Toric Ricci solitons in four dimensions

Shiqiao Zhang

MIT PRIMES

Phillips Exeter Academy

MIT PRIMES mini-conference, 2024

Contents

- Riemannian geometry
- The Ricci flow

3 Toric Ricci solitons in four dimensions

Contents

- Riemannian geometry
- 2 The Ricci flow

3 Toric Ricci solitons in four dimensions

Spherical geometry

© 2012 Encyclopædia Britannica, Inc.

Comparison of geometries

Cmglee, CC BY-SA 4.0, via Wikimedia Commons

Riemannian geometry

Riemannian metric: local notions of length, area, angle, and curvature

Why Riemannian geometry?

- Generalization of the differential geometry of surfaces embedded in Euclidean space
- Every smooth manifold admits a Riemannian metric
- General relativity: pseudo-Riemannian geometry

Smooth manifolds

Smooth manifold: topological space M with charts assigning coordinates to open subsets of M and smooth transition maps between charts

Smooth manifolds

Example (stereographic projection)

The 2-sphere $\mathbb{S}^2=\{(x,y,z)\in\mathbb{R}^3\mid x^2+y^2+z^2=1\}$ is a smooth manifold with charts

$$\phi_1(u,v) = \left(\frac{2u}{1+u^2+v^2}, \frac{2v}{1+u^2+v^2}, \frac{-1+u^2+v^2}{1+u^2+v^2}\right),$$

$$\phi_2(u,v) = \left(\frac{2u}{1+u^2+v^2}, \frac{2v}{1+u^2+v^2}, \frac{1-u^2-v^2}{1+u^2+v^2}\right),$$

which exclude the north pole (0,0,1) and the south pole (0,0,-1) respectively.

Leonid 2, CC BY-SA 3.0, via Wikimedia Commons

Tangent vector: velocity of curves on a smooth manifold

Tangent space: the vector space $\mathbf{T}_x M$ of tangent vectors at a point x on a smooth manifold M

Riemannian metric: inner products for tangent spaces that vary smoothly from point to point

TN, Public domain, via Wikimedia Commons

Tangent vector: velocity of curves on a smooth manifold

Tangent space: the vector space $\mathbf{T}_x M$ of tangent vectors at a point x on a smooth manifold M

T_XM

v x

M

TN, Public domain, via Wikimedia Commons

Riemannian metric: inner products for tangent spaces that vary smoothly from point to point

For tangent vectors $u, v \in T_xM$:

$$||u|| = \sqrt{\langle u, u \rangle}, \qquad \angle(u, v) = \arccos \frac{\langle u, v \rangle}{||u|| ||v||}$$

Length of curve $\gamma(t)$:

$$\int_{a}^{b} \|\gamma'(t)\| dt$$

Coordinates: using charts to describe a Riemannian manifold locally

Coordinates: using charts to describe a Riemannian manifold locally

Standard basis: each tangent space $\mathrm{T}_x M$ has the standard basis

$$\partial_1 = (1, 0, \dots, 0), \quad \partial_2 = (0, 1, \dots, 0), \quad \dots, \quad \partial_n = (0, 0, \dots, 1)$$

Coordinates: using charts to describe a Riemannian manifold locally

Standard basis: each tangent space $\mathrm{T}_x M$ has the standard basis

$$\partial_1 = (1, 0, \dots, 0), \quad \partial_2 = (0, 1, \dots, 0), \quad \dots, \quad \partial_n = (0, 0, \dots, 1)$$

Metric coefficients: entries $g_{ij} = \langle \partial_i, \partial_j \rangle$ of the matrix

$$g = \begin{bmatrix} \langle \partial_1, \partial_1 \rangle & \cdots & \langle \partial_1, \partial_n \rangle \\ \vdots & & \vdots \\ \langle \partial_n, \partial_1 \rangle & \cdots & \langle \partial_n, \partial_n \rangle \end{bmatrix},$$

which uniquely determine the metric.

Coordinates: using charts to describe a Riemannian manifold locally

Standard basis: each tangent space $\mathrm{T}_x M$ has the standard basis

$$\partial_1 = (1, 0, \dots, 0), \quad \partial_2 = (0, 1, \dots, 0), \quad \dots, \quad \partial_n = (0, 0, \dots, 1)$$

Metric coefficients: entries $g_{ij} = \langle \partial_i, \partial_j \rangle$ of the matrix

$$g = \begin{bmatrix} \langle \partial_1, \partial_1 \rangle & \cdots & \langle \partial_1, \partial_n \rangle \\ \vdots & & \vdots \\ \langle \partial_n, \partial_1 \rangle & \cdots & \langle \partial_n, \partial_n \rangle \end{bmatrix},$$

which uniquely determine the metric.

We often use the notation

$$g = \sum_{i,j} g_{ij} dx^i dx^j.$$

Example: stereographic projection

nstitute of Russian Academy of Sciences

Example: stereographic projection

The aforementioned stereographic projection

$$\phi(u,v) = \left(\frac{2u}{1+u^2+v^2}, \frac{2v}{1+u^2+v^2}, \frac{-1+u^2+v^2}{1+u^2+v^2}\right)$$

of the 2-sphere $\mathbb{S}^2=\{(x,y,z)\in\mathbb{R}^3\mid x^2+y^2+z^2=1\}$ minus the north pole (0,0,1) has metric

$$g = \frac{4}{(1+u^2+v^2)^2}(du^2+dv^2).$$

Example: stereographic projection

The aforementioned stereographic projection

$$\phi(u,v) = \left(\frac{2u}{1+u^2+v^2}, \frac{2v}{1+u^2+v^2}, \frac{-1+u^2+v^2}{1+u^2+v^2}\right)$$

of the 2-sphere $\mathbb{S}^2 = \{(x, y, z) \in \mathbb{R}^3 \mid x^2 + y^2 + z^2 = 1\}$ minus the north pole (0,0,1) has metric

$$g = \frac{4}{(1+u^2+v^2)^2}(du^2+dv^2).$$

This means that the standard basis $\partial_u = \partial \phi / \partial u$, $\partial_v = \partial \phi / \partial v$ satisfies

- $\|\partial_u\| = \|\partial_v\| = \frac{2}{1 + n^2 + n^2}$; and
- $\langle \partial_u, \partial_v \rangle = 0$, so $\partial_u \perp \partial_v$.

Example: the Poincaré half-plane model

ThatsMaths

Example: the Poincaré half-plane model

The Poincaré half-plane model is a chart for the hyperbolic plane \mathbb{H}^2 using the upper half-plane $\{(x,y)\in\mathbb{R}^2\mid y>0\}$ with metric

$$g = \frac{dx^2 + dy^2}{y^2}.$$

Example: the Poincaré half-plane model

The Poincaré half-plane model is a chart for the hyperbolic plane \mathbb{H}^2 using the upper half-plane $\{(x,y)\in\mathbb{R}^2\mid y>0\}$ with metric

$$g = \frac{dx^2 + dy^2}{y^2}.$$

This means that the standard basis ∂_x, ∂_y satisfies

- $ullet \|\partial_x\| = \|\partial_y\| = rac{1}{y};$ and
- $\langle \partial_x, \partial_y \rangle = 0$, so $\partial_x \perp \partial_y$.

Conformal maps

Conformal map: a map that locally preserves angles

Conformal equivalence: two metrics g and \tilde{g} satisfying

$$\tilde{g} = fg$$

for some scalar function f (conformal factor)

Oleg Alexandrov, Public domain, via Wikimedia Commons

Conformal maps

Examples (conformally Euclidean metrics) Stereographic projection of the 2-sphere

$$g = \frac{4}{(1+x^2+y^2)^2}(dx^2+dy^2)$$

and the Poincaré half-plane model

$$g = \frac{dx^2 + dy^2}{y^2}$$

are both conformal to the Euclidean metric

$$g = dx^2 + dy^2.$$

Oleg Alexandrov, Public domain, via Wikimedia Commons

Contents

Riemannian geometry

2 The Ricci flow

3 Toric Ricci solitons in four dimensions

Curvature

In Euclidean space, we have

$$\frac{\partial^2 f}{\partial x \partial y}(x, y) = \frac{\partial^2 f}{\partial y \partial x}(x, y)$$

if $f: \mathbb{R}^2 \to \mathbb{R}$ has continuous second partial derivatives near (x, y).

Curvature: failure of second (covariant) derivatives to commute

Curvature

In Euclidean space, we have

$$\frac{\partial^2 f}{\partial x \partial y}(x, y) = \frac{\partial^2 f}{\partial y \partial x}(x, y)$$

if $f: \mathbb{R}^2 \to \mathbb{R}$ has continuous second partial derivatives near (x,y).

Curvature: failure of second (covariant) derivatives to commute

Curvature tensor: full measure of curvature, analogous to the Hessian

Ricci tensor: trace of the curvature tensor, analogous to the Laplacian

Under suitable coordinates, the Ricci tensor $\mathrm{Ric}(g)$ is locally given by

$$\mathrm{Ric}(g) = -\frac{1}{2}\Delta g + (\text{lower-order terms})$$

where Δ is the Laplace–Beltrami operator.

Under suitable coordinates, the Ricci tensor $\mathrm{Ric}(g)$ is locally given by

$$\mathrm{Ric}(g) = -rac{1}{2}\Delta g + (ext{lower-order terms})$$

where Δ is the Laplace–Beltrami operator.

Ricci flow:

$$\frac{\partial g}{\partial t} = -2\operatorname{Ric}(g),$$

widely used to find and classify canonical metrics in differential geometry and general relativity.

The Poincaré conjecture

Theorem (Poincaré conjecture)

Let M be a compact three-dimensional topological manifold. If every simple closed curve in M can be deformed continuously to a point, then M is homeomorphic to the 3-sphere.

The Poincaré conjecture

Theorem (Poincaré conjecture)

Let M be a compact three-dimensional topological manifold. If every simple closed curve in M can be deformed continuously to a point, then M is homeomorphic to the 3-sphere.

- Conjectured by Henri Poincaré in 1904
- One of the Clay Mathematics Institute's seven Millennium Prize Problems
- Resolved by Grigori Perelman in 2002–2003, who proved the stronger Thurston's geometrization conjecture based on Richard S. Hamilton's work on the Ricci flow

Ricci solitons

Ricci solitons: self-similar solutions to the Ricci flow

Ricci solitons model the formation of singularities in the Ricci flow.

- Classified in < 3 dimensions
- Complicated singularity behaviors in ≥ 4 dimensions

Ricci solitons

Ricci solitons: self-similar solutions to the Ricci flow

Ricci solitons model the formation of singularities in the Ricci flow.

- ullet Classified in ≤ 3 dimensions
- ullet Complicated singularity behaviors in ≥ 4 dimensions

Einstein metrics: $Ric(g) = \lambda g$ for some constant λ

Einstein metrics are the vacuum solutions to the Einstein field equations in the theory of general relativity.

Examples (Einstein metrics)

- Euclidean space, the n-sphere, hyperbolic space
- Every two-dimensional manifold admits an Einstein metric

Contents

Riemannian geometry

2 The Ricci flow

3 Toric Ricci solitons in four dimensions

Toric metrics

Toric metric: metric that admits an isometric torus action

Under suitable coordinates, a four-dimensional toric metric takes the form

$$g = g_{\text{base}} \oplus g_{\text{torus}}$$

Mathematica

where

- g_{base} is a metric in the base directions x and y;
- ullet $g_{
 m torus}$ is a metric in the toric directions s and t; and
- ullet the coefficients of g depend on x and y but not s or t.

Toric Ricci solitons

I studied toric Ricci solitons of the form

$$g = \frac{1}{q(x,y)^2} \left(\frac{dx^2}{A(x)} + \frac{dy^2}{B(y)} + A(x) ds^2 + B(y) dt^2 + 2\sqrt{A(x)B(y)} \cos \theta(x,y) ds dt \right). \quad (\star)$$

This is a generalization of a class of four-dimensional toric Ricci solitons that Firester and Tsiamis studied in 2024.

Rigidity result

Theorem (October 2024)

If $0 < \theta < \pi/2$ is a constant, the non-axisymmetric metric (\star) is a Ricci soliton if and only if A and B are constants and there are functions $S^x(x,y)$ and $S^y(x,y)$ satisfying the system of equations

$$\partial_y S^x + \partial_x S^y = 4q_x q_y, \qquad \partial_x S^x = 2q_x^2, \qquad \partial_y S^y = 2q_y^2,$$

and

$$Aq_{xx} + Bq_{yy} - \frac{Aq_x^2 + Bq_y^2}{q} - \frac{Aq_xS^x + Bq_yS^y}{q^2} = \frac{\lambda}{q}.$$

Description of Einstein metrics

This leads to an explicit description of Einstein metrics of the form (\star) .

Corollary (October 2024)

If $0<\theta<\pi/2$ is a constant, the non-axisymmetric metric (*) is an Einstein metric if and only if A and B are constants and q(x,y)=ax+by+c for some constants a,b,c. In this case, we have $\lambda=-3(a^2A+b^2B)$ in the Einstein metric equation $\mathrm{Ric}(g)=\lambda g$.

Classification of Ricci solitons

Corollary (October 2024)

If $0 < \theta < \pi/2$ is a constant, a Ricci soliton of the form (\star) where q is a homogeneous function is one of

- an Einstein metric as described on the previous page;
- ② a product of two Ricci soliton surface metrics with the same constant λ defined in the Ricci soliton equation; or
- a product of a flat surface with an Einstein surface, given by

$$g = \frac{1}{f(x)^2} \left(\frac{dx^2}{A} + \frac{dy^2}{B} + A ds^2 + B dt^2 \right)$$

up to translating, rescaling, and swapping x and y, where $f \in \{\cosh, \sinh, \sin\}$, and A and B are constants.

- 4 ロ ト 4 御 ト 4 差 ト 4 差 ト - 差 - 夕 Q C

Acknowledgments

- Mentor: Benjy Firester (MIT)
- MIT PRIMES program
- Raphael Tsiamis

Thanks for your attention!

References

- [1] H.-D. Cao. Recent Progress on Ricci Solitons. 2009. arXiv: 0908.2006 [math.DG].
- [2] B. Firester and R. Tsiamis. *Cohomogeneity two Ricci solitons With sub-Euclidean volume*. 2024. arXiv: 2408.13982 [math.DG].
- [3] G. Perelman. Finite extinction time for the solutions to the Ricci flow on certain three-manifolds. 2003. arXiv: math/0307245 [math.DG].
- [4] G. Perelman. *Ricci flow with surgery on three-manifolds*. 2003. arXiv: math/0303109 [math.DG].
- [5] G. Perelman. The entropy formula for the Ricci flow and its geometric applications. 2002. arXiv: math/0211159 [math.DG].
- [6] S. Zhang. A rigidity result for axisymmetric toric Ricci solitons. 2024. arXiv: 2411.00861 [math.DG].