Incidence Geometry in Euclidean and p-Adic Spaces

Andrew Carratu, Sophia Tatar, and Brandon Xu Mentored by Dr. Manik Dhar

Winter PRIMES Mini-Conference MIT PRIMES Local Reading

12/8/2024

Andrew Carratu, Sophia Tatar, Brandon Xu (MIT PRIMES)

Introduction to Incidence Geometry

- Incidence Geometry focuses on the study of geometric objects (points, lines, and other shapes) and their relationships.
- When a point lies on a line, we call it **incident** to that line.

The Szemerédi–Trotter theorem is a classic result in Incidence Geometry. It gives an upper bound on the number of point-line incidences determined by a finite set of points and a finite set of lines. The Szemerédi–Trotter theorem is a classic result in Incidence Geometry. It gives an upper bound on the number of point-line incidences determined by a finite set of points and a finite set of lines.

Theorem (Szeméredi-Trotter)

Let P be a set of m points in \mathbb{R}^2 and L a set of n lines in \mathbb{R}^2 . Let the set of incidences I(P, L) between P and L be defined as

$$I(P,L) = \{(p,\ell) \in P \times L \mid p \in \ell\}.$$

Then, the following inequality holds for some absolute constant c:

$$|I(P, L)| \le c(m^{2/3}n^{2/3} + m + n).$$

Example

For any $M \in \mathbb{N}$, consider the set of points on the integer lattice

$$P = \{ (x, y) \in \mathbb{Z}^2 \mid 1 \le x \le M; 1 \le y \le 2M^2 \},\$$

and the set of lines

$$L = \{(x, ax + b) \in \mathbb{R}^2 \mid a, b \in \mathbb{Z}; 1 \le a \le M; 1 \le b \le M^2\}.$$

Example

For any $M \in \mathbb{N}$, consider the set of points on the integer lattice

$$P = \{(x, y) \in \mathbb{Z}^2 \mid 1 \le x \le M; 1 \le y \le 2M^2\},\$$

and the set of lines

$$L = \{(x, ax + b) \in \mathbb{R}^2 \mid a, b \in \mathbb{Z}; 1 \le a \le M; 1 \le b \le M^2\}.$$

Example

For any $M \in \mathbb{N}$, consider the set of points on the integer lattice

$$P = \{(x, y) \in \mathbb{Z}^2 \mid 1 \le x \le M; 1 \le y \le 2M^2\},\$$

and the set of lines

$$L = \{(x, ax + b) \in \mathbb{R}^2 \mid a, b \in \mathbb{Z}; 1 \le a \le M; 1 \le b \le M^2\}.$$

We have $m = |P| = 2M^3$, $n = |L| = M^3$. Notice that every line in L intersects M points in P, at x = 1, 2, ..., M. This gives M^4 incidences total. Indeed, the ST theorem gives

$$|I(P,L)| \leq c(m^{2/3}n^{2/3} + m + n) \sim O(M^4).$$

- Proof sketch of the Szeméredi-Trotter theorem over the reals
- One with a construct of the second second
- Introduction to the *p*-adic integers
- Szeméredi-Trotter theorem, unit distances problem, and distinct distances problem over the *p*-adics

• Cell Partitioning Lemma:

- We are able to divide the plane into regions (cells) bounded by a relatively small subset of lines from *L* such that each cell has not too many lines passing through it.
- Can be proven by the probabilistic method.

• Cell Partitioning Lemma:

- We are able to divide the plane into regions (cells) bounded by a relatively small subset of lines from *L* such that each cell has not too many lines passing through it.
- Can be proven by the probabilistic method.

- Cell Partitioning Lemma:
 - We are able to divide the plane into regions (cells) bounded by a relatively small subset of lines from *L* such that each cell has not too many lines passing through it.
 - Can be proven by the probabilistic method.

ST Theorem: Cell Partitioning Proof Sketch

- Bounding incidences within cells:
 - Use simpler bound derived by Cauchy-Schwarz to estimate the number of incidences in the interior of each cell.

ST Theorem: Cell Partitioning Proof Sketch

- Bounding incidences within cells:
 - Use simpler bound derived by Cauchy-Schwarz to estimate the number of incidences in the interior of each cell.
- Summing over partition:
 - Careful choice of the size of the set of partitioning lines.
 - Add results from all cells and handle incidences along boundaries via recursion to finish the proof of the Szemerédi–Trotter bound.

- Many proofs linking different areas:
 - Combinatorial geometry (Cell Partitioning).
 - Graph theory (Crossing Numbers)
 - Topological and Algebraic Methods (Polynomial Ham Sandwich theorem)

- Many proofs linking different areas:
 - Combinatorial geometry (Cell Partitioning).
 - Graph theory (Crossing Numbers)
 - Topological and Algebraic Methods (Polynomial Ham Sandwich theorem)
- Connection to other problems in combinatorial geometry (Erdős problems)
 - Erdős distinct distances problem
 - Erdős unit distances problem

- Proof sketch of the Szeméredi-Trotter theorem over the reals
- **②** The unit and distinct distances problems over the reals
- Introduction to the *p*-adic integers
- Szeméredi-Trotter theorem, unit distances problem, and distinct distances problem over the *p*-adics

The Distinct Distances Problem Over the Reals

Problem (the distinct distances problem in \mathbb{R}^2)

- Use the Euclidean distance: $d(p_i, p_j) = \sqrt{(x_i x_j)^2 + (y_i y_j)^2}$.
- Let $P = \{p_1, p_2, \dots, p_n\}$ be a set of n points in \mathbb{R}^2 .
- What is the minimum number of distinct distances $d(p_i, p_j)$ determined by n points?

The Distinct Distances Problem Over the Reals

Problem (the distinct distances problem in \mathbb{R}^2)

- Use the Euclidean distance: $d(p_i, p_j) = \sqrt{(x_i x_j)^2 + (y_i y_j)^2}$.
- Let $P = \{p_1, p_2, \dots, p_n\}$ be a set of n points in \mathbb{R}^2 .
- What is the minimum number of distinct distances $d(p_i, p_j)$ determined by n points?

Example:

Distances: 1,1,1,1,1,1,1

Distinct Distances: 1,12

The Distinct Distances Problem Over the Reals

Problem (the distinct distances problem in \mathbb{R}^2)

- Use the Euclidean distance: $d(p_i, p_j) = \sqrt{(x_i x_j)^2 + (y_i y_j)^2}$.
- Let $P = \{p_1, p_2, \dots, p_n\}$ be a set of n points in \mathbb{R}^2 .
- What is the minimum number of distinct distances $d(p_i, p_j)$ determined by n points?

Example:

Distinct Distances Problem Over the Reals

Theorem (Erdős; 1946. Guth and Katz; 2015.)

Asymptotically, for some positive constants c_1 and c_2 , the minimal number of distinct distances, f(n), is

$$c_1\left(\frac{n}{\log(n)}\right) \leq f(n) \leq c_2\left(\frac{n}{\sqrt{\log(n)}}\right).$$

Distinct Distances Problem Over the Reals

Theorem (Erdős; 1946. Guth and Katz; 2015.)

Asymptotically, for some positive constants c_1 and c_2 , the minimal number of distinct distances, f(n), is

$$c_1\left(rac{n}{log(n)}
ight) \leq f(n) \leq c_2\left(rac{n}{\sqrt{log(n)}}
ight).$$

The upper bound is given by a $\sqrt{n} \times \sqrt{n}$ square grid.

Problem (the unit distance problem in \mathbb{R}^2)

- We are once again given n points P = {p₁, p₂,..., p_n} in the real plane for some positive integer n.
- ② Define g(n) to be the maximum number of pairs 1 ≤ i < j ≤ n such that d(p_i, p_j) = 1.

This optimal graph of squares and equilateral triangles shows g(9) = 18.

Problem (the unit distance problem in \mathbb{R}^2)

- We are once again given n points P = {p₁, p₂,..., p_n} in the real plane for some positive integer n.
- ② Define g(n) to be the maximum number of pairs 1 ≤ i < j ≤ n such that d(p_i, p_j) = 1.

This optimal graph of squares and equilateral triangles shows g(9) = 18. (Erdős, 1946) finds a construction proving $g(n) \ge n^{1+\frac{c}{\log(\log n)}}$.

How do we find an upper bound? Just turn it into an incidence problem!

- If we draw the unit circle centered at each point, we create 2g(n) incidences between *n* points and *n* unit circles.
- **2** A variant of the ST theorem then proves that $g(n) \le cn^{\frac{4}{3}}$.

How do we find an upper bound? Just turn it into an incidence problem!

- If we draw the unit circle centered at each point, we create 2g(n) incidences between *n* points and *n* unit circles.
- **2** A variant of the ST theorem then proves that $g(n) \le cn^{\frac{4}{3}}$.

- Proof sketch of the Szeméredi-Trotter theorem over the reals
- One unit and distinct distances problems over the reals
- **Introduction to the** *p***-adic integers**
- Szeméredi-Trotter theorem, unit distances problem, and distinct distances problem over the *p*-adics

Definition $(v_p(x)-p-adic valuation)$

We call the *p***-adic valuation** of x, $v_p(x)$, the largest nonnegative integer such that $p^{v_p(x)}$ divides x.

Definition $(v_p(x)-p-adic valuation)$

We call the *p***-adic valuation** of x, $v_p(x)$, the largest nonnegative integer such that $p^{v_p(x)}$ divides x.

Definition (p-adic norm)

$$|x|_p = p^{-\nu_p(x)}.$$

Definition $(v_p(x)-p-adic valuation)$

We call the *p***-adic valuation** of x, $v_p(x)$, the largest nonnegative integer such that $p^{v_p(x)}$ divides x.

Definition (p-adic norm)

$$|x|_p = p^{-\nu_p(x)}.$$

Definition $(v_p(x)-p-adic valuation)$

We call the *p***-adic valuation** of x, $v_p(x)$, the largest nonnegative integer such that $p^{v_p(x)}$ divides x.

Definition (p-adic norm)

$$|x|_p = p^{-\nu_p(x)}.$$

$$\frac{\overset{0}{-1}}{...111} = 1 + 1 \cdot 2^{1} + 1 \cdot 2^{2} + ...$$
$$1 + 1 + 1 \cdot 2^{1} + 1 \cdot 2^{2} + ... = |2^{\infty}|_{2}$$

Definition $(v_p(x)-p-adic valuation)$

We call the *p***-adic valuation** of x, $v_p(x)$, the largest nonnegative integer such that $p^{v_p(x)}$ divides x.

Definition (p-adic norm)

$$|x|_p = p^{-\nu_p(x)}.$$

Definition (p-adic integer)

A *p***-adic integer** is an element of the ring \mathbb{Z}_p , which consists of all formal power series of the form:

$$x=\sum_{n=0}^{\infty}a_np^n,$$

where $a_n \in \{0, 1, 2, \dots, p-1\}$ for each n.

The series converges in p-adic space

Definition (p-adic distance)

The *p***-adic distance** between two *p*-adic integers *a* and *b* is written $d_p(a, b)$ and defined as

$$d_p(a,b) = |a-b|_p = p^{-v_p(a-b)}.$$

Example

What is $d_5(38, 23)$?

• 38 - 23 = 15 so we need to evaluate $|15|_5$. Observe that 5 divides 15, but 25 does not. Therefore, $v_5(15) = 1$, so $|15|_5 = 5^{-1} = \frac{1}{5}$.

Notice that the distance between two integers never exceeds 1! In fact, $d_p(a, b) = 1$ if and only if $a \not\equiv b \pmod{p}$.

This is because if a ≠ b, then we know p ∦ a − b, so v_p(a − b) = 0, meaning p^{-v_p(a-b)} = p⁰ = 1, while if a ≡ b, then we know p|a − b, so v_p(a − b) ≥ 1, meaning p^{-v_p(a-b)} ≤ p⁻¹ < 1.

Below is a representation of the 3-adic integers, numbers of the form $x = a_0 + a_1 \cdot 3 + a_2 \cdot 3^2 + \cdots$.

Below is a representation of the 3-adic integers, numbers of the form $x = a_0 + a_1 \cdot 3 + a_2 \cdot 3^2 + \cdots$.

• The three largest circles represent remainders modulo 3.

Below is a representation of the 3-adic integers, numbers of the form $x = a_0 + \frac{a_1}{a_1} \cdot 3 + a_2 \cdot 3^2 + \cdots$.

- The three largest circles represent remainders modulo 3.
- The circles of the next size represent remainders modulo 9, etc.

Below is a representation of the 3-adic integers, numbers of the form $x = a_0 + \frac{a_1}{a_1} \cdot 3 + a_2 \cdot 3^2 + \cdots$.

- The three largest circles represent remainders modulo 3.
- The circles of the next size represent remainders modulo 9, etc.
- The integers within a subcircle of a given circle have a particular 3-adic distance from integers in another subcircle of that circle.

Andrew Carratu, Sophia Tatar, Brandon Xu (MIT PRIMES)

Incidence Geometry in \mathbb{R} and Z_p

- Proof sketch of the Szeméredi-Trotter theorem over the reals
- One with a distinct distances problem over the reals
- Introduction to the *p*-adic integers
- Szeméredi-Trotter theorem, unit distances problem, and distinct distances problem over the *p*-adics

The ST Theorem Over the p-Adic Plane \mathbb{Z}_p^2

- All points in Z²_p lie within the complex plane C², and Szemeredi-Trotter in C² was already proven (Tóth, 2003).
- Can we find a direct proof of the ST theorem in \mathbb{Z}_p^2 ?
- While the aforementioned \mathbb{R}^2 proof utilizes cell partitioning, in \mathbb{Z}_p^2 a line doesn't actually divide the plane into two sides like it does in \mathbb{R}^2 , so partitioning doesn't make sense.

Theorem (Carratu, Tatar, Xu; 2024)

The minimum number of distinct distances for n points in \mathbb{Z}_p is $\lceil \log_p n \rceil$.

 Key idea: the number of distinct distances is determined by the unique k for which p^{k−1} < n ≤ p^k.

Theorem (Carratu, Tatar, Xu; 2024)

The minimum number of distinct distances for n points in \mathbb{Z}_p is $\lceil \log_p n \rceil$.

- Key idea: the number of distinct distances is determined by the unique k for which p^{k−1} < n ≤ p^k.
- k = 1:

Theorem (Carratu, Tatar, Xu; 2024)

The minimum number of distinct distances for n points in \mathbb{Z}_p is $\lceil \log_p n \rceil$.

- Key idea: the number of distinct distances is determined by the unique k for which p^{k−1} < n ≤ p^k.
- *k* = 2 :

The result generalizes for *d*-dimensional *p*-adic space: The minimum number of distinct distances for *n* points in \mathbb{Z}_p^d is $\lceil \log_p n^{\frac{1}{d}} \rceil.$

The result generalizes for *d*-dimensional *p*-adic space: **The minimum number of distinct distances for** *n* **points in** \mathbb{Z}_p^d is $\lceil \log_p n^{\frac{1}{d}} \rceil$.

The result generalizes for *d*-dimensional *p*-adic space: The minimum number of distinct distances for *n* points in \mathbb{Z}_{p}^{d} is $\lceil \log_p n^{\frac{1}{d}} \rceil$. 0 P-1 P 20 ρ P ρ P³ 02

Andrew Carratu, Sophia Tatar, Brandon Xu (MIT PRIMES)

The result generalizes for *d*-dimensional *p*-adic space: The minimum number of distinct distances for *n* points in \mathbb{Z}_n^d is $\lceil \log_p n^{\frac{1}{d}} \rceil$. P-1 P P2 0 p³ P² P P² P² ρ P³ 02

Theorem (Carratu, Tatar, Xu; 2024)

The maximum number of unit distances for n points in \mathbb{Z}_p is

$$\frac{1}{2}(n^2-n\alpha-\alpha\beta-\beta)$$

where $\alpha, \beta \in \mathbb{Z}_{\geq 0}$ are such that $\beta < p$ and $n = \alpha p + \beta$.

To prove this we observe the following:

Theorem (Carratu, Tatar, Xu; 2024)

The maximum number of unit distances for n points in \mathbb{Z}_p is

$$\frac{1}{2}(n^2-n\alpha-\alpha\beta-\beta)$$

where $\alpha, \beta \in \mathbb{Z}_{\geq 0}$ are such that $\beta < p$ and $n = \alpha p + \beta$.

To prove this we observe the following:

When a and b have the same remainder mod p, we know $d_p(a, b) < 1$.

This inspires us to color the p-adic number line with p colors:

This inspires us to color the p-adic number line with p colors:

Observe that the only pairs of points that AREN'T unit distance apart are those of the same color! Thus, f(n)=(total pairs)-(same-color pairs)

This inspires us to color the p-adic number line with p colors:

Observe that the only pairs of points that AREN'T unit distance apart are those of the same color! Thus, f(n)=(total pairs)-(same-color pairs)Letting b_i be the number of points of color i, we find

$$f(n)=\frac{1}{2}(n^2-\sum b_i^2)$$

and because $\sum b_i = n$, a single application of the Cauchy-Schwarz inequality finishes.

This inspires us to color the p-adic number line with p colors:

Observe that the only pairs of points that AREN'T unit distance apart are those of the same color! Thus, f(n)=(total pairs)-(same-color pairs)Letting b_i be the number of points of color i, we find

$$f(n)=\frac{1}{2}(n^2-\sum b_i^2)$$

and because $\sum b_i = n$, a single application of the Cauchy-Schwarz inequality finishes.

(Note: this argument easily generalizes to d dimensions by replacing p colors with p^d colors.)

Thank you to our mentor Dr. Manik Dhar, Prof. Etingof, Dr. Gerovitch, Dr. Khovanova, Dr. Gotti, and our parents!

Questions?

Andrew Carratu, Sophia Tatar, Brandon Xu (MIT PRIMES)