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Introduction



Motivation

Artificial Intelligence has become ubiquitous in the past few years. In
2022, large language models like ChatGPT were released to the
public, showing millions around the world the potential of AI.
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Motivation

Since then, achievements like

• predicting the 3D models of proteins (AlphaFold)
• creating art from text input (DALL-E)
• solving Go (AlphaGo)

have changed how humans think and work.

All these models have one thing in common – they are built using an
Artificial Neural Network (ANN)
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ANNs

But why are ANNs so powerful?
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ANNs

But why are ANNs so powerful?

Almost all practical problems such as playing a game of Go or
mimicking intelligent behavior can be represented by mathematical
functions.
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Universal Approximation
Theorem



Universal Approximation Theorem

The Universal Approximation Theorem states that for any
continuous function f : [a,b] −→ R and any ϵ > 0, there exists a
neural network N with a single hidden layer, such that

| f(x)− N(x) |< ϵ

for all x in the domain of f.

Essentially, this theorem states that neural networks can
approximate continuous functions to any desired degree of accuracy.
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Universal Approximation Theorem

A single hidden layer neural network with m neurons can be
expressed as:

N(x) =
∑

(wi ∗ φ(
∑

(aij ∗ xj + bi)))

where:

• wi, aij, bi, and ci are weights and biases,
• φ is the activation function (e.g., sigmoid, ReLU), and
• xj are the components of the input vector x.

The activation function φ : R −→ R must be non-constant, bounded,
and continuous. A common choice is the sigmoid function:

1
1+ exp(−x)
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Artificial Neural Networks



Structure of an ANN

ANNs consist of interconnected nodes (called neurons) that process
and transmit data through a series of connections.

They use Activation Functions (represented by σ), which are
functions applied to the output of a neuron that introduces
non-linearity into the network

Figure 1: ReLU (left) and Sigmoid (right) activation functions
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Structure of an ANN
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Structure of an ANN

1. Input layer: Receives input data and passes it on to the hidden
layers without much computation

2. Hidden layer: The layer(s) that usually perform most of the
computation; the number of neurons in each hidden layer can
vary widely depending on the complexity of the net

3. Output layer: Receives the output from the last hidden layer,
conducts the final computation, and produces the ultimate
output of the entire network
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Structure of an ANN

Each neuron has inputs x1, x2, . . . , xn ∈ R with corresponding weights
w1,w2, . . . ,wn ∈ R.
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...

= σ
(
w1,1a(0)1 + w1,2a(0)2 + . . .+ w1,na(0)n

)
= σ

( n∑
i=1

w1,ia
(0)
i

)
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Kolmorogov Arnold Networks



What are Kolmorogov-Arnold Networks?

A neural network architecture based on Kolmorogov’s proof in 1957
that any continuous multivariable function can be represented as a
superposition of a finite number of univariate functions.

KANs replace the fixed linear activation functions in traditional
neural networks with learnable univariate functions.
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KANs

Kolmorogov-Arnold Representation Theorem:

For any continuous function f : [0, 1]n → R, there exist continuous
functions ϕi and ψi such that:

f(x1, x2, . . . , xn) =
2n+1∑
i=1

ϕi

 n∑
j=1

ψij(xj)


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KAN Algorithm

1. Input Transformation:

yi =
n∑
j=1

ψij(xj)

where xj are the inputs and ψij are continuous functions.
2. Output Aggregation:

f(x1, x2, . . . , xn) =
2n+1∑
i=1

ϕi(yi)

where ϕi are continuous functions applied to the transformed
inputs yi.
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KANs vs. ANNs

Figure 2: KAN architecture (left) vs. ANN architecture (right) 14



Unique Features of KANs

KAN activation functions are typically parameterized by spline
functions (piecewise polynomial functions).

They are not limited to predefined forms (such as ReLU, sigmoid, etc.)
but can be adjusted during the training process.

This allows KANs not only to learn features, like regular neural
networks, but also to optimize these learned features to great
accuracy.
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Benefits of KANs

• KANs can achieve high-precision approximation with lower
complexity (amount of parameters)

• Studies have shown that KAN achieves higher accuracy and
efficiency in applications such as hyperspectral image
classification and time series analysis through a more flexible
model architecture

• Liu et al. demonstrated that KAN outperforms traditional
methods in hyperspectral image classification in 2024
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What’s the Catch?

Currently, the biggest bottleneck of KANs lies in its slow training.
KANs are usually 10x slower than regular neural nets, given the same
number of parameters.
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