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Abstract

Spatial clustering is a crucial field, finding universal use across criminology, pathology, and urban

planning. However, most spatial clustering algorithms cannot pull information from nearby nodes

and suffer performance drops when dealing with higher dimensionality and large datasets, making

them suboptimal for large-scale clustering. To improve upon this, we develop ConstellationNet, a

convolution neural network(CNN)-graph neural network(GNN) framework that leverages the em-

bedding power of a CNN, the neighbor aggregation of a GNN, and a neural network’s ability to deal

with batched data to improve spatial clustering and classification with graph augmented predic-

tions. ConstellationNet achieves state-of-the-art performance on both supervised classification and

unsupervised clustering across several datasets, outperforming state-of-the-art classification and

clustering while reducing model size and training time by up to tenfold and improving baselines by

10 times. Because of its fast training and powerful nature, ConstellationNet holds promise in fields

like epidemiology and medical imaging, able to quickly train on new and limited data to develop

robust responses.

1 Introduction

Clustering, the grouping of data points based on similarity, has remained a crucial topic across

many fields, finding applications in search engines[23, 29], medical imaging[31, 27], and anomaly

detection[19, 24]. While clustering can be conducted on almost any dataset, spatial clustering,

which focuses on clustering data points in space, acts as the primary and most crucial cluster-

ing method due to most datatypes, images, or three-dimensional molecular structures being able

to be vectorized into spatial contexts. Traditional spatial clustering methods, like K-means or

dbscan, have been widely used for processing and classifying large-scale spatial data, and recent

advancements have improved density-based clustering while introducing spectral and covariance-

based clustering[3, 51]. While these methods have improved clustering robustness significantly,

most methods still often face three significant challenges when dealing with high-dimensional data
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and large datasets:

(1) The Curse of Dimensionality. Since data becomes sparser in higher dimensions, models

have a harder time clustering these points based on distance.[2, 41]

(2) Computational Inefficiency. Due to most models having around O(n2) time complexity

and being superpolynomial in worse-case scenarios, larger datasets become much harder for

clustering methods to handle.[12]

(3) Effetive Use of Neighborhood Information. Since most spatial clustering models are

based on the distance between points alone, they do not consider points’ relations with each

other, especially in dense groups, which can weaken their power when dealing with irregular

data.

In a different realm, with the recent rise in machine learning, many different types of neural

networks have been developed on various mediums, like images or languages, with some work being

done into unsupervised classification, which can be analogized to clustering[36, 45]. However, due

to only operating on the features of a single data point, these don’t act similarly to clustering and

suffer from the same limited scope. Graph Neural Networks (GNNs) have emerged as a power-

ful tool for learning from graph-structured data by leveraging information from both nodes and

edges[6], showing promising results in various applications such as social network analysis[17], drug

discovery[8], and human object interaction[37]. Due to their ability to aggregate information from

neighbors and edges, GNNs have been applied to graph clustering tasks and have the potential to

be used for spatial clustering tasks. However, Their primary strength of extrapolating informa-

tion from edge and neighbor data restricts their application to graph-structured data, constrained

primarily by the absence of edges between nodes in spatial data.

To address these challenges, this paper introduces ConstellationNet, a novel CNN-GNN spatial

clustering framework designed to effectively and quickly cluster high-dimensional and large-scale

spatial data. By integrating Convolutional Neural Networks (CNNs) with Graph Neural Networks

(GNNs), ConstellationNet leverages the local feature extraction of CNNs and the neighborhood

aggregation of GNNs, allowing the model to effectively extrapolate clusters of arbitrary shape and

density. By constructing a weighted K-Nearest Neighbors (KNN) graph from spatial data, the

model creates graph data from spatial data, using the GNN’s unique aggregation to counteract

the curse of dimensionality on created edges. To better distinguish features, ConstellationNet

introduces an innovative CNN-GNN data-passing mechanism, passing the CNN’s output to the
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GNN, which gives the GNN more distinguishable features to cluster on, improving performance

and power. Additionally, ConstellationNet incorporates the Deep Modularity Network (DMoN)

operator and minibatching as further enhancements[42][20]. The DMoN operator provides an un-

supervised pooling operator that optimizes cluster assignments and a loss, facilitating end-to-end

clustering without requiring labels and mimicking traditional spatial clustering behavior. Further-

more, by processing subsets of the graph, ConstellationNet maintains high clustering accuracy

while enabling scalability to larger datasets via more computational efficiency. In both supervised

and unsupervised contexts, ConstellationNet achieves superior clustering performance compared to

state-of-the-art methods, improving baselines by up to 10 times while beating state-of-the-art with

up to tenfold reductions in parameters and training time.

This paper’s contributions are summarized as follows:

• Algorithm: We propose ConstellationNet, a new framework that integrates CNNs and GNNs

to perform spatial clustering on high-dimensional, large-scale datasets. We demonstrate the

methodology for combining edge construction techniques with GNNs, enabling the application

of graph-based learning methods to non-graph spatial data.

• Extension: We extend several graph-based and image-based methods to a spatial context,

proving their viability and potential for future use in the area.

• Evaluation: We perform extensive experiments across several datasets and ablation studies

to demonstrate the performance of each part of the framework, achieving state-of-the-art

results in both supervised and unsupervised contexts without lower investments in memory

and time.

2 Background

2.1 Spatial Clustering

Spatial clustering aims to group spatial data points based on location and distance, uncovering

structures within spatial datasets. Traditional methods have been broadly categorized into centroid-

based, density-based, and distribution-based approaches [21]. Centroid-based methods, such as K-

means [33], partition data into a predefined number of clusters by minimizing the distance between

data points and cluster centroids. Density-based methods like DBSCAN [16] identify clusters as
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areas of high point density. Distribution-based methods assume data are generated from a mixture

of underlying probability distributions and clusters as such[38].

Recent research in spatial clustering has focused on enhancing traditional methods and devel-

oping new algorithms. New algorithms include spectral Clustering [34], which uses eigenvectors

of a similarity matrix to perform dimensionality reduction before clustering, and Deep learning

approaches like Deep Embedded Clustering (DEC) [46] which learns feature representations and

cluster assignments. Improved baselines include OPTICS[4] and ST-DBSCAN [7], density-based

methods that address the limitation of DBSCAN in detecting clusters with varying density. How-

ever, these new methods still ultimately suffer from the same curse of dimensionality due to the

inherent lack of separation that high dimensional data creates, leading to worse performances on

datasets with higher dimensionality, like STL and CIFAR.

2.2 Graph Neural Networks

Figure 1: A visualization of a GNN transform function[6].

Graph neural networks (GNNs) are

a class of neural networks specifi-

cally designed to perform inference

on data described by graphs. Unlike

traditional neural networks, which

use a series of transforms on the in-

formation expressed through a vec-

tor, GNNs instead process similar

vector data that describes graph in-

formation, using neural networks to

transform their features, as in fig. 1.

This transformation happens to node features, edge features, and graph information, acting

similarly to other neural networks in highlighting features and predicting properties. However, due

to the connected nature of a graph, GNNs are much more versatile and able to aggregate information

from different parts to update representations. This can be done in predictions, where message

passing allows edge embeddings to predict node classifications and vice versa, or in training, where

each node’s representation is updated by combining its features with the aggregated information

from its neighbors, allowing the network to learn localized patterns within the graph [25].

Besides the basic GNN, several GNN architectures have been proposed, including Graph Con-
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volutional Networks (GCNs) [25], Graph Attention Networks (GATs) [43], and Graph Isometric

Networks [48]. These models differ primarily in how they aggregate information from neighboring

nodes. GCNs use a localized approach to aggregate information with convolutional operations based

on a convolution neural network, GATs introduce attention mechanisms that factor in edge weights

to assign weights to neighbors and create selected aggregations, and GINs use a Weisfeiler-Lehman

graph isomorphism test and a separate multilayer perception to aggregate data.

In spatial clustering, GNNs have had somewhat limited applications to the topic. Currently,

most research into applying GNNs to spatial clustering has been focused on cell transcriptomics,

with most methods establishing the construction of a graph through distance-based edge genera-

tion. We highlight two papers discussing the topic of applying GNNs toward spatial clustering:

Learning Hierarchical Graph Neural Networks for Image Clustering and Cell Clustering for Spa-

tial Transcriptomics Data with Graph Neural Networks[47][30]. Graph Neural Networks for Image

Clustering establishes several precedents for this paper, mainly using K-Nearest Neighbors for graph

creation. Additionally, this paper demonstrates the use of graph neural networks in spatial cluster-

ing, presenting a concrete base to build on top of. Cell Clustering for Spatial Transcriptomics and

other papers further demonstrate the potential of using GNNs within spatial data and introducing

dimensionality reduction to enhance clustering capability.

3 Methods

This section describes the Preliminaries and architecture of ConstellationNet. The main libraries

used are PyTorch and PyTorch Geometric.

3.1 Preliminaries

3.1.1 Dataset Construction

To transform a spatial dataset into a graph for clustering, all images from the dataset are extracted

and turned into one-dimensional vectors of values based on the process used in PECANN[50]. For

instance, a single image in MNIST is transformed into a shape (1, 728) vector with the 728 values

corresponding to the pixel values concatenated. Each data point is then treated as a node, and the

entire dataset is treated as a graph, allowing the node feature array to be created by stacking all

images. Once a node feature array is obtained, a K-nearest neighbors algorithm is run on the data

with a varying number of neighbors, denoted as the K value and an edge index is created based
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on the indexes returned from the K-nearest neighbors. An additional edge weight array is then

created by inverting the distance between each edge created by the K-nearest neighbors. The data

transformation process is seen in fig. 2.

Figure 2: The dataset transformation pipeline visualized on six samples from the MNIST dataset,

moving from images to nodes on a graph[14].1

3.1.2 Deep Modularity Network operator

To define a loss that ConstellationNet can train on during unsupervised clustering, the Deep Mod-

ularity Network (DMON) operator introduced by Google Research is extended to a spatial appli-

cation, defined as the following[42]:

LDMon(C;A) = − 1

2m
Tr(C⊤BC) +

√
k

n

∥∥∥∥∥∑
i

C⊤
i

∥∥∥∥∥
F

− 1

Functioning as a pooling mechanism, the DMON operator integrates a differentiable clustering

module that optimizes clustering assignments within the GNN framework through spectral modu-

larity maximization, which seeks to maximize modularity based off of edge distribution differences

between clusters and random distributions. The DMoN operator uses collapse regularization, a

relaxed constraint on the soft clustering assignments, to prevent trivial assignments without com-

promising the clustering objective.

Besides acting as a clustering and pooling function, the DMoN operator provides the main

unsupervised losses that guide the framework during unsupervised training, being the spectral loss

and collapse regularization loss that the operator returns. Besides these losses, ConstellationNet

employs two additional auxiliary losses to improve model performance: orthogonality loss and

1Self-made figure, citation is for MNIST images.
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clustering loss. Orthogonality loss maximizes orthogonality between rows and columns in weight

matrices, improving model uniqueness, while clustering loss attempts to balance cluster sizes.

3.1.3 CNN Embedding

Enabling GNNs and baselines to better extrapolate features and grouping clusters closer together,

CNN embedding functions as a feature extractor through magnifying certain spatial features[28].

The extracted features are then pooled and projected into a lower-dimensional space via a fully

connected layer, resulting in embeddings that serve as more distinct node features in the graph.

CNN embedding can be done in two ways: training a CNN to classify and then removing its

fully connected layer to create an embedding model, or specifically training an embedding model

via projection losses like triple loss[15]. A benefit of CNN embedding is the fact that it can be

done in both supervised and unsupervised manners, with triple loss frameworks being an example

of supervised frameworks and DINO and Simclr being unsupervised frameworks. [9, 11]

3.2 ConstellationNet

To address the issues with large-scale image clustering, We present a novel framework, Constella-

tionNet, that can be used both as a spatial embedding technique and as a standalone end-to-end

clustering pipeline. ConstellationNet consists of two similar frameworks: a dynamic framework for

classification and a static framework for clustering.
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Figure 3: The Supervised CNN-GNN pipeline, acting on the end product of dataset construction.

xi Represents a node’s attribute, and Eij denotes an edge between node xi and xj . C represents

the number of channels an image has, and Dn represents the size of the image.2

Supervised ConstellationNet is illustrated in fig. 3 above, consisting of a dynamic CNN-GNN

framework with a final DMoN pool. Given a constructed graph dataset with spatial features

X = (x1, x2, x3, · · · , xn) ∈ Rn×d2n , ConstellationNet iteratively samples large neighborhoods to

train on given a random cluster of nodes Xrand ∈ Rb×d2n where b is the batch size, resulting a final

feature array Xrand ∈ Rb·d·bn×d2n where bn is the neighborhood size and d is the neighborhood hop

depth. This feature array is then passed through the CNN embedder that reduces dimensionality

down to variable size, transforming the subsampled feature array into XCNN = (x21x
2
2, x

2
3, · · · , x2n) ∈

Rb·d·bn×G where G is the final dimension of the CNN and the starting dimension of the GNN. This

feature array and the subsampled portion of the edge index E ∈ R2×K·n are then passed into the

GNN, which aggregates information before the DMoN pool finally clusters. We choose to use a

residual edge index connection instead of building the edge index after reducing dimensionality with

the CNN to maintain more information, allow the GNN to better aggregate distilled features based

on original connections, and allow for dynamic updates. The main difference of this framework

is its dynamic nature, functioning as one collective model. Because this framework operates in a

supervised manner, both the CNN and GNN can be trained on supervised loss, allowing for abstract

representations of data that can enhance the functionality of overall model more than separately

training. To counteract the lack of connections between test data, we introduce graph-augmented

classification, allowing ConstellationNet to take advantage of its training to augment predictions

further. By connecting a test data point to the created train graph during prediction, Constellation

establishes links to known data, building upon the training process and utilizing its data like never

before.

2Self made figure
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Figure 4: The Unsupervised CNN-GNN pipeline, acting on the end product of dataset construction.

Data is passed through two transforms before the GNN, which are static in this case.3

The unsupervised ConstellationNet, seen in fig. 4 above, acts similarly to the supervised Con-

stellationNet, with a few changes. The same neighborhood sampling and residual edge connections

are kept, leading the same arrays Xrand ∈ Rb·dbn×d2n and E ∈ R2×K·n. However, unsupervised

ConstellationNet is not a singular model but a pipeline through which data is passed because the

DMoN operator and its losses are graph-focused, meaning that combined unsupervised training

doesn’t yield good results. Since an untrained CNN isn’t good at feature separation to enhance

clustering quality, spatial features are instead passed without neighborhoods through a large DINO

v2 model, an unsupervised model pretrained on imagenet via a student and teacher framework,

to transfer embed data into shape XDINO ∈ Rn×1024 [9]. To further improve the separation of

clusters, Uniform Manifold Approximation and Projection(UMAP) is run through the embedded

features to produce XUMAP ∈ Rn×G. While empirically like other clustering algorithms, UMAP

has demonstrated the ability to further enhance clusters once DINOv2 embeds features. Finally,

after two embeddings, data is passed into the GNN and clustered via DMoN.

One notable feature of both supervised and unsupervised ConstellationNet is the interchange-

ability of all parts and the ability for the entire framework to be used as a transform. Since the

end classifier is the GNN with a DMoN cluster optimizer, by removing the DMoN clustering as-

signment, the entire framework functions as a data embedding, reducing dimensionality down to

the variable hidden dimension of the GNN and creating a new dataset that any spatial clustering

baseline can quickly cluster. Additionally, the CNN and UMAP embeddings can be used as a sepa-

rate standalone transform, which allows the final GNN to be switched out for any spatial clustering

method.

3Self made figure
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4 Experimentation

4.1 Experimental Setup

4.1.1 Dataset

I primarily conduct experiments on well-known image datasets, as images are a widely used form

of spatial data. In a supervised setting, models are tested on the MNIST, CIFAR-10, and Imagnet

image datasets, with MNIST being a black-and-white collection of handwritten digits while CIFAR-

10 and Imagenet are both colored datasets of various objects[14, 26, 13]. In an unsupervised

setting, models are tested on MNIST, CIFAR-10, CIFAR-100, and Oxford flowers[14, 26, 35]. Due

to Imagenet’s large size, testing is somewhat inconclusive in a supervised setting, using only 100

thousand data points, and thus, the dataset is not used in unsupervised testing.

4.1.2 Models

Several GNNs are used, with the main models mentioned in the background being the GCN, GAT,

and GIN, as well as the SuperGAT, a version of the GAT with self-supervised attention. All

models are built on PyTorch Geometric, and most models use existing convolutions within the

library, except for the NAGphormer, a graph transformer that uses the source code provided by

the paper[10]. For the GCN, GAT, and GIN, each model is built through stacking a variable

number of the layers consisting of the following: the chosen convolution followed by a batch norm,

a Relu activation function, and a dropout layer of 30%. The multilayer perception used for the

GIN followed the MLP used in the paper, comprising two linear layers with a batch norm and Relu

function between. During experiments, the two main properties that varied were the number of

layers and the hidden dimension of the convolution and batch norms. After the final layer that

transforms the data to the output dimension, the edge index is converted into a dense adjacency

matrix and passed into the DMoN operator for clustering.

4.1.3 Metrics

To evaluate models, we use accuracy, NMI, and ARI throughout unsupervised testing to match with

standard metrics. We only used top-1 accuracy during supervised training to match state-of-the-

art image classification. Note the accuracy used during supervised and unsupervised training are

different types of accuracy, with the supervised being a strict top 1 accuracy while the unsupervised
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uses a clustering accuracy determined via a contingency matrix of checking if clusters with the same

class are in the same cluster and if clusters of different classes are in different clusters.

4.1.4 Supervised Constants

Training on all three vision datasets involved creating the graph as described in section 3.1.1 with

a K of 50 and minibatching through Pytorch Geometric’s neighbor-loader, sampling 30 neighbors

over two hops during training and all neighbors during testing with a starting batch size of 64.

For the imagenet dataset, a ConvNet embeds data into 1024 dimensions before feeding into the

model[32]. Two different CNN architectures were used, one for the black and white images from

MNIST and one for the RGB images from CIFAR 10. Both architectures expand from the input

channel to 32, 64, and 128 channels over three convolutions, followed by a Relu activation and 2d

maxpool on the later two convolutions. The MNIST CNN embeds the output down to 256, while

the RGB model first embeds to 512 before embedding down to 256. The GNN model consists

of the standard GNN architecture with a GCN convolution and a hidden size of 128 with five

layers. Models were trained a variable number of epochs on the training portion of the dataset

with negative log-likelihood, optimized by an Adam optimizer with a 0.001 learning rate and reduce

learning rate on plateau scheduler with a patience of 5 epochs and a multiplication factor of 0.75

and tested using metrics described above.

4.1.5 Unsupervised Constants

Unsupervised training involves the same graph creation process and K value of 50, with the same

minibatching happening as in the supervised constants. A DINO v2 model is used to universally

embed down to 1024 dimensions, and the UMAP then further embeds down to either 512 or 256

dimensions, which is the starting point of the GNN. Either a GAT or GCN is used as the GNN, and

the hidden dimension is half of the starting dimension. Models were trained for up to 100 epochs

on the entire dataset with DMoN losses and collapse regularization with 0.1 multiplication factor,

optimized by an Adam optimizer with a 0.001 learning rate and reduce learning rate on plateau

scheduler with a patience of 5 epochs and a multiplication factor of 0.75 and tested using metrics

described above.
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4.1.6 Baselines

Model Accuracy NMI

K-Means 10 cluster 0.906 0.492

DBScan 3eps 2 samples 0.836 0.256

Optic 2 samples 1k 0.854 0.226

Birch 10 clusters 10k 0.925 0.685

Ward 10 clusters 0.914 0.693

Agglomerative 10 clusters 0.915 0.693

HDBscan 0.839 0.277

Table 1: Baseline Accuracies and NMI for MNIST.

A collection of spatial clustering

processes and results from current

state-of-the-art clustering are col-

lected to provide a point of com-

parison between models and tradi-

tional clustering processes. Base-

lines use most clustering meth-

ods from sci-kit learn’s clustering

page, as they comprise the most

popular and powerful spatial clus-

tering methods[39]. These mod-

els include K-means, DBScan and

HDBScan, OPTICS, ward and agglomerative clustering, and BIRCH. Out of these, Kmeans and

Aggolmerative are typically used when comparing against GNNs, Kmeans due to its simplicity and

Aggolmerative due to its being the best-performing baseline tested, as seen in table 1. Apart from

baselines, state-of-the-art is taken from the top performing model on papers with code pages for

each of the datasets used, with supervised state-of-the-art coming from the image classification

leaderboards, while the unsupervised state-of-the-art comes from image clustering leaderboards.

4.2 Supervised Results

MNIST: CIFAR 10: Imagenet:

Model Accuracy Model Accuracy Model Accuracy

ConstellationNet 99.96% ConstellationNet 99.67% ConstellationNet* 91.10%

Merging CNN 99.87% Efficient Adaptive Ensemble 99.61% OmniVec 92.40%

EnsNet 99.84% ViT-H/14 99.50% CoCa 91%

Efficient-CapsNet 99.84% DINOv2 99.50% Model Soups 90.98%

SOPCNN 99.83% µ2Net 99.49% ViT-e 90.90%

Table 2: ConstellationNet compared against state of the art on MNIST, CIFAR-10, and Imagenet.

Table 2 lists the results of ConstellationNet across MNIST, CIFAR-10, and ImageNet, compared
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against state-of-the-art on each dataset. As seen across all datasets, ConstellationNet demonstrates

leading performance as indicated by its top rankings amongst state-of-the-art. On MNIST, Con-

stellationNet achieves an accuracy of 99.96%, a near-perfect accuracy of 0.09% better than the

next state-of-the-art. Similarly, on CIFAR-10, ConstellationNet attains an accuracy of 99.67%,

surpassing state-of-the-art by 0.06%. While these improvements seem minimal, on two datasets

where the state-of-the-art is near perfect, ConstellationNet’s improvements are still significant, as

evidenced by its increase of over 3 times compared to the previous state-of-the-art’s improvement

and being comparable to the prior state of the art’s improvement on CIFAR 10.

ConstellationNet achieves a competitive accuracy of 91.10% on the ImageNet dataset, not out-

performing OmniVec but still beating most other state-of-the-art. This result isn’t indicative of

ConstellationNet’s performance on the entire dataset due to having only trained on 100 thousand

samples and testing on the next 20 thousand. While the results suggest that ConstellationNet

performs strongly on simpler datasets and scales worse on complex and large-scale datasets, Con-

stellationNet’s small size and training time indicate that its potential to improve is high.

While ConstellationNet performs above state of the art on two datasets tested, its main benefit

comes from its size, augmented predictions, and lower training time. On MNIST, ConstellationNet

has 1.8 million parameters, similar to the Merging CNN, but only needs to train for around five

epochs, whereas the Merging CNN trains for 300 epochs[22]. Additionally, on CIFAR 10, compared

to the efficient adaptive ensemble, ConstellationNet’s 5.8 million parameters and 20 epoch training

time are almost half of its 11 million parameters and 5 times faster than its 100 epochs of training

time[5]. Lastly, on Imagnet, despite using a large ConvNet[32] with 198 million parameters, meaning

that ConstellationNet totals 203 million parameters, ConstellationNet still performs better than

CoCa and Model Soups, both with over 2000 million parameters, while training for up to 100

epochs, over 9 times faster than OmniVec, which trains for 900 epochs in addition to pretraining

for 2000 epochs4[49, 44, 40].

Overall, the results confirm the power and efficiency of ConstellationNet in image classification

tasks, outperforming state-of-the-art with significantly less training time and parameters.

4OmniVec size not listed due to not being state in paper.
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4.3 Unsupervised Results

4.3.1 Baselines

Before discussing ConstellationNet’s results across clustering datasets, we first demonstrate the

GNN’s ability to improve clustering, demonstrated in table 3 for MNIST and CIFAR 10:

Model MNIST CIFAR-10

NMI ARI NMI ARI

GCN 0.676 0.573 0.127 0.078

GIN 0.771 0.712 0.111 0.062

GAT 0.710 0.647 0.131 0.080

SGAT 0.695 0.606 0.137 0.086

K-means 0.491 0.360 0.079 0.041

Agglomerative 0.693 0.453 0.077 0.036

Table 3: Baseline Performance for Models on MNIST and CIFAR-10

Across both datasets, when compared to the best-performing baselines, GNN models using the

DMoN loss operator can perform significantly better than baselines, with top models improving

NMI by 1.1x on MNIST and 1.7x on CIFAR-10 while improving ARI by 1.6x on MNIST and over

2x on CIFAR-10. Base GNN models and baselines both have somewhat good performances on

MNIST due to the separated dataset and low dimensionality, but both GNN models and baselines

suffer on CIFAR-10 due to the higher dimensionality of the dataset. Thus, while the GNN and

DMoN operator perform better than baselines, a basic GNN still suffers similarly from the curse of

dimensionality, showcasing the strength of the DMoN operator and the neighborhood aggregations

of the GNN while presenting a limitation that ConstellationNet aims to resolve.

4.3.2 Ablation Study

Table 4 presents an ablation study exploring different configurations of ConstellationNet on MNIST

and CIFAR-10, with both the base constellationNet and its use as a transform tested across both

datasets.
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Configuration MNIST CIFAR-10

NMI ARI NMI ARI

Kmeans 0.49 0.36 0.08 0.04

+UMAP 0.86 0.83 0.08 0.04

+UMAP + GCN 0.91 0.92 - -

+DINO - - 0.80 0.60

+DINO + UMAP - - 0.86 0.81

+DINO + UMAP + GCN - - 0.90 0.86

(ConstellationNet)

GCN + DMoN 0.68 0.57 0.13 0.08

+UMAP 0.92 0.93 - -

+DINO - - 0.72 0.72

+DINO + UMAP - - 0.90 0.93

(ConstellationNet)

Table 4: ConstellationNet ablation studies across MNIST and CIFAR-10. Each component is tested

using both the final GNN and Kmeans.

We observe that incorporating UMAP enhances performance in the case of an already separated

dataset, confirming its use as a feature enhancer. On MNIST, where clusters are already somewhat

distinct, UMAP offers a very concrete advantage, with the combination of UMAP and a GNN

achieving an NMI of 0.92 and an ARI of 0.93, surpassing all other configurations and competing

with state-of-the-art clustering. UMAP similarly improves the NMI and ARI of Kmeans on MNIST

but doesn’t affect its NMI or ARI on CIFAR-10, a dataset where data points are not distinctly

grouped. Given that the UMAP functions by projecting manifolds down to a lower dimension, its

poor performance on a dataset where no clear manifolds can be found is somewhat expected.

In addition to UMAP, using DINO significantly enhances the performance of both the Kmeans

and GNN on CIFAR-10. DINO isn’t used on MNIST because it is dissimilar to the training set

for DINO. The DINO operator’s ability to embed data points and separate clusters significantly

improves clustering performance and allows UMAP to further enhance features, as seen in the best

NMI of 0.90 and an ARI of 0.93.

Finally, using the final GNN as an embedding, ConstellationNet is shown to have concrete
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and significant improvements over a baseline like Kmeans. On MNIST, passing data through

ConstellationNet before the Kmeans causes an improvement of around two times for both NMI and

ARI and over 10 times for CIFAR-10, showcasing the power of ConstellationNet as a transform.

4.3.3 ConstellationNet

To evaluate ConstellationNet’s clustering performance, we test it against state-of-the-art on CIFAR-

10, CIFAR-100, and Oxford Flowers, as seen in table 5.

Model CIFAR-10 CIFAR-100 Flowers

NMI ARI Accuracy NMI ARI Accuracy NMI ARI Accuracy

KMeans 0.08 0.04 0.06 0.021 0.142 0.213 0.048 0.195 0.203

ConstellationNet 0.931 0.944 0.971 0.876 0.124 0.967 0.992 0.971 0.999

TURTLE 0.985 0.989 0.969 0.915 0.832 0.899 0 0 0.996

TEMI CLIP ViT-L 0.926 0.932 0.946 0.799 0.612 0.737 - - -

DPAC 0.87 0.866 0.934 - - - - - -

SPICE* - - - 0.583 0.422 0.584 - - -

Table 5: Performance of Different Models on CIFAR-10, CIFAR-100, and Flowers Datasets. The

best results are highlighted, and the second-best results are italicized.

ConstellationNet demonstrates leading performance on three datasets, outperforming most

other state-of-the-art except unsupervised transfer, or TURTLE. On CIFAR-10 and CIFAR-100,

ConstellationNet closely trails TURTLE while outperforming it in accuracy, and on the Flowers

dataset, ConstellationNet surpasses all other available state-of-the-art, achieving a near-perfect ac-

curacy of 0.999 compared to TURTLE’s 0.996. Thus, ConstellationNet demonstrates its power

amongst the current state of the art, being competitive across all metrics.

However, the strength of ConstellationNet again lies in its smaller model size and training time.

Due to TURTLE and TEMI being the closest-performing models, we only compare ConstellationNet

to them when referring to runtime and parameters[18, 1]. Both TURTLE and TEMI use a DINO

v2 as a data embedding before their respective frameworks, but TURTLE notably uses a DINO v2

giant instead of a DINO v2 large, which results in an increase of around 500 million parameters

compared to our framework. TURTLE also uses CLIP as another representation space, which can

add another 400 million parameters to the model size. For the clustering model, ConstellationNet
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uses around 500 thousand trainable parameters for its GNN, while TEMI uses another vision

transformer or DINO model, both several hundred million parameters, and TURTLE uses upwards

of 1.9 million parameters[1, 18]. Thus, the unsupervised ConstellationNet pipeline consists of

around 500 million parameters, while TURTLE uses upwards of 1.5 billion parameters, and TEMI

uses around 1 billion parameters. Additionally, while ConstellationNet trains for 100 epochs, TEMI

trains for 200 epoch, and TURTLE trains for 6000 iterations at a batch size of 10000, which for

CIFAR-10 and 100 equates to 1000 epochs. This means that ConstellationNet competes with state-

of-the-art with more a twofold reduction in parameters and training, showcasing its robust power

across datasets.

Overall, these results confirm the power and efficiency of ConstellationNet in unsupervised

image clustering tasks, being able to efficiently cluster both as an independent pipeline and as a

transform for another clustering method with less memory and time used.

5 Conclusion

In conclusion, this study has introduced ConstellationNet, a CNN-GNN framework that performs

state-of-the-art clustering while enhancing baselines by over 10 times. Using both a convolutional

neural network and a graph neural network, ConstellationNet addresses significant problems of di-

mensionality and local information problems that traditional and deep learning clustering methods

face while using mini-batching to improve runtime and predictions. Through novel message passing

and residual edge connection frameworks, ConstellationNet showcases its power as an end-to-end

clustering pipeline and data embedding, outperforming state-of-the-art across several popular im-

age datasets in accuracy, size, and training time. Due to its robust supervised and unsupervised

performance, fast predictions due to smaller model size and minibatching, and data-specific knowl-

edge, ConstellationNet holds many potential applications, able to be quickly trained and utilized

in fields like epidemiology, urban planning, and medical imaging to solve crucial problems.
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