes. We utilize two concepts
for this. The first is transforming the graph’s embeddings [17]. We reduce
the graph embeddings by removing keywords that are of great importance to
the unlearned class. By removing such words from the model, we reduce its
dimensionality, which helps “smudge” the lines between the different classes.
Specifically, by removing word nodes with a high importance to the unlearned
class, we remove features that were mapping the documents under this label.

Unlearning Mechanisms in Graph Models and Document Classification 8

Figure 3: Document Classification Example

For our other other algorithm, we use feature smoothing [18]. Feature
smoothing is the notion of making different classes less distinct by modifying
feature values to make them more consistent. This makes each keyword less
likely to “favor” a specific class, which removes the lines of distinction between
the different categories. Specifically, we utilize Laplace Smoothing, where we
add a constant to each of the importances for the class, and re-average the
values so they are more similar. The formulation for Laplace Smoothing is as
follows:

P (wi|C) =
imp(wi, C) + α

1 + α · |V |
,

where P (wi|C) is the new importance of the class wi for the class C, imp(wi, C)
is the original importance for the wi, α is the constant we add to all importances,
and |V | is the total number of classes in our dataset. Together, these two meth-
ods decrease the distinction of the unlearned class from the remaining classes,
thus increasing its indistinguishability. To measure the indistinguishability of
our model, we measure the KL divergence and observe the t-SNE representation.
We define KL divergence as the following:

DKL(P ||Q) =
∑
x∈X

P (x) log
P (x)

Q(x)
,

Unlearning Mechanisms in Graph Models and Document Classification 9

where P is the distribution of the unlearned class, Q is the overall distribution,
X is the number of total classes, P (x) is the probability of x under the distri-
bution of P and Q(x) is the probability of x under the distribution of Q. The
closer DKL(P ||Q) is to 0, the more indistinguishable the two are. Thus, our
KL divergence measures the probability of the unlearned class to the overall
distribution of the documents.

3.2 Edge Unlearning

In light of the considerations above, we look into the impact that any number of
forgotten edges has on GNN model parameters. GNNs are used for representa-
tion learning from graphs. The learned representation is the node embeddings,
which can be used for downstream tasks. The node embeddings have two fac-
tors, which are the GNN’s parameters and node features & graph structure.
When forgetting a set of edges, it is clear how the second factor (node features
and graph structure) changes. We want to understand how the first factor (the
GNN’s parameters) changes. As discussed above, Unlink to Unlearn [30] does
nothing to the first factor, while GNNDelete [29] adds a deletion layer with an
improper loss function that erases too much information.

The key question is how much information the GNN parameters “encode”
knowledge about the edges/relations that are to be learned. The autoen-
coders [31] give some hint to this problem. A well-trained decoder, given the raw
graph data/structure and learned GNN parameters, can “predict” (reflect on)
the graph structure (i.e. the existence of an edge, including unlearned edges).
We examine the degree to which the learned graph representation (node em-
beddings) GR from the raw data (G) and GNN parameters (W) encodes such
structural information, as illustrated in Figure 4. We let the decoder be a multi-
layer perceptron (MLP) model, which predicts the probability of an edge (u, v)
given the embeddings from GR.

Figure 4: Illustrating the idea of unlearning edges

Unlearning Mechanisms in Graph Models and Document Classification 10

We think that even though the MLP may not be able to perfectly remember
the knowledge of every edge, if an edge (u, v) is removed from the training data
(shown as G′ and W ′ at the bottom part of Figure 4), the MLP’s predicted
probability of (u, v) being an edge decreases.

We first train the MLP using a random subset of edges, while fixing the
parameters of the GNN. We can now predict the probability of every edge or
non-edge in the graph. We perform several iterations of model editing [32] for
each edge to be unlearned by decreasing the predicted probability of that edge
in the MLP. However, we fix the parameters of the MLP this time, so the model
editing only applies to the GNN parameters. This is illustrated with the red
arrow in Figure 4. The goal is that W will approach W ′ as model editing edits
the output of the MLP with GR as input.

3.2.1 Stopping Criteria

Our method of editing the GNN model to lower the probability of edge probabil-
ities between the endpoints of unlearned edges is an iterative procedure. Thus,
the natural question is when we should stop the iterative model editing process,
or in other words how low the edge probabilities should be; the stopping criteria.

3.2.1.1 The Local Retraining Method

The gold standard of machine unlearning is to retrain the whole model from
scratch without the unlearned dataset, which is too computationally expen-
sive. However, starting from the trained GNN model parameters before edge
unlearning, we can perform local retraining only for the nodes and their induced
subgraph in the neighborhood of unlearned edges, which is much more efficient
than retraining the whole graph from scratch.

As shown in experimental results, with this local retraining, the predicted
probability of an edge between the endpoints of an unlearned edge will ini-
tially decrease more sharply and slowly plateau. Thus, when our model editing
method in Section 3.2 decreases the probability of an edge between the endpoints
of an unlearned edge too much, the local retraining, which can be performed
concurrently, would serve as an indicator for the stopping of edge-probability
decrease and hence the stopping of model editing.

In GNNs, the receptive field of a node refers to the set of nodes that influence
the node’s representation during the message passing process, i.e. the nodes that
contribute to the final feature representation of a node. The receptive field of
every node is the set of nodes within its L-hop neighborhood, and the edges in
that neighborhood are used for message passing.

Proposition 1. Let the parameter denoting the number of layers in the graph
neural network (GNN) be L, and let the set of the endpoints of unlearned edges
be Vu. Then only the training done over the nodes within L − 1 hops of Vu is
affected by the removal of unlearned edges.

Proof. This result follows from the recursive message passing of a GNN model
training within the L-hop node neighborhood. Thus, only the training of nodes

Unlearning Mechanisms in Graph Models and Document Classification 11

within L − 1 hops of either u or v for an unlearned edge (u, v) involves the
message passing done along edge (u, v), if it exists.

Suppose all the tasks used for training the GNN (including node/edge label
predictions) only used embeddings of the nodes more than L− 1 hops from Vu;
then, from Proposition 1, the GNN model will not need to be changed during
unlearning. Thus, we only need to consider the case where some training tasks
use the embeddings of nodes within L− 1 hops of Vu.

The iterative local retraining, which eventually would increase the edge prob-
ability when it is decreased too much by model editing, indicates when the
model editing through an edge-probability oracle should stop. The combination
of model editing and local retraining is an efficient way of edge unlearning for
graph neural network models.

3.2.1.2 Mutual Information Minimization

Consider the mutual information between the following two random variables:

• the part of the graph representation that is affected by the edges to be
unlearned (before unlearning them)

• the part of the graph representation that is affected by the absence of the
unlearned edges after they are removed.

Here, “representation” refers to the learned embedding of the subgraph that is
induced by the L− 1 hop neighborhood of Vu as defined in Proposition 1.

For the first variable, we use the original GNN parameters before unlearning,
because that represents the initial data. For the second variable, we use the
updated GNN parameters. Intuitively, the correlation (measured by mutual
information) between these two distributions should be minimized to achieve
unlearning.

Mutual information is difficult to estimate. We can apply a neural method
to minimize the mutual information between the two variables [24]. We use a
multilayer perceptron model (MLP) to simulate a function whose supremum is
the mutual information between random variables X and Z (as stated in the
two representations above). The samples of the distributions X and Z can be
derived by perturbing the attribute values of the L−1 hop neighborhood of Vu.

Then, by adding the mutual information estimated by the MLP model above
to the loss function in the training of the GNN while freezing the parameters of
the MLP, we minimize the mutual information between X and Z (represented
by I(X;Z)) through local retraining of the GNN (described in Section 3.2.1.1)
with an augmented loss function. We observe how the predicted probabilities of
an edge between the endpoints of unlearned edges change as the mutual infor-
mation minimization process proceeds. The model editing method in Section
3.2 stops when mutual information minimization does not further decrease edge
probabilities.

Unlearning Mechanisms in Graph Models and Document Classification 12

4 Initial Results

4.1 Document Classification

Our method of using a graphical approach for a document classification model
has an accuracy of 70% before any unlearning processes. We use this as a
baseline for how the accuracy of our model is affected by the unlearning pro-
cesses. Before the use of embedding transformations and Laplace smoothing,
the accuracy after unlearning for the retain classes becomes 71.2%. Current
state-of-the-art algorithms see the accuracy for the retain set drop to 61.9%,
indicating that our methods prevent a loss of model utility.

We tested multiple thresholds of 50%, 30%, 10%, and 5%, to see which
keywords we remove from our graph. Figure 5 illustrates how the KL-Divergence
changes among these thresholds. We measure the probability of the document
under the distribution of the unlearned class to the overall distribution. The
lowest value we test is 5%, as this is random chance. For this value, we see a
KL-divergence of 0.3707. Here, the accuracy for the retain set is 69.49% which
is a small decrease from the original 70%, but still better than current state-of-
the-art algorithms.

Figure 5: KL-Divergence vs. Importance Threshold

We now test the effect of Laplace smoothing in our algorithm. We test our
values while keeping our importance threshold at 0.05. We test the following
values for α: 1, 2, 5, and 10. Figure 6 illustrates the effect on accuracy and
KL-divergence. We find α = 2 to be the optimized value as it has an accuracy
of 63.29 for the retain set, which is still above the accuracy of current methods,
while keeping a KL-divergence near 0.0996, indicating little distinguishability
of the unlearned class from the remaining labels.

Unlearning Mechanisms in Graph Models and Document Classification 13

Figure 6: KL-Divergence and Model Accuracy vs. Smoothing Value

Figure 7 displays the t-SNE visualization of the unlearned class (in red)
against the remaining classes. We set α = 2 and the importance threshold at
0.05 for this distribution.

Figure 7: t-SNE Visualization

4.2 Edge Unlearning

We coded a graph convolutional network (GCN), a commonly used type of
GNN, and experimented on it with the Cora dataset. We ensure the utility of
the GCN on the dataset by predicting node labels, which are the class of papers

Unlearning Mechanisms in Graph Models and Document Classification 14

in the context of the Cora dataset.

(a) Prediction Accuracy (b) Edge probabilities

Figure 8: Experiment results on Edge Unlearning

Figure 8a displays the accuracy of node label predictions before and after
our edge unlearning process (represented by the first two bars) and the accuracy
of the edge-probability oracle (represented by the third bar). We can see that
the node label prediction accuracy before and after are both about 80%, so
the model maintains good utility. The edge oracle has almost 90% accuracy,
indicating that the GCN model can preserve the structural information well.

Figure 8b displays, for three random edges in the graph, the original pre-
dicted probability of the edge before unlearning it (the dark blue bar), the gold
standard probability after unlearning (light blue bar), the edge probability af-
ter our model-editing unlearning method (pink bar), and the predicted edge
probability between random pair of nodes (red).

From the results, it becomes evident that unlearning an edge only slightly
decreases the probability of an edge existing between the nodes of the edge
(the gold standard probabilities are only slightly smaller than the original).
Our model-editing method gives results that are close to the gold standard. In
contrast, the edge probability of a random node pair is typically close to 0, as
many/most real world graphs are sparse. The previous work GNNDelete [29]
decreased the edge probability of an unlearned edge to that of a random node
pair, which deviated from the gold standard of unlearning and compromised
model utility.

In Figure 9, we verify our idea of using local retraining to provide a reference
point for the stopping criteria of our model editing unlearning. The graph
displays the average probability of edges for two sets of random unlearned edges,
with an increased amount of local retraining. It can be seen that, in general, the
predicted edge probabilities initially drop relatively sharply and slowly flattens
out. Thus, we can use a combination of local retraining and model editing with
the edge oracle.

Unlearning Mechanisms in Graph Models and Document Classification 15

Figure 9: Local Retraining

5 Future Works

In the future, we have many aspects we want to accomplish. For document clas-
sification specifically, we want to improve the privacy guarantee of our model,
by fixing or changing the algorithms we use. We also want to account for the
trade-off between model utility and the indistinguishability of the unlearned
class. We would like to create a baseline comparison for our algorithm to see
exactly how much it adds indistinguishability for the unlearned class. Addition-
ally, we want to test our algorithms on bigger datasets, such as Neo4j, to see
how they play out on a larger-scale network. Furthermore, we want to compare
how unlearning the class label compares to learning all the documents within
that class and measure the effect on model utility, and its ability to improve
our model’s privacy guarantee. Lastly, we aim to transform our research into
a more practical and everyday use by creating an LLM. The goal of our LLM
would be to redact certain information in a document that may relate to the
unlearned class, and output the remaining text to the user. We believe that such
a model could be utilized by users who may want to protect their information
from possible privacy threats.

For edge unlearning, we will extend the local retraining process presented
in Section 3.2.1.1 by further incorporating the local retraining into the model
editing based unlearning method. We also plan on finalizing and finishing the
implementation of the mutual information based approach and incorporating
it into the main model editing method. Additionally, we will experiment with
how much data is being unlearned and observe how that affects edge proba-
bilities, stopping criteria, and the utility of the retained model. We will also
experiment with larger datasets. Finally, we plan on studying the connection
between edge/relation unlearning and LLM unlearning, in which certain rela-
tions/associations between entities will need to be unlearned. In particular, we

Unlearning Mechanisms in Graph Models and Document Classification 16

will further study the intrinsic connection between edge unlearning and unlearn-
ing in document classification.

References

[1] Yoshua Bengio, Aaron Courville, and Pascal Vincent. Representation
Learning: A Review and New Perspectives. IEEE Transactions on Pattern
Analysis and Machine Intelligence. Volume 35, Issue 8, 2013, pp 1798–1828.

[2] Bill text. https://leginfo.legislature.ca.gov/faces/

billTextClient.xhtml?bill_id=201720180AB375. 2024.

[3] S. Shastri, M. Wasserman, and V. Chidambaram. The seven sins of
personal-data processing systems under GDPR. USENIX HotCloud. 2019.

[4] Y. Cao and J. Yang. Towards making systems forget with machine un-
learning. 2015 IEEE Symposium on Security and Privacy. IEEE, 2015, pp.
463–480.

[5] Min Chen, Zhikun Zhang, Tianhao Wang, Michael Backes, Mathias Hum-
bert, and Yang Zhang. When Machine Unlearning Jeopardizes Privacy.
arXiv preprint arXiv:2005.02205, 2021.

[6] Ruiqi Zhang, Licong Lin, Yu Bai, and Song Mei. Negative Preference Op-
timization: From Catastrophic Collapse to Effective Unlearning. arXiv
preprint arXiv:2404.05868, 2024.

[7] Pratyush Maini, Zhili Feng, Avi Schwarzschild, Zachary C. Lipton, and
J. Zico Kolter. TOFU: A Task of Fictitious Unlearning for LLMs. arXiv
preprint arXiv:2401.06121, 2024.

[8] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep Residual
Learning for Image Recognition. arXiv preprint arXiv:1512.03385, 2015.

[9] Zhen Li, Xiting Wang, Weikai Yang, Jing Wu, Zhengyan Zhang, Zhiyuan
Liu, Maosong Sun, Hui Zhang, and Shixia Liu. A Unified Understanding of
Deep NLP Models for Text Classification. arXiv preprint arXiv:2206.09355,
2022.

[10] Dimitrios Tsirmpas, Ioannis Gkionis, Georgios Th. Papadopoulos,
and Ioannis Mademlis. Neural Natural Language Processing for Long
Texts: A Survey on Classification and Summarization. arXiv preprint
arXiv:2305.16259, 2024.

[11] Jurgen Schmidhuber. Deep Learning in Neural Networks: An Overview.
arXiv preprint arXiv:1404.7828, 2014.

[12] F.A. Mamun, S. A. H. Chowdhury, H. Sarker, J. E. Giti. Classification of
Non-native Handwritten Characters Using Convolutional Neural Network.
arXiv preprint arXiv:2406.04511, 2024.

https://leginfo.legislature.ca.gov/faces/billTextClient.xhtml?bill_id=201720180AB375
https://leginfo.legislature.ca.gov/faces/billTextClient.xhtml?bill_id=201720180AB375

Unlearning Mechanisms in Graph Models and Document Classification 17

[13] Patrick D.F. Ion and Stephen M. Watt. Using General Large Lan-
guage Models to Classify Mathematical Documents. arXiv preprint
arXiv:2406.10274, 2024.

[14] Anjanava Biswas and Wrick Talukdar. FINEMBEDDIFF: A COST-
EFFECTIVE APPROACH OF CLASSIFYING FINANCIAL DOCU-
MENTSWITH VECTOR SAMPLING USINGMULTI-MODAL EMBED-
DING MODELS. In International Research Journal of Modernization in
Engineering, Technology and Science, pp. 6142-6152. IRJETS, 2024.

[15] Lei Kang, Mohamed Ali Souibgui, Fei Yang, Lluis Gomez, Ernest Valveny,
and Dimosthenis Karatzas. Machine Unlearning for Document Classifica-
tion. arXiv preprint arXiv:2404.19031, 2024.

[16] Giarelis, N., Kanakaris, N., Karacapilidis, N. (2020). On a Novel Represen-
tation of Multiple Textual Documents in a Single Graph. In Czarnowski,
I., Howlett, R., Jain, L. (eds) Intelligent Decision Technologies. IDT
2020. Smart Innovation, Systems and Technologies, vol 193., pp. 105-115.
Springer, Singapore, 2020.

[17] Hailong Cao, Teijun Zhao. Word Embedding Transformation for
Robust Unsupervised Bilingual Lexicon Induction. arXiv preprint
arXiv:2105.12297, 2021.

[18] Stanley Osher, Bao Wang, Penghang Yin, Xiyang Luo, Farzin Barekat,
Minh Pham, and Alex Lin. Laplacian Smoothing Gradient Descent. arXiv
preprint arXiv: 1806.06317, 2019.

[19] Oracle. 17 Use Cases for Graph Databases and Graph Analytics. https:
//www.oracle.com/a/ocom/docs/graph-database-use-cases-ebook.

pdf. Retrieved 2024.

[20] Lingfei Wu, Peng Cui, Jian Pei, Liang Zhao. Graph Neural Networks: Foun-
dations, Frontiers, and Applications. Springer Singapore, 725. 2022.

[21] Thomas N. Kipf and Max Welling. Semi-Supervised Classification with
Graph Convolutional Networks. 5th International Conference on Learning
Representations (ICLR 2017). 2017.

[22] Ragav Venkatesan and Baoxin Li. Convolutional Neural Networks in Visual
Computing: A Concise Guide. CRC Press. 2017.

[23] Jure Leskovec. Graph Representation Learning. Keynote talk at IEEE Big
Data. 2017.

[24] Mohamed Ishmael Belghazi, Aristide Baratin, Sai Rajeshwar, Sherjil Ozair,
Yoshua Bengio, Aaron Courville, Devon Hjelm. Mutual Information Neural
Estimation. Proceedings of the 35th International Conference on Machine
Learning, PMLR 80:531-540, 2018.

https://www.oracle.com/a/ocom/docs/graph-database-use-cases-ebook.pdf
https://www.oracle.com/a/ocom/docs/graph-database-use-cases-ebook.pdf
https://www.oracle.com/a/ocom/docs/graph-database-use-cases-ebook.pdf

Unlearning Mechanisms in Graph Models and Document Classification 18

[25] Lucas Bourtoule, Varun Chandrasekaran, Christopher A. Choquette-Choo,
Hengrui Jia, Adelin Travers, Baiwu Zhang, David Lie, Nicolas Papernot.
Machine Unlearning. 42nd IEEE Symposium of Security and Privacy. 2021.

[26] Min Chen, Zhikun Zhang, Tianhao Wang, Michael Backes, Mathias Hum-
bert, Yang Zhang. Graph Unlearning. ACM SIGSAC Conference on Com-
puter and Communications Security. 2022.

[27] Weilin Cong and Mehrdad Mahdavi. GraphEditor: An efficient graph rep-
resentation learning and unlearning approach. 2023.

[28] Eli Chien, Chao Pan, and Olgica Milenkovic. Certified graph unlearning.
NeurIPS 2022 Workshop: New Frontiers in Graph Learning. 2022.

[29] Jiali Cheng, George Dasoulas, Huan He, Chirag Agarwal, Marinka Zitnik.
GNNDelete: A General Strategy for Unlearning in Graph Neural Networks.
The Eleventh International Conference on Learning Representations (ICLR
2023). 2023.

[30] Jiajun Tan, Fei Sun, Ruichen Qiu, Du Su, Huawei Shen. Unlink to Unlearn:
Simplifying Edge Unlearning in GNNs. The Web Conference. 2024.

[31] Mark A. Kramer. Nonlinear principal component analysis using autoasso-
ciative neural networks. AIChE Journal. 37 (2): 233–243. 1991.

[32] Anton Sinitsin, Vsevolod Plokhotnyuk, Dmitriy Pyrkin, Sergei Popov,
Artem Babenko. Editable Neural Networks. 8th International Conference
on Learning Representations (ICLR 2020). 2020.

[33] The Iris dataset. https://archive.ics.uci.edu/dataset/53/iris.

[34] The synthetic Iris dataset. https://www.kaggle.com/datasets/

drrayislam/50k-synthetic-iris-data-set-49736-observations.

[35] The Cora dataset. https://ieee-dataport.org/documents/cora.

https://archive.ics.uci.edu/dataset/53/iris
https://www.kaggle.com/datasets/drrayislam/50k-synthetic-iris-data-set-49736-observations
https://www.kaggle.com/datasets/drrayislam/50k-synthetic-iris-data-set-49736-observations
https://ieee-dataport.org/documents/cora

	Introduction
	Related Works
	Graph Unlearning
	Document Classification
	Edge Unlearning

	Methods
	Document Classification
	Edge Unlearning
	Stopping Criteria

	Initial Results
	Document Classification
	Edge Unlearning

	Future Works

