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Abstract

Recent work has shown that sparse autoencoders (SAEs) are able to effectively
discover human-interpretable features in language models, at scales ranging from
toy models to state-of-the-art large language models. This work explores whether
the use of SAEs can be generalized to other varieties of machine learning, specif-
ically, reinforcement learning, and what, if any, modifications are necessary to
adapt SAEs to this substantially different task. This research investigates both
qualitative and quantitative measures of SAEs’ ability to represent reinforcement
learning models’ activations as interpretable features, using a toy reinforcement
learning environment to conduct empirical experiments. It finds that SAEs are
successfully able to break down deep Q networks’ internal activations into human-
interpretable features, and, furthermore, that some of these human-interpretable
features represent an internal understanding of the underlying task that could not
have been discovered from a deep Q network’s output alone.

1 Introduction

Recently, there has been great progress in the field of mechanistic interpretability, which studies
methods used to make trained machine learning models’ decision-making processes understandable
to humans. The vast majority of this work has centered around transformers, which provide an ideal
testing ground for three reasons: first, their inputs and outputs (natural language) are very easily un-
derstood and manipulated by humans; second, natural language tends to be extremely conceptually
sparse (i.e. for any concept, the vast majority of text is unrelated to that concept); and third, there are
immediate practical uses for interpretability in transformers today (e.g. being used as a method to
fine-tune the outputs of Large Language Models (LLMs) without requiring large amounts of human
feedback[12]).

This paper focuses on the use of sparse autoencoders (SAEs). SAEs have been successfully applied
to transformers to decompose their activations into human-interpretable features[4], which can then
be manipulated to change the transformer’s output in meaningful, interpretable ways[12].

In this paper, a variety of sparse autoencoders are trained on the activations of deep Q networks
(DQNs). Many, though not all, features of these SAEs appear interpretable, and some features
represent phenomena that do not improve model performence, but are learned regardless.

1.1 Sparse Autoencoders

Sparse autoencoders are a variety of autoencoders useful for taking features out of superposition.
Superposition refers to the theory (proven to exist in toy models, and conjectured to hold in many
large models) that “features,” independent concepts represented by a machine learning model, are
not actually represented independently, one in each neuron. Instead, features are each represented by
a linear combination of neuron activations such that the set of features forms an overcomplete basis
for the activation space of the model. This means that the model is able to represent more features
than it has neurons, at the cost of reduced performance caused by independent features interfering



with each other. Because of the risk of feature interference, superposition is most common when
features are very sparse and any given feature is inactive on (i.e. irrelevant to) the vast majority of
input data[7].

If a model internally represents features in superposition, this implies that its neuron activations will
not be interpretable by themselves, since each neuron is then representing a linear combination of
disparate, unrelated features. This is the fundamental problem of mechanistic interpretability, and
necessitates some method of taking features out of superposition.

This is achieved by training a sparse autoencoder, a network trained to make its output equal to its
input, on the neuron activations of an underlying model. Non-sparse autoencoders are often used
to learn efficient codings of arbitrary data, by making their hidden size smaller than their input and
output size. SAEs, on the other hand, have hidden sizes substantially larger than their input size (at
least 2 times as large, but more commonly anywhere from 4 to 256 times as large). SAEs are trained
on some part of the internal state (generally, the activations of one particular layer) of a pre-existing
model in order to interpret the model’s decision-making process. In order to ensure that SAEs
pull features out of superposition (thus rendering them interpretable), SAEs have a mechanism to
encourage sparsity (thereby discouraging superposition, since features are sparse, but sets of many
features in superposition are generally quite dense). There are two primary mechanisms used for this
purpose: sparsity penalties and k-sparse autoencoders. This research uses k-sparse autoencoders.

k-sparse autoencoders allow a fixed number of neurons to fire on any given input. They do this
by replacing a reLU unit or other nonlinear activation function with the TopK activation function,
which allows the k highest-activating neurons to remain unchanged (similar to all positive neurons
with a reLU activation function) while setting all other neuron activations to zero.

This approach has multiple benefits. It is extremely easy to tune the L0 norm (i.e. average feature
sparsity) of k-sparse autoencoders, since their L0 norm is forced to be equal to k. Due to this
enforced sparsity, the activations of an SAE’s hidden layer are referred to as “features” (though
some of these features my not be interpretable). k-sparse autoencoders also avoid problems like
shrinkage associated with autoencoders that use sparsity penalties and therefore tend to have higher
accuracy[8].

2 Related Work

Previous work in this area has primarily focused on the application of sparse autoencoders to large
language models, built around the foundation established by Cunningham et al. [6], who showed that
sparse autoencoders were fundamentally able to find features in language models. This approach was
later refined by other work, such as Bricken et al. [4] and Templeton et al. [12], which introduced
performance-enhancing techniques such as resampling and showed that sparse autoencoders scale
well as underlying models grow larger.

Makhzani and Frey [8] introduced the k-sparse autoencoder as an alternative to L1 loss penalties,
which were previously ubiquitous in regulating overall sparsity. Various other techniques have been
proposed to improve model sparsity, such as Rajamanoharan et al. [9], which introduced the gated
SAE, or Rajamanoharan et al. [10], which found benefits from using jump ReLU units in SAEs.
These three techniques are mutually exclusive and all depend on the model’s activation function:
only the former was pursued in this paper.

The use of sparse autoencoders was expanded to image models by Surkov et al. [11], who showed
that SAEs could reliably find interpretable features in text-to-image models. Researchers such as
Abdulaal et al. [1] have been able to apply sparse autoencoders trained on vision-language models
to achieve superior results to fine-tuning on practical tasks such as generating radiology reports.

There has been very little pervious research into the application of SAEs to reinforcement learn-
ing models. Annasamy and Sycara [2] developed architectures for DQNs designed to aid in inter-
pretability, but, being written before Cunningham et al. [6], did not discuss sparse autoencoders.
A preprint by Yin et al. [13] released in November 2024 showed that SAEs compare favorably
with other reinforcement-learning-based alignment methods, such as Direct Preference Optimization
(DPO) or Reinforcement Learning from Human Feedback (RLHF), when applied to large language
models. However, it focused exclusively on the alignment of pretrained large language models.
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Figure 1: A game of Ms. Pacman being played by a trained DQN

This paper is the first to apply sparse autoencoders to Deep Q Networks, a more traditional rein-
forcement learning model architecture.

3 Methods

In this paper, SAEs are trained to allow human interpretation of the features of a small DQN, which
is itself trained on a simple reinforcement learning task. This paper uses the game Ms. Pacman for
the Atari 2600 as a reinforcement learning environment.

3.1 Environment

This research uses the implementation of Ms. Pacman present in OpenAI Gym, a standardized API
for reinforcement learning[5]. When a reinforcement learning agent is being trained, the model’s
reward is equal to its score, and its input is a live feed of what the player sees. The live feed is repre-
sented as a tensor of size 3x210x160.1 The agent must output one of nine possible directions to push
the game’s virtual “joystick” (the 4 cardinal directions, 4 diagonals, and the center). Additionally,
the model is only queried every fifth frame. This is a common feature of many video-game-based
reinforcement learning environments: since the optimal move is likely to remain the same between
two adjacent frames, it is minimally helpful to repeatedly query the model on near-identical ques-
tions. Instead, it is more efficient to train for more games with a lower frame rate.

Ms. Pacman (see Figure 1) is a useful environment for interpretability research because it is fully
deterministic (enemies’ movement is pseudorandom based on how the player moves) and relatively
simple while also very sparse (i.e. there are many features a model might want to track, but few
of them are relevant at any given moment). This is important because SAEs are only useful due to
superposition in the base model, and superposition tends to be stronger when features are sparser[7].
Therefore, it is hypothesized that SAEs will be highly effective on models trained in this environment
because of its high sparsity. Another benefit of this environment is that it is highly interpretable to
humans, and models’ decisions (and mistakes) are easily understood, unlike other, more obscure or
detailed reinforcement learning tasks.

1Due to the physical design of the original Atari 2600, the environment’s vertical resolution is greater than
its horizontal resolution, meaning that pixels are not square. Depictions of the model in this paper use square
pixels, causing the model’s input to appear taller than it is wide, despite the original game (and depictions of
gameplay in this paper) having a 4:3 aspect ratio.
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Figure 2: The architecture of the DQN used in this paper.

3.2 Training

Training consisted of two phases: first, training a DQN to perform well in the environment at hand
(Ms. Pacman), and next, training a sparse autoencoder to reconstruct the DQN’s final layer’s ac-
tivations. In both cases, several different model architectures and hyperparameters were tested to
maximize accuracy and, in the case of the SAE, interpretability. The most effective are discussed
here.

3.2.1 Deep Q Network

Experimentation began by training a base model, a deep Q network, for 20,000 games. The DQN’s
architecture consisted of 3 progressively smaller convolutional layers (with one pooling layer) fol-
lowed by 3 fully-connected layers (See Figure 2). All layers used a reLU activation function.

The DQN is relatively small, with less than 880,000 parameters. This causes it to attain modest
success with the task at hand (a much larger model would perform better), but it is large enough to
contain interpretable features in superposition, while being small enough to only contain a moderate
amount of such features, making it an ideal size for research applications. Prior work applying
SAEs to large language models found that SAEs tend to become more interpretable, not less, as the
base model grows larger[12]. This suggests that SAEs are likely to also scale well when applied to
reinforcement learning models.

Notably, the DQN used in this paper has no recurrent layers or ability to act based on the past,
meaning that it has no sense of time and makes decisions entirely based on the current frame. This is
not an issue for model performance, because the environment (Ms. Pacman) displays all information
that might be necessary to make the optimal decision each frame.

3.2.1.1 Encouraging Randomness

One of the benefits of using Ms. Pacman as an environment is that the game is pseudorandom:
enemies’ movements begin consistently but later depend unpredictably on the player’s movement
(in OpenAI Gym’s implementation, which this research uses, player input is the only such source
of entropy for the pseudo-random number generator). However, this threatens the DQN’s ability to
generalize: it is well within the abilities of even small reinforcement learning models to memorize
the string of actions that best manipulates enemies’ movement, and memorizing the enemies’ actions
replaces the process of making decisions based on the game state, meaning that the model’s behavior
no longer generalizes to other applications of reinforcement learning (since memorizing the one best
sequence of actions is a degenerate case of reinforcement learning optimization)[3].

To counteract this, randomness is added to the model’s actions during the training process. Two
methods are used to accomplish this, summarized in Table 1.

First, during training, there is some small chance ϵ that any given move is selected randomly instead
of being chosen by the DQN. This ensures that the model eventually deviates from the solution
it has mapped out up to this point. The value of ϵ can be tuned to strike a balance between the
exploration of alternative strategies (when ϵ is large) and the exploitation and refining of the model’s
current strategy (when ϵ is small). In this research, ϵ begins at a value of 20% and decreases linearly
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Source of randomness DQN train time SAE train time Test time
Random action 15%-3.75% 0% 0%
Sticky action 25% 25% 25%

Table 1: Total frequency of random interventions in the DQN’s behavior at train and test time.

throughout the first half of the training process to 5%, where it then remains for the second half of
training.

This research also uses stochastic action stickiness: in addition to the varying chance that a random
action is selected, there is also a constant, 25% chance that the model’s previous action is selected.2
Since the model is only queried every 5 frames to begin with, this means that there is a significant
chance the environment goes 15, 20, or more frames without allowing the model to react to changes
in the game state. This has two benefits: first, it encourages the model to “look ahead” at the
decisions it is likely to make in a few frames and make them now if possible. If the player would
be indifferent between two actions (e.g. pushing the joystick left or right while the player is in a
vertical corridor), it is beneficial for the model to choose based on which action would be better if it
is “sticky” for several frames (e.g. at the next intersection, would it be better to turn left or right?).
Second, stochastic action stickiness provides another source of randomness: the model, through no
fault of its own, has a chance of missing actions that it would have preferred to take. This ameliorates
the problems and bad incentives caused by the environment’s deterministic nature.

3.2.2 Sparse Autoencoder

After the DQN has been trained, a sparse autoencoder is trained on the activations of the DQN’s
final layer. The fully trained DQN plays 20,000 additional games, and the SAE is trained on the
DQN’s activations during these games.

During these additional games, there is still a 25% chance that the DQN’s actions are sticky, but ϵ,
the chance of taking a completely random action, is reduced to zero. This is because the DQN’s
parameters are no longer being updated, and therefore there is no benefit gained from encouraging
the DQN to explore all possible paths. Instead, the randomness produced by stochastic sticky actions
is preferred, since it produces a distribution of games that are similar, but subtly different from each
other. This allows the SAE to train on a diverse training set while ensuring that the SAE’s training
set closely resembles the DQN’s actual gameplay decisions.

The SAE’s architecture itself is extremely simple: its input and output are each 512 neurons wide,
and they are each connected to one hidden layer that is 2048 neurons wide. The hidden layer itself
uses a top-k activation function with k = 50. The hidden layer is 4 times larger than the input and
output layers: this is a moderately small SAE, but still well within the range of sizes shown to be
effective on other tasks (e.g. [4]).

SAEs also use a pre-encoder bias, in which the SAE’s decoder layer’s bias terms are subtracted from
its input. This is motivated by previous work, such as Towards Monosemanticity [4], which finds
that pre-encoder biases improve model performance without harming interpretability.

4 Results

4.1 Deep Q Network

A DQN and corresponding SAE were trained as described in Methods. The small DQN (see Figure
2), once fully trained, is able to score an average of 2227 in-game points. When stochastic sticky
actions are removed (i.e. there is no randomness and the behavior of the model and environment is
deterministic), it scores exactly 2130 points.

2This 25% chance of a repeated action is checked before the varying chance of a random action, meaning
that the “true” chance of a random action ranges from 15% to 3.75%, not 20% to 5%.
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Figure 3: Distribution of activation frequencies of live features. Note that the X axis is a log scale.

4.1.1 Interpretability

Upon inspection, trained DQNs sometimes exhibit human-like strategies (e.g. seeking power-ups
when in danger). However, without a SAE, there is no mechanism to draw out these strategies into
concrete features that are connected to the model’s weights, since features in the DQN are stored
in superposition[7]. Such a mechanism would make it possible to arbitrarily modify the DQN’s
behavior in human-interpretable ways (e.g. no longer seek power-ups when in danger or always
seek power-ups) without large side-effects on overall model quality.

Due to the small size of the DQN used in this paper, it does often make significant unforced errors
such as failing to evade easily-avoidable enemies. Notably, these errors are marginally more com-
mon when the environment is in a state not similar to the training distribution (i.e. a state that is very
uncommon for the model to arrive at by itself). This is expected, since the model has been trained
to perform optimally with only 20,000 games, meaning that it has no experience acting in games
that do not resemble these 20,000. Despite this, the model is often, but not always, able to perform
well in radically out-of-distribution situations (e.g. if the model is not queried at all for the first 10
seconds of gameplay).

4.2 Sparse Autoencoder Sparsity

In trained sparse autoencoders, sparsity does not necessarily guarantee interpretability, but sparse
features are reliably more likely to be interpretable than their dense counterparts. The sparsity of
individual features is measured by determining how frequently they activate on a sample of 1,000
games.

Figure 3 shows the sparsity distribution of live features in the SAE trained in this paper. Features
that are extremely dense (activating on more than 10% of all inputs) or extremely sparse (activating
on less than 0.1% of all inputs) are unlikely to be human-interpretable. State-of-the-art SAEs have
many of these features, often referred to as the ultralow density cluster. The SAE trained here,
although it does have a number of highly dense features and ultralow density features, also contains
a large number of features of the proper sparsity, suggesting that these features are likely to be
interpretable.

In addition to the moderate number of highly dense and highly sparse features, SAEs tend to have a
number of dead features, which never activate. Measuring the number of dead features in a SAE with
certainty is not possible without enumerating every possible input state, which is computationally
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Figure 4: Distribution of activation frequencies of all features. This figure is a scaled version of
Figure 3, with the large bar at the left representing dead neurons.

infeasible. However, testing features on a large, but finite, set of input states is reasonably accurate
(although it is likely to systematically overestimate the number of dead neurons in a SAE by a
moderate amount).

As can be seen in Figure 4, approximately 80% of the trained SAE’s 2048 features appear dead. The
number of true dead features that never activate (as opposed to features that appear dead because they
only activate on states not reached in the 1,000 games of testing) is likely somewhat lower than this,
but still significant. While this quantity of dead features is abnormally high, this does not necessarily
invalidate the SAE’s usefulness: the primary problem with a large number of dead features is that,
since the average feature activation frequency is fixed (equal to k

2048 ), a high number of dead features
is likely to correspond to an increase in highly dense features, which are generally not interpretable.
However, the large number of dead features does not have an impact on the interpretability of the
features that remain neither too sparse nor too dense.

4.3 Sparse Autoencoder Interpretability

To determine the interpretability of individual features, the activations of several features were ob-
served manually. This is in line with the prior state-of-the-art with SAEs, which uses human ratings
to gauge the interpretability of features (e.g. [12]). The interpretability of features depends both on
the input states that cause them to activate (if most states are similar and share a human-interpretable
concept, the feature is likely interpretable) and the effect their activations have on the model’s cho-
sen action (if the effect is congruent with the input states, the feature is considered interpretable).
Since this research trains a SAE on the final layer of a DQN, after all nonlinearities, it is trivial
to calculate the effect of a feature activation on the final output of the DQN, because the effect is
a constant that scales only with the magnitude of the feature activation (this is not the case when
features are calculated from earlier layers in the model).

Two representative interpretable features are discussed below.
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Figure 5: Left: A representative frame that causes feature 55 to activate strongly. Right: The effect
feature #55 has on the DQN’s action selection, where blue represents encouraging the

corresponding action.

Figure 6: Left: A representative frame that causes feature 1410 to activate strongly. Right: The
effect feature #1410 has on the DQN’s action selection, where blue represents encouraging the

corresponding action.

4.3.1 Feature 55

Feature 55 activates on 1.05% of all input frames. It consistently activates when the player is travel-
ing leftward across the bottom of the screen (see Figure 5). When activated, its effect is to encourage
the model to move up or to continue moving left3 and to discourage the model from turning around.

This is an excellent example of an interpretable feature. It clearly serves one purpose4, and that
purpose seems to align with the model’s overall goal of scoring the most points: turning back the
way the player came is almost never useful, while continuing or turning up both might be useful,
depending on the activation of other features (this feature, considered alone, weakly prefers moving
the joystick down, which, since the player is already at the bottom of the screen, has the effect of
continuing in a straight line).

4.3.2 Feature 1410

Feature 1410 activates on 2.39% of all input frames. Like feature 55, its activation has a clear
effect on the model’s decision-making (pushing the model up and to the right, as seen in Figure 6).
However, feature 1410 only activates at a very specific point in time: when the player is losing its
last life, regardless of where the player is when this happens. At this point, the environment will
play a death animation for several frames and then reset for the next game. The game completely

3When the model moves the joystick in an illegal direction (e.g. moving down when already at the bottom
of the screen), it has the effect of continuing to move in the current direction.

4If it served many different purposes (i.e. represented several concepts in superposition), the set of input
states that activate it would be a multimodal distribution, which is not the case.
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disregards the direction the model moves, and it is too late for the model to possibly increase its
reward any more.

This is an interesting feature because it shows that the original DQN is able to distill the concept
of “losing the player’s last life,” even though learning that concept carries no benefit for the model
during training. Nevertheless, despite the fact that the model’s response to this feature never affects
the environment’s state (since the model’s action selection is ignored during the final frames after
it loses its last life), the SAE is able to distill the feature out of the trained DQN, meaning that the
original feature must be represented within the original DQN in superposition.

5 Conclusion

In this work, a sparse autoencoder was trained to find human-interpretable features in a deep Q net-
work that was itself trained to play the game Ms. Pacman. While some of the sparse autoencoder’s
features were dead, highly dense, or otherwise not interpretable, many features were interpretable,
shedding light on the inner decision-making processes of the DQN. Some of these features carry
seemingly no benefit to the model’s performance, but are learned and distilled into features any-
way, suggesting that the sparse autoencoder is accurately capturing the DQN’s inner model of the
environment.

Sparse autoencoders are a promising tool for interpreting the decisions of trained machine learning
models. They can be used to easily steer models’ activations, allowing precise, directed control
over model output. This research proves that sparse autoencoders can provide insight into the inter-
pretability of traditional reinforcement learning models.
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