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Introduction to Incidence Geometry

Incidence Geometry focuses on the study of geometric objects
(points, lines, and other shapes) and their relationships.

When a point lies on a line, we call it incident to that line.
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The Szemerédi–Trotter Theorem

The Szemerédi–Trotter theorem is a classic result in Incidence Geometry.
It gives an upper bound on the number of point-line incidences determined
by a finite set of points and a finite set of lines.

Theorem (Szeméredi-Trotter)

Let P be a set of m points in R2 and L a set of n lines in R2. Let the set
of incidences I (P, L) between P and L be defined as

I (P, L) = {(p, ℓ) ∈ P × L | p ∈ ℓ}.

Then, the following inequality holds for some absolute constant c :

|I (P, L)| ≤ c(m2/3n2/3 +m + n).
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ST Theorem: Tightness of Bound

Example

For any M ∈ N, consider the set of points on the integer lattice

P = {(x , y) ∈ Z2 | 1 ≤ x ≤ M; 1 ≤ y ≤ 2M2},

and the set of lines

L = {(x , ax + b) ∈ R2 | a, b ∈ Z; 1 ≤ a ≤ M; 1 ≤ b ≤ M2}.
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ST Theorem: Tightness of Bound

Example

For any M ∈ N, consider the set of points on the integer lattice

P = {(x , y) ∈ Z2 | 1 ≤ x ≤ M; 1 ≤ y ≤ 2M2},

and the set of lines

L = {(x , ax + b) ∈ R2 | a, b ∈ Z; 1 ≤ a ≤ M; 1 ≤ b ≤ M2}.

We have m = |P| = 2M3, n = |L| = M3. Notice that every line in L
intersects M points in P, at x = 1, 2, . . .M. This gives M4 incidences
total. Indeed, the ST theorem gives

|I (P, L)| ≤ c(m2/3n2/3 +m + n) ∼ O(M4).
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Talk Overview

1 Proof sketch of the Szeméredi-Trotter theorem over the reals

2 The unit and distinct distances problems over the reals

3 Introduction to the p-adic integers

4 Szeméredi-Trotter theorem, unit distances problem, and distinct
distances problem over the p-adics
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ST Theorem: Cell Partitioning Lemma

Cell Partitioning Lemma:

We are able to divide the plane into regions (cells) bounded by a
relatively small subset of lines from L such that each cell has not too
many lines passing through it.
Can be proven by the probabilistic method.
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ST Theorem: Cell Partitioning Proof Sketch

Bounding incidences within cells:

Use simpler bound derived by Cauchy-Schwarz to estimate the number
of incidences in the interior of each cell.

Summing over partition:

Careful choice of the size of the set of partitioning lines.
Add results from all cells and handle incidences along boundaries via
recursion to finish the proof of the Szemerédi–Trotter bound.
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Applications of ST Theorem

Many proofs linking different areas:

Combinatorial geometry (Cell Partitioning).
Graph theory (Crossing Numbers)
Topological and Algebraic Methods (Polynomial Ham Sandwich
theorem)

Connection to other problems in combinatorial geometry (Erdős
problems)

Erdős distinct distances problem
Erdős unit distances problem
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1 Proof sketch of the Szeméredi-Trotter theorem over the reals

2 The unit and distinct distances problems over the reals

3 Introduction to the p-adic integers
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The Distinct Distances Problem Over the Reals

Problem (the distinct distances problem in R2)

Use the Euclidean distance: d(pi , pj) =
√
(xi − xj)2 + (yi − yj)2.

Let P = {p1, p2, . . . , pn} be a set of n points in R2.

What is the minimum number of distinct distances d(pi , pj)
determined by n points?

Example:
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Distinct Distances Problem Over the Reals

Theorem (Erdős; 1946. Guth and Katz; 2015.)

Asymptotically, for some positive constants c1 and c2, the minimal number
of distinct distances, f (n), is

c1

(
n

log(n)

)
≤ f (n) ≤ c2

(
n√

log(n)

)
.

The upper bound is given by a
√
n ×

√
n square grid.
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Theorem (Erdős; 1946. Guth and Katz; 2015.)

Asymptotically, for some positive constants c1 and c2, the minimal number
of distinct distances, f (n), is

c1

(
n

log(n)

)
≤ f (n) ≤ c2

(
n√

log(n)

)
.

The upper bound is given by a
√
n ×

√
n square grid.

Andrew Carratu, Sophia Tatar, Brandon Xu (MIT PRIMES) Incidence Geometry in R and Zp 13 / 37



The Unit Distance Problem Over the Reals

Problem (the unit distance problem in R2)

1 We are once again given n points P = {p1, p2, . . . , pn} in the real
plane for some positive integer n.

2 Define g(n) to be the maximum number of pairs 1 ≤ i < j ≤ n such
that d(pi , pj) = 1.

This optimal graph of squares and equilateral triangles shows g(9) = 18.

(Erdős, 1946) finds a construction proving g(n) ≥ n
1+ c

log(log n) .
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The Unit Distance Problem Over the Reals

How do we find an upper bound? Just turn it into an incidence problem!
1 If we draw the unit circle centered at each point, we create 2g(n)

incidences between n points and n unit circles.

2 A variant of the ST theorem then proves that g(n) ≤ cn
4
3 .
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Introducing p-Adics

Definition (vp(x)–p-adic valuation)

We call the p-adic valuation of x , vp(x), the largest nonnegative integer
such that pvp(x) divides x.

Definition (p-adic norm)

For an integer x , the p-adic norm is given by

|x |p = p−vp(x).
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Introducing p-Adics

Definition (p-adic integer)

A p-adic integer is an element of the ring Zp, which consists of all
formal power series of the form:

x =
∞∑
n=0

anp
n,

where an ∈ {0, 1, 2, . . . , p − 1} for each n.

The series converges in p-adic space
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Introducing p-Adics

Definition (p-adic distance)

The p-adic distance between two p-adic integers a and b is written
dp(a, b) and defined as

dp(a, b) = |a− b|p = p−vp(a−b).

Example

What is d5(38, 23)?

38− 23 = 15 so we need to evaluate |15|5. Observe that 5 divides 15,
but 25 does not. Therefore, v5(15) = 1, so |15|5 = 5−1 = 1

5 .

Notice that the distance between two integers never exceeds 1! In fact,
dp(a, b) = 1 if and only if a ̸≡ b (mod p).

This is because if a ̸≡ b, then we know p ̸ | a− b, so vp(a− b) = 0,
meaning p−vp(a−b) = p0 = 1, while if a ≡ b, then we know p|a− b,
so vp(a− b) ≥ 1, meaning p−vp(a−b) ≤ p−1 < 1.
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Overview of the p-Adic Integers

Below is a representation of the 3-adic integers, numbers of the form
x = a0 + a1 · 3 + a2 · 32 + · · · .
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The ST Theorem Over the p-Adic Plane Z2
p

All points in Z2
p lie within the complex plane C2, and

Szemeredi-Trotter in C2 was already proven (Tóth, 2003).

Can we find a direct proof of the ST theorem in Z2
p?

While the aforementioned R2 proof utilizes cell partitioning, in Z2
p a

line doesn’t actually divide the plane into two sides like it does in R2,
so partitioning doesn’t make sense.
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The Distinct Distances Problem Over the p-Adics

Theorem (Carratu, Tatar, Xu; 2024)

The minimum number of distinct distances for n points in Zp is ⌈logp n⌉.

Key idea: the number of distinct distances is determined by the
unique k for which pk−1 < n ≤ pk .
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The Distinct Distances Problem Over the p-Adics

The result generalizes for d-dimensional p-adic space:
The minimum number of distinct distances for n points in Zd

p is

⌈logp n
1
d ⌉.
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The Unit Distances Problem Over the p-Adics

Theorem (Carratu, Tatar, Xu; 2024)

The maximum number of unit distances for n points in Zp is

1

2
(n2 − nα− αβ − β)

where α, β ∈ Z≥0 are such that β < p and n = αp + β.

To prove this we observe the following:

When a and b have the same remainder mod p, we know dp(a, b) < 1.
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The Unit Distances Problem Over the p-Adics

This inspires us to color the p-adic number line with p colors:

Above is the coloring for p = 3.

Observe that the only pairs of points that AREN’T unit distance apart are
those of the same color! Thus, f (n)=(total pairs)-(same-color pairs)
Letting bi be the number of points of color i , we find

f (n) =
1

2
(n2 −

∑
b2i )

and because
∑

bi = n, a single application of the Cauchy-Schwarz
inequality finishes.
(Note: this argument easily generalizes to d dimensions by replacing p
colors with pd colors.)
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