An Overview of Convolutional Neural Networks (CNNs)

Sofia Egan

What is a CNN?

- Generally used for images
- Neural nets generally have fully connected layers
 - Inefficient for images
- CNNs preserve the dimensional properties of images
 - They make each layer of the neural net a tensor

General Structure

- A regular neural net would be inefficient with images because you don't need everything to be fully connected
- We just want every "node" to just take in the information from the pixels around it
- To do this, we'll use convolutions

Why Convolutions?

 Beyond reducing the computational power needed, convolutions are useful because they can highlight aspects of an image

Convolutions

Filter W1 (3x3x3)				Output Volume (3x3x2)				
w1[:,:,0]				0[:,:,0]				
0	-1	0		-7	-5	-5		
1	1	0		-2	0	1		
1	-1	1		2	1	-1		
w1[:,:,1] o[:,:,1]								
0	1	-1		7	16	4		
-1	1	1		-3	7	9		
1	1	1		0	2	5		
w1[:,:,2]								
1	-1	-1						
1	-1	1						
1	0	0						
Bias b1 (1x1x1) b1[:,:,0] 0								
toggle movement								

• Structure

- Each layer is a tensor
- The depth is equal to the number of kernels used on the previous layer
- At the end, there's one or more fully connected layers and (for classification) a softmax to make the output a probability distribution

$$\sigma(x_j) = \frac{e^{x_j}}{\sum_i e^{x_i}}$$

- Convolution (Conv) Layer
 - Performs n convolutions with n kernels and outputs a tensor with depth n
- Pooling Layer
 - Reduces the dimensions of the image to prevent overfitting and reduce computation

Layers

- Activation Function
 - Commonly, ReLU (rectified linear unit)
 - ReLU(x) = max(0,x)
 - Introduces non-linearity
 - Or, softmax (commonly at the end for classification ρ^{x_i}
- Fully Connected

$$\sigma(x_j) = \frac{e^{x_j}}{\sum_i e^x}$$

- The same as in a neural net
- Used to compute the output a probability distribution for classification

Training

- First, we need to know how well the model did
 - How far off it is from the correct answer is the **loss**
- In order to figure out how the weights need to change, we want to get $\frac{\partial L}{\partial w_i}$
- This tells us in what direction w_i needs to change in order to reach the minimum possible loss

Loss Function

- To know if the model did a good job, we need to calculate how far it was from the correct answer
- We do this using a loss function typically cross-entropy loss for classification

$$H(p,q) = -\sum_{x\in\mathcal{X}} p(x)\,\log q(x)$$

Backpropagation – Fully Connected

- For all the weights, we want $\frac{\partial L}{\partial w_{i,i}}$
- First, we find $\frac{\partial L}{\partial \hat{y}_i}$ and $\frac{\partial \hat{y}_i}{\partial z_j}$
- Because of the chain rule,
 - $\frac{\partial \hat{y}_i}{\partial z_j} \cdot \frac{\partial L}{\partial \hat{y}_i} = \frac{\partial L}{\partial z_j}$
- We can show $\frac{\partial L}{\partial z_i} = \hat{y}_i y_i$
 - Proof <u>here</u>

Backpropagation – Fully Connected

Backpropagation – Convolution

- K is the kernel
- The new values in each kernel are calculated using $\frac{\partial L}{\partial K}$
- So, we're looking for $\frac{\partial O}{\partial K}$ because $\frac{\partial L}{\partial K} = \frac{\partial L}{\partial O} * \frac{\partial O}{\partial K}$
- $\frac{\partial L}{\partial K_i} = \sum_j \frac{\partial L}{\partial O_j} \cdot \frac{\partial O_j}{\partial K_i}$
- We need these \

•••

Backpropagation – Convolution

- $O_i = \sum_{i,j} I_i \cdot K_j$
 - Every value in K is multiplied by a value in I (maybe padding)
- $\frac{\partial O_j}{\partial K_i} = I_i$ = a value in I

Gradient Descent

- Now that we know $\frac{\partial L}{\partial w_i}$ for all values in the kernels and fully connected layers, we can figure out how to change each one to optimize the output

$$w_{j,i,new} = w_{j,i} - \eta \frac{\partial L}{\partial w_{j,i}}$$

- Changes more when the slope is steeper

Thanks!

Image Sources

https://cs231n.github.io/convolutional-networks/#conv

https://pavisj.medium.com/convolutions-and-backpropagations-46026a8f5d2c

https://sarosijbose.github.io/files/talks/A%20General%20Overview%20of%203D%20Convol ution%20.pdf

https://www.slideshare.net/slideshow/a-brief-survey-of-tensors/72717067

https://www.analyticsvidhya.com/blog/2020/10/how-does-the-gradient-descent-algorithmwork-in-machine-learning/

https://en.wikipedia.org/wiki/Neural_network_%28machine_learning%29

This presentation template was created by <u>Slidesgo</u>, and includes icons by <u>Flaticon</u>, and infographics & images by <u>Freepik</u>