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ABSTRACT. Gorsky, Oblomkov, and Rasmussen conjectured that the stable Khovanov homology of
T (n,∞) — which is the limit of the Khovanov homology of the (n,m)-torus link as m → ∞ — is
isomorphic to the homology of a certain Koszul complex Wn. In this paper, we define a grading L and
conjecture that the L-homogeneous summands of the homology of Wn satisfy a recursive relationship,
reminiscent of the inclusion-exclusion principle, which would imply that the homology of Wn is
determined by finitely many bidegrees. We present theoretical and computational evidence for this
relationship and discuss an analogous conjecture for sl(N) and Lee homologies. We also make a
conjecture concerning the maximal torsion order appearing in the homology of Koszul complexes
corresponding to sl(N) analogues of Lee homology.
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torsion order.

1. INTRODUCTION

Khovanov-Rozansky sl(N) homology [KR04] is a powerful knot invariant that assigns to each
oriented link a bigraded abelian group. When N = 2, this homology group reduces to Kho-
vanov homology [Kho00]. While torus links are among the simplest links, a computation of
their Khovanov-Rozansky sl(N) homology remains an outstanding problem in knot theory. For
a fixed number of strands n, Stošić [Sto09] showed that the Khovanov homology of T (n,m),
after a renormalization, approaches a well-defined limit as m → ∞ — this limit is called the
stable Khovanov homology of T (n,∞). In 2012, Gorsky, Rasmussen, and Oblomkov [GOR13]
conjectured that the Khovanov homology of T (n,∞) is isomorphic to the homology of a Koszul
complex with polynomial generators x0, . . . , xn−1 and exterior generators ξ0, . . . , ξn−1. We denote
this complex as Wn and refer to it as the GOR complex. It is endowed with a differential d2 such
that d2(ξk) =

∑k
i=0 xixk−i and d2(xk) = 0.

Gorsky and Lewark [GL15] conjectured that the stable sl(N) homology of torus knots can be
described as a Koszul complex that is similar to the GOR complex but has modified differentials. In
this paper, we study the homology of these Koszul complexes. In addition, we consider analogous
Koszul complexes corresponding to the stable Lee homology [Lee05] of torus knots, which assigns
a bigraded module over univariate polynomials with rational coefficients to each oriented link. We
denote these as V N

2 — they are constructed similarly to the GOR complex, except that we have an
additional polynomial generator T with d2(ξ0) = x2

0 − T (all other differentials remain identical).
We also investigate Koszul complexes V N

n corresponding to sl(N) analogues of Lee homology that
we refer to as deformed sl(N) homology.
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Several authors have investigated the GOR conjecture and analogues thereof. Notably, Hogan-
camp [Hog14; Hog18] made significant progress towards proving the GOR conjecture. Hogancamp
and Mellit determined the Khovanov-Rozansky triply-graded homology of all torus knots in 2019
[HM19], and their analyses could prove useful in proving the GOR conjecture. Despite decades of
progress on the GOR conjecture, much work remains in determining the homology of the GOR
complex itself — which is precisely the focus of this paper. Despite the algebraic nature of the
GOR complex, it is difficult to compute its homologies — though it is simpler than computing the
homology of torus knots. The situation is similar for sl(N) and deformed sl(N) homologies. Better
understanding the homology of the GOR complex and its analogues would not only shed light on
their fundamental structure but may help prove the GOR conjecture itself.

The GOR complex WN
n (in sl(N) homology) decomposes into a sequence of chain complexes

C0, C1, . . . where Ci consists of all elements c ∈ WN
n with L-degree i (L-degree is the sum of the

subscripts of the xi and ξi). Computational evidence suggests the homology of CL, for L beyond
Lcrit =

(
n
2

)
, can be determined from the homologies of Ci with i < L. We also make available a

computer program that computes the homology of any particular Ci.

1.1. Conjecture on the L-homogeneous summands of Wn. Formally, our conjecture — which
we call the PIE conjecture for its relation to the inclusion-exclusion principle — states the following
for regular sl(N) homology.

Conjecture 6 (PIE conjecture). Fix an N ≥ 2, n ≥ 1, and L > Lcrit =
(
n
2

)
. For each subset

K ⊂ {0, 1, . . . , n− 1}, let CK := CL−
∑

i∈K i ⊂ WN
n . Then there exists an isomorphism of abelian

groups ⊕
K⊆{0,1,...,n−1},

|K| even

H•(CK) ∼=
⊕

K⊆{0,1,...,n−1},
|K| odd

H•(CK).

The relevance of the inclusion-exclusion principle is the following. Suppose S0, . . . , Sn−1 are
finite sets. Then the inclusion-exclusion principle states∑

|K| even

∣∣∣∣∣⋂
i∈K

Si

∣∣∣∣∣ = ∑
|K| odd

∣∣∣∣∣⋂
i∈K

Si

∣∣∣∣∣ ,
where the sums are over subsets K ⊆ {0, . . . , n− 1} of sizes of a given parity.

We verify conjecture 6 for WN
2 in sl(N) homology and W3 in Lee homology via propositions

7, 8, and 9. We also follow a more conceptual path towards developing and understanding these
conjectures in terms of exact sequences in sections 5 and 6.

1.2. Maximal Torsion Order. In deformed sl(N) homology, the homology of each V N
n is isomor-

phic, as a Q[x0]-module, to the direct sum of Q[x0] and some number of copies of Q[x0]

xk
0

for various
k. In computationally testing the first conjecture, we noticed that there appear to be limits to the
order of torsion modules in deformed sl(N) homology — in particular, we propose the following
conjecture.

Conjecture 10. If Q[x0]

xk
0

is a direct summand of the homology of V N
n , then K is at most N .
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For deformed sl(N) homology, we show that this value of k is obtained by Q[x0]

xN
0

· x2 ∈ H•(Vn≥3)

(all torus knots with more than 3 strands).

2. BACKGROUND

2.1. The GOR Complex. Gorsky, Oblomkov, and Rasmussen [GOR13] defined a differential
graded algebra, which we denote W 2

n , by W 2
n := Z[x0, . . . , xn−1] ⊗ Λ(ξ0, ξ1, . . . , ξn−1), where

Λ denotes the exterior algebra, with multiplicative bigrading deg(xi) = q2i+2h2i and deg(ξi) =
q2i+4h2i+1 so that the differential d2 is 0 when applied to terms without any ξi and d2(ξi) :=∑i

k=0 xkxi−k otherwise. In this paper, the a-degree of a monomial denotes the number of ξ’s in that
monomial.

2.2. Extension to sl(N) Homology. In their 2015 paper, Gorsky and Lewark [GL15] defined ana-
logues of the original GOR complex that we denote WN

n . The complex WN
n := Z[x0, . . . , xn−1]⊗

Λ(ξ0, ξ1, . . . , ξn−1) is endowed with differential dN defined by dN(ξi) =
∑

k1+k2+···+kN=i xk1 · · ·xkN

and dN(xi) = 0. In WN
n , ξi have bigradings q2i+2N+2h2i+1, while xi have bigradings q2i+2h2i. We

again define the a-degree of a monomial to be the number of ξ’s in that monomial. The complexes
WN

n are conjecturally isomorphic to the stable sl(N) homology of T (n,∞).

Lemma 1. The complex WN
n is homotopy equivalent to the complex Z[x0, . . . , xn−1]/x

N
0 ⊕

Λ(ξ1, . . . , ξn−1) endowed with differential d2(xi) = 0 and d2(ξi) =
∑i

k=0 xkxi−k. In other words,
WN

n is homotopy equivalent to the GOR complex except with ξ0 omitted and with Z[x0] replaced by
Z[x0]/x

N
0 .

Proof. The complex WN
n may be viewed as the mapping cone

Aξ0
xN
0−→ A,

where A is the chain complex Z[x0, . . . , xn−1]⊗ Λ(ξ1, . . . , ξn−1) equipped with d2 defined above.
Because multiplication by xN

0 is injective on A, Gaussian elimination [Bar06] shows that WN
n is

homotopy equivalent to the complex A
xN
0

— precisely the one described in the statement of the
lemma. □

3. EXTENDING THE GOR CONJECTURE TO LEE AND DEFORMED sl(N) HOMOLOGIES

The Lee homology [Lee05] of an oriented link takes the form of a bigraded module over the
polynomial ring Q[T ]. It may be viewed as a deformation of Khovanov homology. When bigradings
are ignored, the Lee homology of a knot is isomorphic to Q[T ] ⊕ Q[T ] ⊕

⊕m
i=1

Q[T ]
Tni

for some
nonnegative integers ni [Lee05]. Of major interest in the study of knot homologies is the value of
each ni: Manolesu and Marengon [MM20] found a knot with one ni equal to 2, but no higher ni

have been found.
Although the stable Lee homology of torus knots arises naturally as an extension of the GOR

conjecture — and while others have likely posited the question before — no authors have previously
formally defined a Lee analogue of the GOR conjecture. Therefore, this section is dedicated to
making an analogue of the GOR conjecture for both Lee homology and deformed SL(N) homology.

We consider an analogue to GOR conjecture for Lee homology. Let V N
n be the differential

graded algebra Q[T, x0, . . . , xn−1] ⊗ Λ(ξ0, . . . , ξn−1) equipped with the differential d2 satisfying
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d2(ξ0) = x2
0 − T and d2(ξk≥1) =

∑k
i=0 xixk−i, where the q degree of each xi and ξi is 2i and the a

degree of xi and ξi is 0 and 1 respectively. The following lemma shows that, up to homotopy, we
may eliminate ξ0 and T .

Lemma 2. The complex V 2
n is homotopy equivalent to the complex Q[x0, . . . , xn−1]⊗Λ(ξ1, . . . , ξn−1)

endowed with differential d2(xi) = 0 and d2(ξi) =
∑i

k=0 xkxi−k. In other words, V 2
n is homotopy

equivalent to the GOR complex except with ξ0 omitted.

Proof. The complex V 2
n may be viewed as the mapping cone

Aξ0
x2
0−T

−−−→ A,

where A is the chain complex Q[x0, . . . , xn−1]⊗ Λ(ξ1, . . . , ξn−1) equipped with d2 defined above.
The rest of the proof follows reasoning analogous to that of lemma 1. □

We can extend this Lee homology version of the GOR complex to what is the sl(N) version of Lee
homology — more concisely described as deformed sl(N) homology. We denote W Lee

n in deformed
sl(N) homology as V N

n , which is the differential graded algebra Q[x0, . . . , xn−1]⊗Λ(ξ1, . . . , ξn−1)
with differential dN defined by dN(xi) := 0 and dN(ξi≥1) =

∑
k1+k2+···+kN=i xk1 · · ·xkN . This

definition specializes to that of the GOR complex of Lee homology when N = 2. We define a
grading L in Lee and deformed sl(N) homology such that the L-degree of xi and ξi are both i.

4. DECOMPOSITION OF Wn

4.1. Definition of subcomplexes. For sl(N) homology, the differential dN reduces a-degree by 1
but does not affect L degree. The same is true for V N

n . An immediate corollary is that we can write
every WN

n and V N
n as the direct sum of a countably infinite number of subcomplexes C0, C1, . . . ,

where Ci contains every c ∈ Wn with L-degree i. We can perform a similar decomposition for
deformed sl(N) homology.

4.2. Elements of CL. We can write CL as a direct sum via a-degree. For concreteness, the following
is a basis over Z of the set of elements of the a-degree k part of Ci in WN

n :{ ∏
1≤j≤n−1

x
αj

j

∏
1≤j≤n−1

ξ
βj

j :
∑
j

(j + 1)αj + (j +N − 1)βj = i and βj = 0, 1

}
.

4.3. Critical values of L.

Definition 3 (The critical value of L: Lcrit). We denote by Lcrit the minimum value of L such
that CL ⊂ WN

n or V N
n has an element that contains the product of all ξi’s. For all homologies,

Lcrit =
(
n
2

)
.

Remark 4. Every element e in CL>Lcrit
can be written as Xe′, where X is a monomial in xi’s and

e′ is an element in CL′≤Lcrit
.
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5. CHAIN COMPLEXES IN Ci

5.1. Canonical basis elements of the sub-complexes CL. The sub-complexes CL have some
intriguing properties that allow us to generate exact sequences in Ci and contemplate inter-degree
relationships of homology. In particular, if L ≥ Lcrit, then every possible multinomial Ξ in ξi’s
forms part of at least one basis element in CL. Each of these basis elements also contains a
multinomial in X of xi’s — which is equal to 1 if and only if L = Lcrit and only for the basis
element containing the product of all ξi’s. This implies that for L > Lcrit, every basis element can
be expressed as XΞ where X ̸= 1 and X,Ξ are multinomials in the even and odd generators.

For any arbitrary XΞ ∈ CL, there is some xji
i with ji > 0 that appears in X . Therefore, we can

construct X ′Ξ = XΞ
xi

with q-degree 2L− 2i. This construction is a basis element of the complex
CL−i.

Now let BL denote the canonical basis for CL ⊂ WN
n or V N

n . We see that BL ⊂ x1BL−1 ∪
x2BL−2 ∪ · · · ∪xn−1BL−n+1 =

⋃L+1
m=L−n+1 Bm (where multiplying a set by c multiplies all elements

of that set by c), but this is not a perfect description of BL because it fails to account for multiplicity:
a basis element of the form xixjX ∈ BL (where i ̸= j and X is a monomial in xi’s) is in both xiBL−i

and xjBL−j . To remedy our overcounting, we can direct sum xixjBL−i−j (for all 1 ≤ i ≤ j ≤ n)
to BL. However, we must then contend with undercounting basis elements of the form xixjxkX

by direct summing these basis elements with
⋃L+1

m=L−n+1 Bm. We continue this pattern of direct
summation until we finally add

∏
1≤i<n xiCL−1−2−···−(n−1) to one of BL or

⋃L+1
m=L−n+1 Bm — this

represents our application of the inclusion-exclusion principle to inductively describe the canonical
basis BL via the canonical bases BL′<L.

For a concrete illustration of this version of the inclusion-exclusion principle, consider C3 in W2

of Khovanov (sl(2)) homology. A basis for this subcomplex — when expressed as Z[x0]-modules
— is

B4 = {x1ξ1ξ2,

x3
1ξ1, x1x2ξ1, x

2
1ξ2, x2ξ2,

x4
1, x

2
1x2, x

2
2}

We can similarly find bases for C1, C2, and C3:

B1 = {ξ1, x1},
B2 = {x1ξ1, ξ2, x

2
1, x2}, and

B3 = {ξ1ξ2, x2
1ξ1, x2ξ1, x1ξ2, x

3
1, x1x2}.

We see that B4 = (x1B3 ∪ x2B2) \ (x1x2B1). This pattern holds for all CL>Lcrit
.

6. INDUCTIVE CONJECTURE OF HOMOLOGY OF L-HOMOGENEOUS SUMMANDS (THE PIE
CONJECTURE)

6.1. Exact sequences of L-homogeneous summands. Given N, n, and L (representing the L-
degree summands of WN

n or V N
n ) and some set K ⊆ {0, 1, . . . , n−1}, define CK := CL−|K|−

∑
i∈K i.



6 ROHAN DHILLON

Let αn be the chain complex⊕
K⊆{0,...,n−1},

|K|=n

CK
M−→

⊕
K⊆{0,...,n−2},

|K|=n−1

CK
M−→ . . .

M−→
⊕

K⊆{0,...,n−1},
|K|=0

CK ,

where the horizontal map MK,K′ : CK → CK′ is defined component-wise as

MK,K′ :=

{
(−1)#{j∈K : j<i}xi if i ̸∈ K ′ and K = K ′ ∪ {i}
0 otherwise

.

For example, α2 is

C{1}

C{0,1} C∅

C{0}

−x1x0

x1 x0

.

When necessary for clarity, we let αn(L) be the chain complex whose rightmost term is CL. For
certain values of L, proposition 5 states that these sequences are exact.

Proposition 5. All αn(L) for L > Lcrit are exact sequences.

Proof. Set CL<0 := 0 and consider
⊕

L>0 αn(L). Because of how WN
n and V N

n are defined and
because

⊕
i≥0CL = Wn, we have

⊕
L≥0

αn(L) = Wn

⊕
L>0

Mn(L)

−−−−−−→
⊕

i∈S(n−1)

Wn → · · · →
⊕
i∈S(1)

CL−i

⊕
L>0

M1(L)

−−−−−−→ Wn = Kx⊗Λ[ξ1, . . . , ξn],

where Kx denotes the Koszul complex defined by (Q[x0, x1, . . . , xn], x := x1, . . . , xn). Because x is
a regular sequence, it is well known that the homology of Kx is only supported in the rightmost terms.
We see that H0(Kx) =

Q[x0,x1,...,xn]
(x1,...,xn)

= Q[x0]; therefore, H0

(⊕
L≥0 αn(L)

)
= Q[x0]⊗Λ[ξ1, . . . , ξn].

Given an L ≤ Lcrit and a subset {i1, i2, . . . , imax} ⊆ {1, . . . , n−1}, we have that ξi1ξi2 . . . ξimax ∈
CL but ξi1ξi2 . . . ξimax ̸∈ CL′<L whenever

∑
ij = L, implying H0(αn(L)) = Q[x0]ξi1ξi2 . . . ξimax

because the maps Mk only operate by monomials in xi’s. Therefore,⊕
0≤L≤Lcrit

H0(αn(L)) = Q[x0]
⊕

0≤L≤Lcrit

⊕
∑

ij=L

ξi1ξi2 . . . ξimax = Q[x0]⊗ Λ[ξ1, . . . , ξn].

Thus

H•

( ⊕
L≤Lcrit

αL

)
= H0

(⊕
L≥0

αn(L)

)
,

as desired. One can consider complexes over Z[x0]/x
N
0 to recover a similar proof for regular sl(N)

homology. □
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6.2. The PIE conjecture. Because αn are chain complexes and each term of αn is itself a direct
sum of chain complexes, we can take the homology of each term and consider the induced maps
M∗ on homology. In particular, we define α∗

n to be the sequence of induced maps⊕
K⊆{0,...,n−1},

|K|=n

H•(CK)
M∗−−→

⊕
K⊆{0,...,n−1},

|K|=n−1

H•(CK)
M∗−−→ . . .

M∗−−→
⊕

K⊆{0,...,n−1},
|K|=0

H•(CK).

The PIE conjecture proposes a simple way of relating the direct sums of homology terms across
L-degrees.

Conjecture 6 (PIE conjecture). Given a specific L > Lcrit, N , and n, define CK := CL+|K|+
∑

i∈K i.
Then as |K| ranges between 0 and n− 1 inclusive, we have⊕

K⊆{0,1,...,n−1},
|K| even

H•(CK) ∼=
⊕

K⊆{0,1,...,n−1},
|K| odd

H•(CK).

This isomorphism respects a-gradings and can be made to respect q-gradings if a shift is applied to
each CK .

For example, in WN
3 and V N

3 , the conjecture states

H•(CL)⊕H•(CL−3) ∼= H•(CL−2)⊕H•(CL−1).

Meanwhile, in WN
4 and V N

4 , we have

H•(CL)
⊕H•(CL−3)

⊕
H•(CL−4)

⊕
H•(CL−5)

∼=

H•(CL−1)
⊕

H•(CL−2)
⊕

H•(CL−3)

⊕
H•(CL−6).

6.3. Illustrating the PIE conjecture with α3. A quick check reveals that the short exact sequence
α3 induces a long exact sequence on homology when L > Lcrit:

H2(CL−3) H2(CL−2)⊕H2(CL−1) H2(CL)

H1(CL−3) H1(CL−2)⊕H1(CL−1) H1(CL)

H0(CL−3) H0(CL−2)⊕H0(CL−1) H0(CL)

f2 g2

∂2

f1

g1

∂1

f0

g0

.

Showing that the connecting homomorphisms ∂2 and ∂1 are 0 — and then that each layer is split
exact — would suffice to prove our conjecture on homology in the case of n = 3. For n ≥ 3,
however, αn is no longer a short exact sequence, and we need other tools to deduce relationships
between H•(CL).
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7. AUTOMATED COMPUTATION OF HOMOLOGY

We can automate the procedure shown in Section 4 to systematically generate each sub-complex
CL and find its homology. We represent the complex via a monomial basis, apply Gaussian
elimination [Bar06], represent the maps between layers as matrices, and use their Smith normal
forms to compute homology. Tables 1(A) and 1(B) detail to what extent the inductive conjecture on
CL was tested. The conjecture withstood all computational checks.

sl(N) W3 W4 W5 W6 W7 W8

2 853 805 757 709 6511 6013

3 806 759 7012 6515 6018

4 7510 7014 6518 6022

5 7015 6520 6025

6 6521 6027 5533

7 6028 5535

8 5536 5044

(A) Regular sl(N) homology.

sl(N) V3 V4 V5 V6 V7

2 ∞3 656 5510 4515 3521

3 603 556 4510 3515 3021

4 553 456 3510 3015

5 503 406 3010 2515

6 453 356 3010

7 403 306 2010

8 353 256 2010

9 303 256 2010

(B) Deformed sl(N) homology.

TABLE 1. The maximum value of L for which the inductive conjecture was tested for
Wn or Vn (columns) in a given sl(N) homology (rows), where ∞ denotes complexes
whose homology is fully described by propositions 8 and 9. Subscripts denote the
value of Lcrit in a particular WN

n or V N
n .

As an example of a non-trivial check performed by this program, consider C39 ⊂ V 4
5 in deformed

SL(4) homology. For V 4
5 , our conjecture states that the direct sum of eight particular homology

groups is isomorphic to the direct sum of eight other homology groups. But some homology groups
appear on both sides, so conjecture 6 reduces to

H•(C39)⊕H•(C34)⊕H•(C34)⊕H•(C29) ∼= H•(C38)⊕H•(C37)⊕H•(C31)⊕H•(C30).

for every a-degree of V 4
5 . Table 2 shows that this holds true for elements with a-degree 0 (all

elements with no ξi’s) in C39 ⊂ V 4
5 . (We omit calculated values for other a-degrees due to space).
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H•(CL) Copies of Q[x0]
x0

Copies of Q[x0]

x2
0

Copies of Q[x0]

x3
0

Copies of Q[x0]

x4
0

H•(C39) 37 33 40 37
H•(C38) 30 37 33 40
H•(C37) 33 30 37 33
H•(C34) 24 30 27 33
H•(C31) 24 21 27 24
H•(C30) 19 24 21 27
H•(C29) 21 19 24 21

TABLE 2. An easily parsable representation of the homology of the bottom layer
(elements with no ξi) of C39 ⊂ V 4

5 . The table shows that conjecture 6 is true in this
specific case.

8. THE CASE OF WN
2 IN sl(N) HOMOLOGY

The homology of WN
2 is well-known to experts, but we recompute it in this section for the

reader’s convenience.

Proposition 7. The homology of CL ⊂ WN
2 is given by

(1) 0 in a-degree 2,
(2) a ZN−1 in a-degree 1,
(3) and a ZN−1 ⊕ Z/N in a-degree 0.

Proof. The subcomplex CL ∈ WN
2 over Z[x0] is as follows:

xL
1 xL−1

1 ξ1 xL−1
1 ξ1ξ1

xL
1

xN
0

NxN−1
0

xN
0

By direct computation, we see that homology is 0 in a-degree 2, a ZN−1 in a-degree 1, and a
ZN−1 ⊕ Z/N in a-degree 0. □

9. THE CASE OF W3 IN LEE HOMOLOGY

We now extend the split exactness of α2 to Lee homology.

Proposition 8. Given CL ⊂ V 2
3 , if L > 0 is odd, then H•(CL) is isomorphic to Q[x0]

x0
supported in

a-degree 0.

Proof. We have the following bases for a-degree 2, 1, and 0:

x2m−2
1 ξ1ξ2, x

2m−4
1 x2ξ1ξ2, . . . , x

m−1
2 ξ1ξ2 in a-degree 2,

x2m
1 ξ1, . . . , x

m
2 ξ1, x

2m−1
1 ξ2, . . . , x1x

m−1
2 ξ2 in a-degree 1,

and x2m+1
1 , . . . , x1x

m
2 in a-degree 0.
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Because the differential satisfies d2(ξ1) = 2x0x1 and d2(ξ2) = 2x0x2 + x2
1, Gaussian elim-

ination allows us to cancel all m basis elements with a-degree 2 with the m basis elements
x2m
1 ξ1, . . . , x

2
1x

m−1
2 ξ1. We can similarly cancel x2m−1

1 ξ2, . . . , x1x
m−1
2 ξ2 with x2m+1

1 , . . . , x3
1x

m−1
2 .

We are left with xm
2 ξ1

2x0−−→ x1x
m
2 . Hence the homology is Q[x0]

x0
in a-degree 0. □

Proposition 9. Given CL ⊂ V 2
3 , if L > 0 is even, then H•(CL) is isomorphic to Q[x0]

x2
0

supported in
a-degree 0.

Proof. By a similar computation to that in the proof of proposition 8, CL deformation retracts onto
the subcomplex with four generators: x1x

m
2 ξ1, x

m
2 ξ2, x

2
1x

m
2 , x

m+1
2 . By Gaussian elimination along

xm
2 ξ2 −→ x2

1x
m
2 , we obtain a complex with a single generator in a-degree 1, a single generator in

a-degree 0, and the differential is multiplication by −4x2
0. Thus the homology is Q[x0]

x2
0

supported in
a-degree 0. □

10. BOUNDING ORDERS IN sl(N) HOMOLOGY

In computationally verifying Conjecture 6, we found that torsion orders in both deformed sl(N)
homology appear to take only specific values.

Conjecture 10. If Q[x0]
xm
0

is a direct summand of H•(V
N
n ), then m is less than or equal to N .

Proposition 11. If n ≥ 3, then x2 generates a copy of Q[x0]

xN
0

in H•(V
N
n ).

Proof. Note that dNξ1 = NxN−1
0 x1 and dNξ2 = NxN−1

0 x2 +
(
N
2

)
xN−2
0 x2

1. Therefore, in L-degree
2, there are four generators over Q[x0]: x2

1, x2, x1ξ1, and ξ2. By direct computation, x2 generates a
copy of Q[x0]

xN
0

in homology. □

10.1. Proof of Maximal Order Conjecture for a = 0. We prove conjecture 10 for terms with no
ξi (i.e. terms with a-degree 0).

Lemma 12. Consider the ideal (dNξ1, . . . , dNξn) generated by the polynomials dNξ1, . . . , dnξn
within the polynomial ring Q[x0, . . . , xn]. Then xN

0 xn is a member of this ideal.

Proof. For each n-tuple of rational numbers (a0, . . . , an−1), let P (a0, . . . , an−1) be the polynomial

P (a0, . . . , an−1) := a0x0dNξn + · · ·+ an−1xn−1dNξ1.

Let the vector subspace V be the set of n-tuples (a0, . . . , an−1) such that if v ∈ V , then P (v) is a
scalar multiple of xN

0 xn.
Note that

dnξi =
∑

j1+j2+···+jN=i

xj1 · · ·xjN =
∑

k0+···+kn−1=N,
0k0+k1+···+Nkn−1=i

xk0
0 · · ·xkn−1

n−1 .

Therefore, (a0, . . . , an−1) ∈ V if and only if for every monomial X = xk0
0 xk1

1 · · ·xkn−1

n−1 ̸= xN
0 xn

with
∑

iki = n and
∑

ki = N + 1, the coefficient on X in P (a0, . . . , an−1) is 0.
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If we set ai = 1−Ni
n

for i = 0, . . . , n− 1, then
n−1∑
i=0

1−Ni

n
b0 =

n−1∑
i=0

bi −
N

n

n−1∑
i=0

ibi = 0.

Therefore,
(
1, 1− N

n
, . . . , 1− N(n−1)

n

)
∈ A, so P

(
1, 1− N

n
, . . . , 1− N(n−1)

n

)
equals NxN

0 xn.

Thus xN
0 xn lies in the ideal.

□

Theorem 13. In a-degree 0 of every H•(Vn) for n ≥ 1 in every deformed sl(N) homology, the
maximal possible torsion is xN

0 .

Proof. Notice that, in the bottom layer, homology is given by Q[x0,...,xn−1]
(dN ξ1,dN ξ2,...,dN ξn−1)

. By Lemma 12,
xN
0 xi = 0 in this quotient for i = 1, . . . , n − 1, but 1 generates a copy of Q[x0]. Therefore, if

r ∈ Q[x0, . . . , xn−1] is a polynomial where the coefficient of xk
0 in r is 0 for all k, then xN

0 r = 0 in
this quotient. □
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