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Algebra

Definition

An associative algebra A is a vector space over a field k with an
associative bilinear multiplication

· : A× A → A.

Furthermore, we say that A is unital if A has an element 1 such that

a · 1 = 1 · a = a, ∀a ∈ A

We will only work with unital algebras.

Examples

The matrix algebra Matn(k) over k with basis Eij , 1 ≤ i , j ≤ n, such
that Eij · Ekl = δjkEil (δjk = 1 if j = k and zero otherwise).

The free algebra A = k⟨x1, . . . , xn⟩ has a basis of words in letters
x1, . . . , xn. The product of two words is given by concatenation.
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Representation

Definition

A finite dimensional representation of an associative algebra A is a finite
dimensional vector space V with homomorphism of algebras

ρ : A → EndV .

In other words, ρ(∗) is a k-linear map that preserves multiplication and
unit.

Examples

V = A, for ρ : A → EndA, ρ(a) is the operator of left multiplication
by a. This is known as the regular representation.

Definition

A subrepresentation U of V of an algebra A is a vector subspace U ⊂ V
invariant under operators ρ(a) : V → V , ∀a ∈ A.
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Representation (continued)

Definition

A representation V is called irreducible if its only subrepresentations are V
and 0.

Definition

A direct sum of representations (V1, ρ1) and (V2, ρ2) is the vector space
V1 ⊕ V2 = {(v1, v2)|v1 ∈ V1, v2 ∈ V2} with ρ defined by
ρ(a)(v1, v2) = (ρ1(a)v1, ρ2(a)v2) where v1 ∈ V2, v2 ∈ V2, and a ∈ A.

Definition

A representation V is called indecomposable if it cannot be written as the
direct sum of two nonzero subrepresentations.
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Representation Theory

Remark

The main goals in representation theory are to:

Classify all irreducible representations of an algebra A.

Classify all indecomposable representations of A.

We will only work with finite dimensional algebras and representations.
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Schur’s Lemma

Definition

A homomorphism between two representations V1 and V2 denoted by
ϕ : V1 → V2 is a linear map that commutes with the action of A, so
ϕ(av) = aϕ(v) for any v ∈ V1 and a ∈ A.

Lemma (Schur’s lemma)

Suppose V1,V2 are representations of an algebra A. Let ϕ : V1 → V2 be a
nonzero homomorphism of representations. Then:
a) If V1 is irreducible, then ϕ is injective.
b) If V2 is irreducible, then ϕ is surjective.
c) If V1 and V2 are both irreducible, ϕ is an isomorphism.
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Semisimple Representations

Definition

A semisimple representation, also known as completely reducible, is a
direct sum of irreducible representations
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Radicals

Definition

The radical of a finite dimensional algebra A, denoted Rad(A), is the set
of elements in A that act by 0 in all irreducible representations of A.

Definition

A left ideal I of an algebra A is a vector subspace of A that satisfies
the condition that for every a ∈ A and x ∈ I , a · x ∈ I .

A right ideal I is the subspace of A with the condition that x · a ∈ I
for all a ∈ A, x ∈ I .

A two-sided ideal is a subspace of A which is both a left and a right
ideal.

Remark

A radical is necessarily a two-sided ideal.
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Semisimple Algebras

Definition

A finite dimensional algebra A is semisimple if Rad(A) = 0.

Theorem

The following are equivalent for finite dimensional algebra A:
1. A is semisimple;
2.

∑
i (dimVi )

2 = dimA, with Vi ’s being the distinct irreducible
representations of A.
3. A ∼=

⊕
i Matdi (k) for certain di .

4. Any finite dimensional representation of A is semisimple, i.e. completely
reducible (hence why these algebras are also known as semisimple).
5. A is completely reducible representation of A.
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Group Theory

A group represents the symmetries of an object.

Definition

A group G is a set with an operation · : G × G → G (multiplication),
satisfying the following requirements:

Associative: (a · b) · c = a · (b · c),

Identity: There is an e ∈ G such that a · e = e · a = a,

Inverse: There is an a−1 ∈ G such that a · a−1 = a−1 · a = e,

for all a, b, c ∈ G .

Implicitly, a group is closed under multiplication.

Definition

A group homomorphism f : G → H for two groups G ,H is a map f such
that f (g1 · g2) = f (g1) · f (g2) for all g1, g2 ∈ G . It’s an isomorphism if f is
bijective.
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Example: S3

S3 is the group of permutations of three elements. So each σ ∈ S3
maps σ : {1, 2, 3} → {1, 2, 3}
Multiplication: compose permutations.

Identity permutation e maps x 7→ x .

We can describe permutations in terms of cycles.

Fig.1. Some permutations in S3.

Sign of permutation: even/odd number of transpositions.
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Example: D3

Fig.2. Flips and Rotations in D3.

Combining these flips and rotations, we can get 6 possible
configurations. So |D3| = 6.

It turns out that all possible permutations of vertices are obtainable in
D3. So D3

∼= S3.
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Group Representations

Definition

The group GL(V ) of all invertible linear maps from a finite-dimensional
k-vector space V to itself is called the general linear group of V .

Definition

Let G be a finite group. A representation of G is a finite-dimensional
k-vector space V , with a homomorphism ρV : G → GL(V ).

Informally, a representation describes how a group acts on a vector
space.

Such a representation is equivalent to a finite-dimensional
representation of the group algebra k[G ], with basis {ag |g ∈ G} and
the multiplication rule ag · ah = agh.

Let us fix a field k = C.
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Example: Cyclic Groups

Consider the group Cn of order n generated by the element g . It
contains the elements

g , g2, g3, . . . , gn = e

We call such a group cyclic.

There are precisely n non-isomorphic irreducible representations of G ,
all of which are one-dimensional.

Let ζ be a primitive n-th root of unity. Then we have the irreducible
representations C1, . . . ,Cn, with homomorphism

ρk(g) := ζk ,

and hence in general,
ρk(g

a) = ζak .
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Example: Representations of S3

Consider S3, the symmetric group, describing permutations of 3
elements.

There are two one-dimensional representations of S3:

The trivial representation, C+, with ρ(g) := 1.
The sign representation C−, with ρ(g) := sign(g).

Recall that S3 ∼= D3. So we have the dihedral representation C2,
with ρ : S3 → GL2(C):

ρ((12)) =

(
1 0
0 −1

)
ρ((123)) =

(
cos 2π

3 − sin 2π
3

sin 2π
3 cos 2π

3

)
The tautological representation T : ρ : S3 → GL3(C), which sends
each element to the corresponding permutation 3× 3 permutation
matrix.

Doyle, Xia Representation Theory December 18, 2024 18 / 25



Maschke’s Theorem

Theorem (Maschke)

Let G be a finite group. Then C[G ] is semisimple. Equivalently, if V is a
representation of G then we can write

V = V1 ⊕ · · · ⊕ Vn,

where the Vi are (not necessarily distinct) irreducible representations of G .

Corollary (Sum-of-squares)

Let V1, . . . ,Vs be the non-isomorphic irreducible representations of G .
Then

|G | =
s∑

i=1

dim(Vi )
2.
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Characters

Definition

Let V be a representation of G . Then define the character χV : G → C as

χV (g) := Tr|V (ρV (g)).

The irreducible characters form an basis of Fc(G ,C), the space of
class functions G → C.
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Orthogonality Relations

The irreducible characters form an orthonormal basis of Fc(G ,C),
under the form ⟨ , ⟩, defined as

⟨f1, f2⟩ :=
1

|G |
∑
g∈G

f1(g)f2(g).

Theorem (Orthogonality Relations)

Let V and W be representations of G . Then

⟨χV , χW ⟩ = dimHomG (W ,V )

Moreover, if V and W are irreducible, then

⟨χV , χW ⟩ =

{
1 if V ∼= W

0 if V ̸∼= W
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Orthogonality Relations (continued)

Corollary

Let V be a representation of G . If ⟨χV , χV ⟩ = 1, then V is irreducible.

Proof.

HomG (V ,V ) = ⟨χV , χV ⟩ = 1 is trivial, so there are no proper
subrepresentations W ⊂ V .

This gives us an easy way to check if a representation is irreducible.

Corollary

The number of irreducible representations of G is equal to the number of
conjugacy classes of G .
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Character tables

Character tables let us visualize these orthogonality relations.

S3 e (12) (123)

# 1 3 2

C+ 1 1 1
C− 1 −1 1
C2 2 0 −1

Fig.3. Irreducible characters of S3.

Characters evaluated on representative elements.

This shows that C+, C−, and C2 are the only irreducible
representations (up to an isomorphism) of S3, since:

⟨χi , χi ⟩ = 1
Sum-of-squares satisfied.

We also have the Second Orthogonality Relations, for the columns of
the character table.
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Burnside’s Theorem

Definition

We say a group is abelian if its elements commute. For example, the
group C× = C \ {0} under multiplication.

A subgroup H ⊂ G is normal if for all g ∈ G , h ∈ H, we have
ghg−1 = H. Then we write H ◁ G .

A group G is solvable if there exists a sequence of proper normal
subgroups

{1} = G1 ◁ · · · ◁ Gn = G

such that the successive quotients Gi+1/Gi are all abelian.

Theorem (Burnside)

Suppose G is a group of order |G | = paqb, where p and q are primes, and
a, b ≥ 0. Then G is solvable.
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