General Representation Theory and Representations of Finite Groups

Jack Doyle, Lanxuan Xia Mentor: Ivan Motorin

December 18, 2024 MIT PRIMES Conference

Associative unital algebras

- Algebra
- Representations
- Radicals

2 Group Representations

- Groups
- Representations
- Characters

Associative unital algebras

- Algebra
- Representations
- Radicals

2 Group Representations

- Groups
- Representations
- Characters

э

An associative algebra A is a vector space over a field k with an associative bilinear multiplication

 $\cdot: A \times A \rightarrow A.$

Furthermore, we say that A is unital if A has an element 1 such that

$$a \cdot 1 = 1 \cdot a = a, \quad \forall a \in A$$

We will only work with unital algebras.

Examples

- The matrix algebra $Mat_n(k)$ over k with basis $E_{ij}, 1 \le i, j \le n$, such that $E_{ij} \cdot E_{kl} = \delta_{jk}E_{il}$ ($\delta_{jk} = 1$ if j = k and zero otherwise).
- The free algebra $A = k \langle x_1, \dots, x_n \rangle$ has a basis of words in letters x_1, \dots, x_n . The product of two words is given by concatenation.

A finite dimensional representation of an associative algebra A is a finite dimensional vector space V with homomorphism of algebras

$$\rho: A \to \operatorname{End} V.$$

In other words, $\rho(*)$ is a k-linear map that preserves multiplication and unit.

Examples

 V = A, for ρ : A → EndA, ρ(a) is the operator of left multiplication by a. This is known as the regular representation.

Definition

A subrepresentation U of V of an algebra A is a vector subspace $U \subset V$ invariant under operators $\rho(a) : V \to V$, $\forall a \in A$.

A representation V is called irreducible if its only subrepresentations are V and 0.

Definition

A direct sum of representations (V_1, ρ_1) and (V_2, ρ_2) is the vector space $V_1 \oplus V_2 = \{(v_1, v_2) | v_1 \in V_1, v_2 \in V_2\}$ with ρ defined by $\rho(a)(v_1, v_2) = (\rho_1(a)v_1, \rho_2(a)v_2)$ where $v_1 \in V_2$, $v_2 \in V_2$, and $a \in A$.

Definition

A representation V is called indecomposable if it cannot be written as the direct sum of two nonzero subrepresentations.

Remark

The main goals in representation theory are to:

- Classify all irreducible representations of an algebra A.
- Classify all indecomposable representations of A.

We will only work with finite dimensional algebras and representations.

A homomorphism between two representations V_1 and V_2 denoted by $\phi: V_1 \to V_2$ is a linear map that commutes with the action of A, so $\phi(av) = a\phi(v)$ for any $v \in V_1$ and $a \in A$.

Lemma (Schur's lemma)

Suppose V_1 , V_2 are representations of an algebra A. Let $\phi : V_1 \rightarrow V_2$ be a nonzero homomorphism of representations. Then: a) If V_1 is irreducible, then ϕ is injective. b) If V_2 is irreducible, then ϕ is surjective. c) If V_1 and V_2 are both irreducible, ϕ is an isomorphism.

A semisimple representation, also known as completely reducible, is a direct sum of irreducible representations

The radical of a finite dimensional algebra A, denoted Rad(A), is the set of elements in A that act by 0 in all irreducible representations of A.

Definition

- A left ideal *I* of an algebra *A* is a vector subspace of *A* that satisfies the condition that for every *a* ∈ *A* and *x* ∈ *I*, *a* · *x* ∈ *I*.
- A right ideal *I* is the subspace of *A* with the condition that *x* · *a* ∈ *I* for all *a* ∈ *A*, *x* ∈ *I*.
- A two-sided ideal is a subspace of A which is both a left and a right ideal.

Remark

A radical is necessarily a two-sided ideal.

Doyle, Xia

- (日)

A finite dimensional algebra A is semisimple if Rad(A) = 0.

Theorem

The following are equivalent for finite dimensional algebra A:

1. A is semisimple;

2. $\sum_{i} (dimV_i)^2 = dimA$, with V_i 's being the distinct irreducible representations of A.

3. $A \cong \bigoplus_i Mat_{d_i}(k)$ for certain d_i .

4. Any finite dimensional representation of A is semisimple, i.e. completely reducible (hence why these algebras are also known as semisimple).5. A is completely reducible representation of A.

Associative unital algebras

- Algebra
- Representations
- Radicals

2 Group Representations

- Groups
- Representations
- Characters

э

Group Theory

• A group represents the symmetries of an object.

Definition

A group G is a set with an operation $\cdot : G \times G \rightarrow G$ (multiplication), satisfying the following requirements:

- Associative: $(a \cdot b) \cdot c = a \cdot (b \cdot c)$,
- Identity: There is an $e \in G$ such that $a \cdot e = e \cdot a = a$,
- Inverse: There is an $a^{-1} \in G$ such that $a \cdot a^{-1} = a^{-1} \cdot a = e$,

for all $a, b, c \in G$.

• Implicitly, a group is closed under multiplication.

Definition

A group homomorphism $f : G \to H$ for two groups G, H is a map f such that $f(g_1 \cdot g_2) = f(g_1) \cdot f(g_2)$ for all $g_1, g_2 \in G$. It's an isomorphism if f is bijective.

- S_3 is the group of permutations of three elements. So each $\sigma \in S_3$ maps $\sigma : \{1, 2, 3\} \rightarrow \{1, 2, 3\}$
- Multiplication: compose permutations.
- Identity permutation e maps $x \mapsto x$.
- We can describe permutations in terms of cycles.

Fig.1. Some permutations in S_3 .

• Sign of permutation: even/odd number of transpositions.

14 / 25

Fig.2. Flips and Rotations in D_3 .

- Combining these flips and rotations, we can get 6 possible configurations. So $|D_3| = 6$.
- It turns out that all possible permutations of vertices are obtainable in D_3 . So $D_3 \cong S_3$.

The group GL(V) of all invertible linear maps from a finite-dimensional k-vector space V to itself is called the general linear group of V.

Definition

Let G be a finite group. A representation of G is a finite-dimensional k-vector space V, with a homomorphism $\rho_V : G \to GL(V)$.

- Informally, a representation describes how a group acts on a vector space.
- Such a representation is equivalent to a finite-dimensional representation of the **group algebra** k[G], with basis $\{a_g | g \in G\}$ and the multiplication rule $a_g \cdot a_h = a_{gh}$.
- Let us fix a field $k = \mathbb{C}$.

16 / 25

Example: Cyclic Groups

• Consider the group C_n of order n generated by the element g. It contains the elements

$$g, g^2, g^3, \ldots, g^n = e$$

We call such a group **cyclic**.

- There are precisely *n* non-isomorphic irreducible representations of *G*, all of which are one-dimensional.
- Let ζ be a primitive n-th root of unity. Then we have the irreducible representations C₁,..., C_n, with homomorphism

$$\rho_k(\mathbf{g}) := \zeta^k,$$

and hence in general,

$$\rho_k(g^a) = \zeta^{ak}$$

Example: Representations of S_3

- Consider S_3 , the symmetric group, describing permutations of 3 elements.
- There are two one-dimensional representations of S_3 :
 - The **trivial** representation, \mathbb{C}_+ , with $\rho(g) := 1$.
 - The sign representation \mathbb{C}_- , with $\rho(g) := \operatorname{sign}(g)$.
- Recall that S₃ ≅ D₃. So we have the **dihedral** representation C², with ρ : S₃ → GL₂(C):

$$\rho((12)) = \begin{pmatrix} 1 & 0\\ 0 & -1 \end{pmatrix}$$
$$\rho((123)) = \begin{pmatrix} \cos\frac{2\pi}{3} & -\sin\frac{2\pi}{3}\\ \sin\frac{2\pi}{3} & \cos\frac{2\pi}{3} \end{pmatrix}$$

 The tautological representation T: ρ: S₃ → GL₃(C), which sends each element to the corresponding permutation 3 × 3 permutation matrix.

Doyle, Xia

Theorem (Maschke)

Let G be a finite group. Then $\mathbb{C}[G]$ is semisimple. Equivalently, if V is a representation of G then we can write

$$V=V_1\oplus\cdots\oplus V_n,$$

where the V_i are (not necessarily distinct) irreducible representations of G.

Corollary (Sum-of-squares)

Let V_1, \ldots, V_s be the non-isomorphic irreducible representations of G. Then

$$|G| = \sum_{i=1}^{3} \dim(V_i)^2.$$

Let V be a representation of G. Then define the character $\chi_V: G \to \mathbb{C}$ as

$$\chi_V(g) := \mathsf{Tr}|_V(\rho_V(g)).$$

The irreducible characters form an basis of F_c(G, C), the space of class functions G → C.

Orthogonality Relations

The irreducible characters form an orthonormal basis of F_c(G, C), under the form ⟨ , ⟩, defined as

$$\langle f_1, f_2 \rangle := \frac{1}{|G|} \sum_{g \in G} f_1(g) \overline{f_2(g)}.$$

Theorem (Orthogonality Relations)

Let V and W be representations of G. Then

$$\langle \chi_V, \chi_W \rangle = \dim \operatorname{Hom}_G(W, V)$$

Moreover, if V and W are irreducible, then

$$\langle \chi_V, \chi_W \rangle = \begin{cases} 1 & \text{if } V \cong W \\ 0 & \text{if } V \ncong W \end{cases}$$

Corollary

Let V be a representation of G. If $\langle \chi_V, \chi_V \rangle = 1$, then V is irreducible.

Proof.

 $\operatorname{Hom}_{G}(V, V) = \langle \chi_{V}, \chi_{V} \rangle = 1$ is trivial, so there are no proper subrepresentations $W \subset V$.

• This gives us an easy way to check if a representation is irreducible.

Corollary

The number of irreducible representations of G is equal to the number of conjugacy classes of G.

• Character tables let us visualize these orthogonality relations.

	S_3	е	(12)	(123)
	#	1	3	2
	\mathbb{C}_+	1	1	1
	\mathbb{C}_{-}	1	-1	1
	\mathbb{C}^2	2	0	-1
~				

Fig.3. Irreducible characters of S_3 .

- Characters evaluated on representative elements.
- This shows that \mathbb{C}_+ , \mathbb{C}_- , and \mathbb{C}^2 are the **only** irreducible representations (up to an isomorphism) of S_3 , since:
 - $\langle \chi_i, \chi_i \rangle = 1$
 - Sum-of-squares satisfied.
- We also have the Second Orthogonality Relations, for the columns of the character table.

Burnside's Theorem

Definition

- We say a group is abelian if its elements commute. For example, the group C[×] = C \ {0} under multiplication.
- A subgroup H ⊂ G is normal if for all g ∈ G, h ∈ H, we have ghg⁻¹ = H. Then we write H ⊲ G.
- A group G is solvable if there exists a sequence of proper normal subgroups

$$\{1\}=G_1\triangleleft\cdots\triangleleft G_n=G$$

such that the successive quotients G_{i+1}/G_i are all abelian.

Theorem (Burnside)

Suppose G is a group of order $|G| = p^a q^b$, where p and q are primes, and a, $b \ge 0$. Then G is solvable.

24 / 25

< □ > < □ > < □ > < □ > < □ > < □ >

Burnside's Theorem

Definition

- We say a group is abelian if its elements commute. For example, the group C[×] = C \ {0} under multiplication.
- A subgroup H ⊂ G is normal if for all g ∈ G, h ∈ H, we have ghg⁻¹ = H. Then we write H ⊲ G.
- A group G is solvable if there exists a sequence of proper normal subgroups

$$\{1\}=G_1\triangleleft\cdots\triangleleft G_n=G$$

such that the successive quotients G_{i+1}/G_i are all abelian.

Theorem (Burnside)

Suppose G is a group of order $|G| = p^a q^b$, where p and q are primes, and a, $b \ge 0$. Then G is solvable.

< □ > < □ > < □ > < □ > < □ > < □ >

N. Etingof. et al.

Introduction to Representation Theory. AMS, 2011.

🛸 M. Artin.

Algebra (2nd ed.) Prentice Hall, 2011.