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Quantum Bits (Qubits)

Classical computing: a bit has 2 states: |0〉 and |1〉. Bits are
observable.
Quantum computing: qubits can be in a superposition of the
states |0〉 and |1〉. Not directly observable.

Definition

A qubit |φ〉 is written as

|φ〉 = α0 |0〉+ α1 |1〉

where |α0|2 + |α1|2 = 1. α0, α1 ∈ C are amplitudes.



Qubits

One thing you can do to a qubit is measure it.
Measuring a qubit collapses it into an observable state of either |0〉
or |1〉 and destroys information of its amplitudes.

Probability |α0|2 of |φ〉 ending up in |0〉 when measured

Probability |α1|2 of |φ〉 ending up in |1〉 when measured

Example

|φ〉 =
1√
2
|0〉+

1√
2
|1〉



Dirac (“bra-ket”) Notation

|φ〉 equals the 2x1 vector

(
α0

α1

)
.

|φ〉 is a “ket” vector. Its
conjugate transpose is the 1x2
“bra” vector

〈φ| = (α∗0, α
∗
1).

Bra-ket comes from the inner
product of bra and ket vectors:

〈φ|ψ〉 = 〈φ| · |ψ〉

(inner product) (bra · ket)



Unitary transformations

We can apply some operation U to a quantum state |φ〉 to get
|ψ〉 = β0 |0〉+ β1 |1〉.

Since |φ〉 is a 2x1 vector, this operation U is a 2x2 matrix

(
a b
c d

)
.

Since our new state |ψ〉 must obey |β0|2 + |β1|2 = 1, U must
preserve the norm of the vector, and so must be a unitary
transformation.

Definition

Matrix U is unitary if
U†U = I

where U† is the adjoint, or conjugate transpose, of U



Why Do Unitary Matrices Preserve the Norm?

Because |ψ〉 = U |φ〉, we have

〈ψ| = (U |φ〉)† = 〈φ|U†

Suggesting
〈ψ|ψ〉 = 〈φ|U†U |φ〉 = 1

Since 〈φ|φ〉 = 1, we thus must have U†U = I .

Thus, any valid operator U we can apply to a quantum state |φ〉
must be a unitary transformation.



2-Qubit Quantum States

A 2-qubit quantum system is mathemtically defined as the tensor
product of 2 qubits

|φ〉 ⊗ |ψ〉 = (α0 |0〉+ α1 |1〉)⊗ (β0 |0〉+ β1 |1〉)
= α0β0 |00〉+ α0β1 |01〉+ α1β0 |10〉+ α1β1 |11〉

It has the 4 basis states

|0〉 ⊗ |0〉 = |00〉
|0〉 ⊗ |1〉 = |01〉
|1〉 ⊗ |0〉 = |10〉
|1〉 ⊗ |1〉 = |11〉



Entanglement

A unique feature in quantum is that you can have entangled
states, where the states are somehow intrinsically linked.

Example

EPR pair:

|φ〉 =
1√
2
|00〉+

1√
2
|11〉

If you measure the first 1 qubit in this system, you get information
on the state of the second qubit.

These 2 qubits are maximally entangled.

Entangled quantum states cannot be written as tensor products
over single qubits.



No Cloning Theorem

Important theorem in quantum computing that states that you
can’t arbitrarily replicate (“clone”) quantum states.

Proof

Suppose a universal cloning machine exists.

Given 2 arbitrary states |φ〉 , |ψ〉, we would be able to get

|φ〉 ⊗ |0〉 → |φ〉 ⊗ |φ〉
|ψ〉 ⊗ |0〉 → |ψ〉 ⊗ |ψ〉

However, this would mean the cloning process gives both
(α |φ〉+ β |ψ〉)⊗ |0〉 → (α |φ〉+ β |ψ〉)⊗ (α |φ〉+ β |ψ〉) and
(α |φ〉+ β |ψ〉)⊗ |0〉 → α |φ〉 ⊗ |φ〉+ β |ψ〉 ⊗ |ψ〉 for all
α, β ∈ C and arbitrary states |φ〉 , |ψ〉.
Contradiction!
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