Incidence Geometry in Euclidean and p-Adic Spaces

Andrew Carratu, Sophia Tatar, and Brandon Xu Mentored by Dr. Manik Dhar

Winter PRIMES Mini-Conference MIT PRIMES Local Reading

12/8/2024

Andrew Carratu, Sophia Tatar, Brandon Xu (MIT PRIMES) lacktroned Geometry in R and Z_p 1/37

Introduction to Incidence Geometry

- Incidence Geometry focuses on the study of geometric objects (points, lines, and other shapes) and their relationships.
- When a point lies on a line, we call it **incident** to that line.

The Szemerédi–Trotter theorem is a classic result in Incidence Geometry. It gives an upper bound on the number of point-line incidences determined by a finite set of points and a finite set of lines.

The Szemerédi–Trotter theorem is a classic result in Incidence Geometry. It gives an upper bound on the number of point-line incidences determined by a finite set of points and a finite set of lines.

Theorem (Szeméredi-Trotter)

Let P be a set of m points in \mathbb{R}^2 and L a set of n lines in \mathbb{R}^2 . Let the set of incidences $I(P, L)$ between P and L be defined as

$$
I(P,L)=\{(p,\ell)\in P\times L\mid p\in\ell\}.
$$

Then, the following inequality holds for some absolute constant c:

$$
|I(P,L)| \leq c(m^{2/3}n^{2/3}+m+n).
$$

Example

For any $M \in \mathbb{N}$, consider the set of points on the integer lattice

$$
P = \{ (x, y) \in \mathbb{Z}^2 \mid 1 \le x \le M; 1 \le y \le 2M^2 \},\
$$

and the set of lines

$$
L = \{ (x, ax + b) \in \mathbb{R}^2 \mid a, b \in \mathbb{Z}; 1 \le a \le M; 1 \le b \le M^2 \}.
$$

Example

For any $M \in \mathbb{N}$, consider the set of points on the integer lattice

$$
P = \{ (x, y) \in \mathbb{Z}^2 \mid 1 \le x \le M; 1 \le y \le 2M^2 \},\
$$

and the set of lines

$$
L=\{(x, ax+b)\in\mathbb{R}^2\mid a,b\in\mathbb{Z}; 1\leq a\leq M; 1\leq b\leq M^2\}.
$$

Example

For any $M \in \mathbb{N}$, consider the set of points on the integer lattice

$$
P = \{ (x, y) \in \mathbb{Z}^2 \mid 1 \le x \le M; 1 \le y \le 2M^2 \},\
$$

and the set of lines

$$
L=\{(x,ax+b)\in\mathbb{R}^2\mid a,b\in\mathbb{Z}; 1\leq a\leq M; 1\leq b\leq M^2\}.
$$

We have $m=|P|=2M^3,~n=|L|=M^3.$ Notice that every line in L intersects M points in P , at $x=1,2,\ldots M$. This gives M^4 incidences total. Indeed, the ST theorem gives

$$
|I(P,L)| \le c(m^{2/3}n^{2/3}+m+n) \sim O(M^4).
$$

- **1** Proof sketch of the Szeméredi-Trotter theorem over the reals
- ² The unit and distinct distances problems over the reals
- \bullet Introduction to the *p*-adic integers
- **4** Szeméredi-Trotter theorem, unit distances problem, and distinct distances problem over the p-adics

• Cell Partitioning Lemma:

- We are able to divide the plane into regions (cells) bounded by a relatively small subset of lines from L such that each cell has not too many lines passing through it.
- Can be proven by the probabilistic method.
- Cell Partitioning Lemma:
	- We are able to divide the plane into regions (cells) bounded by a relatively small subset of lines from L such that each cell has not too many lines passing through it.
	- Can be proven by the probabilistic method.

- Cell Partitioning Lemma:
	- We are able to divide the plane into regions (cells) bounded by a relatively small subset of lines from L such that each cell has not too many lines passing through it.
	- Can be proven by the probabilistic method.

ST Theorem: Cell Partitioning Proof Sketch

- Bounding incidences within cells:
	- Use simpler bound derived by Cauchy-Schwarz to estimate the number of incidences in the interior of each cell.

ST Theorem: Cell Partitioning Proof Sketch

- Bounding incidences within cells:
	- Use simpler bound derived by Cauchy-Schwarz to estimate the number of incidences in the interior of each cell.
- Summing over partition:
	- Careful choice of the size of the set of partitioning lines.
	- Add results from all cells and handle incidences along boundaries via recursion to finish the proof of the Szemerédi–Trotter bound.

- Many proofs linking different areas:
	- Combinatorial geometry (Cell Partitioning).
	- Graph theory (Crossing Numbers)
	- Topological and Algebraic Methods (Polynomial Ham Sandwich theorem)
- Many proofs linking different areas:
	- Combinatorial geometry (Cell Partitioning).
	- Graph theory (Crossing Numbers)
	- Topological and Algebraic Methods (Polynomial Ham Sandwich theorem)
- Connection to other problems in combinatorial geometry (Erdős problems)
	- Erdős distinct distances problem
	- Erdős unit distances problem
- **1** Proof sketch of the Szeméredi-Trotter theorem over the reals
- **2** The unit and distinct distances problems over the reals
- \bullet Introduction to the *p*-adic integers
- **4** Szeméredi-Trotter theorem, unit distances problem, and distinct distances problem over the p-adics

The Distinct Distances Problem Over the Reals

Problem (the distinct distances problem in $\mathbb{R}^2)$

- Use the Euclidean distance: $d(p_i, p_j) = \sqrt{(x_i x_j)^2 + (y_i y_j)^2}$.
- Let $P = \{p_1, p_2, \ldots, p_n\}$ be a set of n points in \mathbb{R}^2 .
- What is the minimum number of distinct distances $d(p_i, p_j)$ determined by *n* points?

The Distinct Distances Problem Over the Reals

Problem (the distinct distances problem in $\mathbb{R}^2)$

- Use the Euclidean distance: $d(p_i, p_j) = \sqrt{(x_i x_j)^2 + (y_i y_j)^2}$.
- Let $P = \{p_1, p_2, \ldots, p_n\}$ be a set of n points in \mathbb{R}^2 .
- What is the minimum number of distinct distances $d(p_i, p_j)$ determined by *n* points?

Example:

Distances: $1, 1, 1, 1, \sqrt{2}, \sqrt{2}$

Distinct Distances: 1, 12

The Distinct Distances Problem Over the Reals

Problem (the distinct distances problem in $\mathbb{R}^2)$

- Use the Euclidean distance: $d(p_i, p_j) = \sqrt{(x_i x_j)^2 + (y_i y_j)^2}$.
- Let $P = \{p_1, p_2, \ldots, p_n\}$ be a set of n points in \mathbb{R}^2 .
- What is the minimum number of distinct distances $d(p_i, p_j)$ determined by *n* points?

Example:

Distinct Distances Problem Over the Reals

Theorem (Erdős; 1946. Guth and Katz; 2015.)

Asymptotically, for some positive constants c_1 and c_2 , the minimal number of distinct distances, $f(n)$, is

$$
c_1\left(\frac{n}{log(n)}\right) \leq f(n) \leq c_2\left(\frac{n}{\sqrt{log(n)}}\right).
$$

Distinct Distances Problem Over the Reals

Theorem (Erdős; 1946. Guth and Katz; 2015.)

Asymptotically, for some positive constants c_1 and c_2 , the minimal number of distinct distances, $f(n)$, is

$$
c_1\left(\frac{n}{log(n)}\right) \leq f(n) \leq c_2\left(\frac{n}{\sqrt{log(n)}}\right).
$$

The upper bound is given by a $\sqrt{n} \times \sqrt{n}$ \overline{n} square grid.

Problem (the unit distance problem in $\mathbb{R}^2)$

- \bullet We are once again given n points $P = \{p_1, p_2, \ldots, p_n\}$ in the real plane for some positive integer n.
- **4** Define $g(n)$ to be the maximum number of pairs $1 \leq i < j \leq n$ such that $d(p_i, p_j) = 1$.

This optimal graph of squares and equilateral triangles shows $g(9) = 18$.

Problem (the unit distance problem in $\mathbb{R}^2)$

- \bullet We are once again given n points $P = \{p_1, p_2, \ldots, p_n\}$ in the real plane for some positive integer n.
- **4** Define $g(n)$ to be the maximum number of pairs $1 \leq i < j \leq n$ such that $d(p_i, p_j) = 1$.

This optimal graph of squares and equilateral triangles shows $g(9) = 18$. (Erdős, 1946) finds a construction proving $g(n) \ge n^{1 + \frac{c^{(n)}}{\log(\log n)}}$.

How do we find an upper bound? Just turn it into an incidence problem!

- **1** If we draw the unit circle centered at each point, we create $2g(n)$ incidences between n points and n unit circles.
- 2 A variant of the ST theorem then proves that $g(n) \leq cn^{\frac{4}{3}}.$

How do we find an upper bound? Just turn it into an incidence problem!

- **1** If we draw the unit circle centered at each point, we create $2g(n)$ incidences between n points and n unit circles.
- 2 A variant of the ST theorem then proves that $g(n) \leq cn^{\frac{4}{3}}.$

- **1** Proof sketch of the Szeméredi-Trotter theorem over the reals
- ² The unit and distinct distances problems over the reals
- \bullet Introduction to the *p*-adic integers
- **4** Szeméredi-Trotter theorem, unit distances problem, and distinct distances problem over the p-adics

Definition $(v_p(x)$ -p-adic valuation)

We call the **p-adic valuation** of x, $v_p(x)$, the largest nonnegative integer such that $\rho^{\nu_{\rho}(x)}$ divides x.

Definition ($v_p(x)$ –p-adic valuation)

We call the **p-adic valuation** of x, $v_p(x)$, the largest nonnegative integer such that $\rho^{\nu_{\rho}(x)}$ divides x.

Definition (p-adic norm)

$$
|x|_p=p^{-\nu_p(x)}.
$$

Definition ($v_p(x)$ –p-adic valuation)

We call the **p-adic valuation** of x, $v_p(x)$, the largest nonnegative integer such that $\rho^{\nu_{\rho}(x)}$ divides x.

Definition (p-adic norm)

$$
|x|_p=p^{-\nu_p(x)}.
$$

Definition ($v_p(x)$ –p-adic valuation)

We call the **p-adic valuation** of x, $v_p(x)$, the largest nonnegative integer such that $\rho^{\nu_{\rho}(x)}$ divides x.

Definition (p-adic norm)

$$
|x|_p=p^{-\nu_p(x)}.
$$

Definition ($v_p(x)$ –p-adic valuation)

We call the **p-adic valuation** of x, $v_p(x)$, the largest nonnegative integer such that $\rho^{\nu_{\rho}(x)}$ divides x.

Definition (p-adic norm)

$$
|x|_p=p^{-\nu_p(x)}.
$$

Definition (p-adic integer)

A **p-adic integer** is an element of the ring \mathbb{Z}_p , which consists of all formal power series of the form:

$$
x=\sum_{n=0}^{\infty}a_np^n,
$$

where $a_n \in \{0, 1, 2, \ldots, p-1\}$ for each *n*.

• The series converges in p-adic space

Definition (p-adic distance)

The **p-adic distance** between two p-adic integers a and b is written $d_p(a, b)$ and defined as

$$
d_p(a,b) = |a-b|_p = p^{-\nu_p(a-b)}.
$$

Example

What is $d_5(38, 23)$?

• 38 $-$ 23 $=$ 15 so we need to evaluate $|15|_5$. Observe that 5 divides 15, but 25 does not. Therefore, $\mathsf{v}_5(15)=1$, so $|15|_5=5^{-1}=\frac{1}{5}$ $\frac{1}{5}$.

Notice that the distance between two integers never exceeds 1! In fact, $d_p(a, b) = 1$ if and only if $a \not\equiv b$ (mod p).

• This is because if $a \not\equiv b$, then we know $p \nmid a - b$, so $v_p(a - b) = 0$, meaning $p^{-\nu_p(a-b)}=p^0=1$, while if $a\equiv b$, then we know $p|a-b,$ so $v_p(a-b)\geq 1$, meaning $p^{-v_p(a-b)}\leq p^{-1}< 1$.

Below is a representation of the 3-adic integers, numbers of the form $x = a_0 + a_1 \cdot 3 + a_2 \cdot 3^2 + \cdots$

Below is a representation of the 3-adic integers, numbers of the form $x = \frac{a_0}{a_1} + a_1 \cdot 3 + a_2 \cdot 3^2 + \cdots$

• The three largest circles represent remainders modulo 3.

Below is a representation of the 3-adic integers, numbers of the form $x = a_0 + a_1 \cdot 3 + a_2 \cdot 3^2 + \cdots$

- The three largest circles represent remainders modulo 3.
- The circles of the next size represent remainders modulo 9, etc.

Below is a representation of the 3-adic integers, numbers of the form $x = a_0 + a_1 \cdot 3 + a_2 \cdot 3^2 + \cdots$

- The three largest circles represent remainders modulo 3.
- The circles of the next size represent remainders modulo 9, etc. \bullet
- The integers within a subcircle of a given circle have a particular 3-adic distance from integers in another subcircle of that circle.

Andrew Carratu, Sophia Tatar, Brandon Xu (MIT PRIMES) [Incidence Geometry in](#page-0-0) R and Z_p 25 / 37

- **1** Proof sketch of the Szeméredi-Trotter theorem over the reals
- **2** The unit and distinct distances problem over the reals
- \bullet Introduction to the *p*-adic integers
- **4** Szeméredi-Trotter theorem, unit distances problem, and distinct distances problem over the p -adics

The ST Theorem Over the p-Adic Plane \mathbb{Z}_p^2 p

- All points in \mathbb{Z}_p^2 lie within the complex plane \mathbb{C}^2 , and Szemeredi-Trotter in \mathbb{C}^2 was already proven (Tóth, 2003).
- Can we find a direct proof of the ST theorem in \mathbb{Z}_p^2 ?
- While the aforementioned \mathbb{R}^2 proof utilizes cell partitioning, in \mathbb{Z}_ρ^2 a line doesn't actually divide the plane into two sides like it does in \mathbb{R}^2 , so partitioning doesn't make sense.

Theorem (Carratu, Tatar, Xu; 2024)

The minimum number of distinct distances for n points in \mathbb{Z}_p is $\lceil \log_p n \rceil$.

Key idea: the number of distinct distances is determined by the unique k for which $p^{k-1} < n \leq p^k.$

Theorem (Carratu, Tatar, Xu; 2024)

The minimum number of distinct distances for n points in \mathbb{Z}_p is $\lceil \log_p n \rceil$.

- Key idea: the number of distinct distances is determined by the unique k for which $p^{k-1} < n \leq p^k.$
- $k = 1$:

Theorem (Carratu, Tatar, Xu; 2024)

The minimum number of distinct distances for n points in \mathbb{Z}_p is $\lceil \log_p n \rceil$.

- Key idea: the number of distinct distances is determined by the unique k for which $p^{k-1} < n \leq p^k.$
- $k = 2$:

The result generalizes for d -dimensional p -adic space: The minimum number of distinct distances for \bm{n} points in \mathbb{Z}_p^d is $\lceil \log_p n^{\frac{1}{d}} \rceil$.

The result generalizes for d -dimensional p -adic space: The minimum number of distinct distances for \bm{n} points in \mathbb{Z}_p^d is $\lceil \log_p n^{\frac{1}{d}} \rceil$.

The result generalizes for d -dimensional p -adic space: The minimum number of distinct distances for \bm{n} points in \mathbb{Z}_p^d is $\lceil \log_p n^{\frac{1}{d}} \rceil$. $\begin{array}{cc} \bullet & \bullet & \bullet & \bullet \\ \circ & \circ & \bullet & \bullet \end{array}$ $\overline{2}$ ρ^3 ρ^2 P ρ^2 P^3

The result generalizes for d -dimensional p -adic space: The minimum number of distinct distances for \bm{n} points in $\mathbb{Z}_\bm{\rho}^{\bm{d}}$ is $\lceil \log_p n^{\frac{1}{d}} \rceil$. $P-1$ P \boldsymbol{o} P^2 $b³$ ρ^3 o ρ^2 \vec{P} P o²

Theorem (Carratu, Tatar, Xu; 2024)

The maximum number of unit distances for n points in \mathbb{Z}_p is

$$
\frac{1}{2}(n^2 - n\alpha - \alpha\beta - \beta)
$$

where $\alpha, \beta \in \mathbb{Z}_{\geq 0}$ are such that $\beta < p$ and $n = \alpha p + \beta$.

To prove this we observe the following:

Theorem (Carratu, Tatar, Xu; 2024)

The maximum number of unit distances for n points in \mathbb{Z}_p is

$$
\frac{1}{2}(n^2 - n\alpha - \alpha\beta - \beta)
$$

where $\alpha, \beta \in \mathbb{Z}_{\geq 0}$ are such that $\beta < p$ and $n = \alpha p + \beta$.

To prove this we observe the following:

When a and b have the same remainder mod p, we know $d_p(a, b) < 1$.

This inspires us to color the p-adic number line with p colors:

This inspires us to color the p-adic number line with p colors:

Observe that the only pairs of points that AREN'T unit distance apart are those of the same color! Thus, $f(n) = (total pairs)$ -(same-color pairs)

This inspires us to color the p-adic number line with p colors:

Observe that the only pairs of points that AREN'T unit distance apart are those of the same color! Thus, $f(n) =$ (total pairs)-(same-color pairs) Letting b_i be the number of points of color i , we find

$$
f(n)=\frac{1}{2}(n^2-\sum b_i^2)
$$

and because $\sum b_i = n$, a single application of the Cauchy-Schwarz inequality finishes.

This inspires us to color the p-adic number line with p colors:

Observe that the only pairs of points that AREN'T unit distance apart are those of the same color! Thus, $f(n) =$ (total pairs)-(same-color pairs) Letting b_i be the number of points of color i, we find

$$
f(n)=\frac{1}{2}(n^2-\sum b_i^2)
$$

and because $\sum b_i = n$, a single application of the Cauchy-Schwarz inequality finishes.

(Note: this argument easily generalizes to d dimensions by replacing p colors with p^d colors.)

Thank you to our mentor Dr. Manik Dhar, Prof. Etingof, Dr. Gerovitch, Dr. Khovanova, Dr. Gotti, and our parents!

Questions?

Andrew Carratu, Sophia Tatar, Brandon Xu (MIT PRIMES) **[Incidence Geometry in](#page-0-0) R and Z**_n 37 / 37 / 37