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Abstract. Frobenius algebras were first studied in the 1930s due to their importance to the repre-
sentation theory of finite groups. Recently, they have returned to popularity because commutative
Frobenius algebras correspond exactly to two-dimensional Topological Quantum Field Theories,
which combine the principles of classical field theory, special relativity, and quantum mechanics. In
this paper, we introduce the warped tensor product and use it to build new symmetric monoidal
structures on Frobenius algebras.

1. Introduction

Frobenius Algebras. Frobenius algebras were first studied in the 1930s; roughly speaking, they
are vector spaces equipped with multiplication, a multiplicative identity, and a pairing, which we
more concretely define in Section 2. Their initial applications were in the representation of finite
groups, partly because group algebras are Frobenius. Around a decade later, Nakayama discovered
a duality theory in [Nak39] and [Nak41] that widely expanded the applications of Frobenius alge-
bras to topics such as homological algebra, algebraic geometry, combinatorics, and number theory.
More recently, they have been of particular interest because commutative Frobenius algebras are
equivalent to two dimensional Topological Quantum Field Theories (TQFTs).

TQFTs. We first loosely describe TQFTs over vector spaces. A d-manifold is a surface that locally
resembles the Euclidean space Rd everywhere, and cobordisms are (d+1)-manifolds that link some
d-manifolds, called the inboundary, to some others, called the outboundary. For example, shown
below is a cobordism; its inboundary is one circle and its outboundary is the disjoint union of two
circles.

(1.1)

Then, a TQFT associates d-manifolds to vector spaces and cobordisms up to diffeomorphism (a
topological equivalence) to linear maps. The choices of vector spaces must respect the multiplicative
structures: for manifolds M1 and M2 sent to V1 and V2, the disjoint union is sent to the tensor
product V1⊗V2. Note that the cobordism in Diagram 1.1 is the gluing of the following cobordisms,
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where the right cobordism is itself a disjoint union of smaller cobordisms. Like for the d-manifolds,
the disjoint union of cobordisms must be given by the tensor product of the corresponding linear
maps. Additionally, the gluing of cobordisms should correspond to function composition.

TQFTs were first axiomatically defined by Atiyah in [Ati88]. Atiyah’s definition associated
manifolds to modules rather than vector spaces, and cobordisms to module elements rather than
linear maps. These choices are subject to additional axioms that better illustrate the connection
to physics; we briefly touch on this here and discuss the physics applications in more detail later
in this section. For now, two of the axioms require topological properties to be respected by the
choices, relating to relativistic invariance, while another two axioms give linear and multiplicative
structures, reflecting a quantum nature of the theory.

Higher dimensional TQFTs are extremely complicated. Their classification was conjectured by
the cobordism hypothesis in [BD95], suggesting an equivalence between TQFTs and underlying
categories formed by discarding noninvertible morphisms. A proof of the cobordism hypothesis has
been sketched in [Lur09]. However, lower dimensional TQFTs are both well understood and more
applicable.

For the case of two dimensional TQFTs, two key simplifications can be made. First, the only
2-manifolds are the circle, line, half-line, and unit interval, and the circle is the only one relevant to
the TQFT consideration. Therefore when assigning vector spaces to surfaces, one choice of V for
the circle uniquely determines everything else (e.g. the disjoint union of 2 circles would be V ⊗ V ).
All that remains is to pick linear maps for the cobordisms. Second, diffeomorphism becomes a
much easier condition: any two cobordisms with the same inboundary, outboundary, and genus
(number of holes) are diffeomorphic. In fact, this reformulation of diffeomorphism is equivalent to
the relations on commutative Frobenius algebras, hence the correspondence between them.

Applications of TQFTs. Like other quantum field theories, TQFTs unify classical field theory
with the principles of special relativity and quantum mechanics. One key difference from other
such theories is that TQFTs are not very interesting in the typical consideration, flat Minkowski
spacetime, so instead we often consider them over Riemann surfaces. One particular similar con-
cept is the Conformal Field Theory (CFT), axiomatically defined in [Seg88]. The relationship is
detailed in [Dij89]. Essentially, they differ in which topological structure they preserve; while CFTs
additionally preserve a complex structure, TQFTs preserve the more natural geometric concept of
orientation.

While they are primarily used by physicists, TQFTs also have a wide range of applications in
pure mathematics. Just to name a few, the properties preserved by the deformations of classical
objects can be understood via their (quantum) symmetries, TQFTs produce invariants of closed
manifolds, and three-dimensional TQFTs relate closely to knot invariants, especially the Jones
polynomial.

Generalizations to categories. Because Atiyah’s axioms define TQFTs from a module’s ele-
ments, they do not easily generalize to TQFTs over a general monoidal category. However, we
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use a more modern definition which has been described earlier. It can be formalized as follows:
let Cobdd−1 denote the monoidal category of cobordisms up to diffeomorphism, with multiplica-
tion given by the disjoint union, and let Vectk denote the monoidal category of vector spaces
with multiplication given by the tensor product. Then a TQFT is a symmetric monoidal functor
Cobdd−1 → Vectk. It is easy to generalize this definition to a general monoidal category C: a TQFT

is a monoidal functor Cobdd−1 → C. The exact conditions required of C used in this way varies;
it is usually symmetric or braided, often rigid, and frequently a tensor category. In this work, we
require that C is symmetric monoidal, as defined in Section 2.

This also gives an alternative realization of the connection to quantum relativity: as described
in [Koc04], the closed manifolds model space, the cobordisms model space-time, and the target
objects of C model state spaces. Again, the algebraic characterization of these topological objects
preserves their physical meaning. For example, the disjoint union is sent to the tensor product,
both of which represent the (combined) state space of two independent systems.

Finally, just like TQFTs, Frobenius algebras can be defined over monoidal categories. The defi-
nitions are entirely analogous, and by default Frobenius algebras are assumed to be over monoidal
categories, not always a field.

Twisted tensor products. The other items of interest are twisted tensor products, which were
first studied in [CSV95]. They aim to extend the algebraic realization of the product of two
topological spaces to noncommutative differential geometry.

Twisted tensor products were also extended to Frobenius algebras in [OO24], and many impor-
tant Frobenius algebras were recovered from the twisted tensor products. For example, given a finite
group G acting on a finite group H by φ : G→ Aut(H), the twisting map τ : g ⊗ h 7→ φ(g)(h)⊗ g
recovers the group algebra k(H ⋊φ G) and its Frobenius structure as kG⊗τ kH.

Motivation. To expand on how TQFTs model spacetime, moving from left to right along a cobor-
dism represents moving forward in time, while moving along a surface in the cobordism corresponds
to moving within space. However, TQFTs inherently have commutativity: paths that differ in ori-
entation, or even different orderings of multiple paths, would be considered the same. Therefore,
we seek to add noncommutativity through new multiplicative structures on them.

The typical means of adding noncommutativity is the twisted tensor product. However, since
that twists the algebra, an operation that lacks a clear topological meaning, we instead consider
modifications of the twisted tensor product. As explained in Section 3.1, the dual construction of the
twisted tensor product (the cotwisted tensor product) never builds nontrivial structures. Therefore,
we define the warped tensor product, a close modification of the twisted tensor product, and classify
when it preserves the Frobenius property. Ultimately, we use the warped tensor product to build
nontrivial symmetric monoidal structures on Frobenius algebras, and since these structures preserve
commutativity (of algebras, separate from the geometric commutativity we seek to remove), they
also hold over two-dimensional TQFTs.

We mainly focus on Frobenius algebras from here, but even though TQFTs will rarely be explic-
itly mentioned, they are central to and motivate this work. While we talk in terms of Frobenius
algebras, we define and build my constructions in a way such that most properties that hold
for Frobenius algebras automatically also hold for commutative Frobenius algebras, and therefore
TQFTs.

Main Results. First, we classify exactly when the warped tensor product of two Frobenius alge-
bras is Frobenius. This result is proved throughout Section 3. For vector spaces, the conditions
translate to the warp being multiplication by a central, invertible element of the tensor product
A⊗B.

The terminology used in the below theorems, as well as the rest of the paper, is detailed in
Section 2, and the notation is explained in Section 1.1.
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Theorem 1.1. Let (A,∇A, ηA, βA) and (B,∇B, ηB, βB) be Frobenius algebras over a symmetric
monoidal category C, with copairings αA and αB, respectively. Let γ : B ⊗ A → A ⊗ B be a
morphism in C with a two-sided inverse. Then the warped tensor product A ⊗γ B is Frobenius if
and only if the warp decomposes as

γ : BA
σ12−−→ AB

∼=−→ AB1
1A1Bψ−−−−→ ABAB

∇γ−−→ AB,

for a morphism ψ : 1 → A⊗B accompanied by another morphism ψ∗ : 1 → A⊗B that makes the
following diagrams commute.

(1.2)

1 ABAB AB ABAB AB ABAB

ABAB AB ABAB AB ABAB AB

ψψ∗

ψ∗ψ
ηAηB ∇γ

11ψ

ψ11 ∇γ

11ψ∗

ψ∗11 ∇γ

∇γ ∇γ ∇γ

Necessity follows from Lemmas 3.1, 3.2, and 3.4. Sufficiency follows from Lemmas 3.11 and 3.12.
Using the results of Theorem 1.1, we define new symmetric monoidal structures on the category

FrobC of Frobenius algebras over C, which are closed on the full subcategory cFrobC of commutative
Frobenius algebras.

Theorem 1.2. Let ψ be a collection of morphisms ψA : 1 → A in C that is warpable, as defined in
Definition 4.4, and let

ΥA,B : AB
∼=−→ AB1

11ψA,B−−−−→ ABAB
∇σ−−→ AB.

Consider the class of warps

γA,B : BA
σ12−−→ AB

ΥA,B−−−→ AB.

Let ⊠ denote the warped tensor product A ⊗γ B, and let α, λ, ρ, and τ denote the associativity,
unit, and commutativity constraints of C. Let I be the unit object 1 with Frobenius form ϵ = id.
Then (FrobC,⊠, I, α, λ, ρ, τ) and (cFrobC,⊠, I, α, λ, ρ, τ) are symmetric monoidal categories if and
only if for all A,B,C ∈ FrobC:

(1⊗ΥB,C)ΥA,B⊠C = (ΥA,B ⊗ 1)ΥA⊠B,C ; ΥI,A = ΥA,I = 1; ΥA,B = ΥB,A.

The proof is given in Section 4.2.

Outline. In Section 2, we establish key definitions for Frobenius algebras that we use throughout
this paper. In Section 3, we define the warped tensor product and prove the statement of Theorem
1.1. In Section 4, we discuss implications of Theorem 1.1: first, we explore important properties
of Frobenius algebras that are preserved by the warped tensor product; then, we apply Theorem
1.1 to endow the category of Frobenius algebras, as well as its full subcategory of commutative
Frobenius algebras, with new symmetric monoidal structures, proving Theorem 1.2; finally, we give
a family of solutions to the constraints given in Theorem 1.2.

1.1. Notation. This paper will use the following notational conventions. Unless otherwise stated,
C is a symmetric monoidal category with a bifunctor ⊗ (called the [standard] tensor product), unit
object 1, suppressed associativity constraints, unit constraints simply denoted ∼=, and commutavity
constraints σ. In Sections 4.2 and 4.3, all constraints are suppressed. Except for in-line math,
tensor products ⊗ are indicated by concatenation to save space. In particular, when we say AB in
a diagram, we refer to A⊗B. For an object A ∈ C, the identity morphism is denoted as 1A : A→ A,
although the subscript is omitted in diagrams to save space.
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For some multitensor X1⊗ · · · ⊗Xn, we use σab to denote the map that sends Xa to position Xb

by using the braiding σ without changing the order of the rest of the objects. We explicitly define
σa,a+1 = (1)(a−1)σ(1)(n−a−1), and

σab =

{
σb−1,b ◦ σb−2,b−1 ◦ · · · ◦ σa,a+1 a < b

σb,b+1 ◦ σb+1,b+2 ◦ · · · ◦ σa−1,a a > b
.

Also, if a map is called invertible, it has a two-sided inverse. Lastly, FrobC denotes the category of
Frobenius algebras over a symmetric monoidal category C, while cFrobC denotes the full subcategory
of commutative Frobenius algebras. If something is called a Frobenius algebra without further
context, it is a Frobenius algebra over C.

2. Preliminaries

In this section, we introduce definitions and useful information about Frobenius algebras; every-
thing presented here is already known.

2.1. Frobenius Algebras. Within this subsection, C denotes a symmetric monoidal category with
unit object 1. First, we present the definition of an algebra over a category.

Definition 2.1. An associative unital C-algebra is a tuple (A,∇A, ηA), where A ∈ C is an
object, and ∇A : A⊗A→ A and ηA : 1 → A are morphisms in C such that the following diagrams
commute, indicating left-unitality, right-unitality, and associativity.

(2.1)

1A AA A1 AA AAA AA

A A AA A

ηA1

∼=
∇A

1ηA

∼=
∇A

∇A1

1∇A ∇A

∇A

Throughout this paper, when we refer to an algebra, it is assumed to be associative unital.
To define a Frobenius algebra, also consider a pairing.

Definition 2.2. Let (A,∇A, ηA) be a C-algebra. A pairing is a morphism βA : A⊗ A → 1. It is
associative if the following diagram commutes,

(2.2)

AAA AA

AA 1

∇A1

1∇A βA

βA

and it is nondegenerate if for some copairing αA : 1 → A⊗A, the following diagram commutes.

(2.3)

A 1A AAA

A1

AAA A

∼=

∼=
1

αA1

1βA

1αA

βA1

Definition 2.3. A Frobenius algebra over C is a tuple (A,∇A, ηA, βA) such that
(A,∇A, ηA) is a C-algebra and βA is an associative, nondegenerate pairing.

The default multiplicative structure on Frobenius algebras is given by the standard tensor prod-
uct.
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Definition 2.4. Consider Frobenius algebras (A,∇A, ηA, βA) and (B,∇B, ηB, βB), with copairings
αA and αB, respectively. Then the standard tensor product is (A⊗B,∇σ, ησ, βσ) with copairing
ασ as given below.

∇σ : ABAB
σ23−−→ AABB

∇A∇B−−−−→ AB,

ησ : 1
∼=−→ 11

ηAηB−−−→ AB,

βσ : ABAB
σ23−−→ AABB

βAβB−−−→ 11
∼=−→ 1,

ασ : 1
∼=−→ 11

αAαB−−−−→ AABB
σ23−−→ ABAB.

Here, the subscript of σ is used because this is the trivial case of the warped tensor product.
We also use the following standard result, given as Example 3.2.31 in [Koc04].

Proposition 2.1. The category of Frobenius algebras with the standard tensor product is a sym-
metric monoidal category.

A notable corollary, which will be useful in Section 3, is that the standard tensor product of
Frobenius algebras is a Frobenius algebra.

Finally, we state a pair of useful standard results. These are given for example in Section 2.3 in
[Koc04], as the equivalence to another of the main definitions of Frobenius algebras (in terms of a
counit).

Proposition 2.2. Let (A,∇A, ηA, βA) be a Frobenius algebra with copairing αA. Then the following
diagrams commute, and we use the blue arrow to denote these equivalent paths.

(2.4)

A AAA A AA

AAA AA AA 1

αA1

1αA
∆A

1∇A

ηA1

1ηA
ϵA βA

∇A1 βA

The latter diagram also gives a nice way to express βA.

Proposition 2.3. Let (A,∇A, ηA, βA) be a Frobenius algebra. Then the following diagram com-
mutes.

(2.5)

AA A

1

∇A

βA
ϵA

3. Warped Tensor Products

In this section, we define the warped tensor product and prove Theorem 1.1.

3.1. Motivation. An alternative, prominent definition of Frobenius algebras thinks of them as
an algebra and coalgebra with the Frobenius associativity relation. A natural attempt to create
new monoidal structures would be to apply the cotwisted tensor product, the dual notion of the
well studied twisted tensor product. This would preserve the vector space, multiplication, unit,
and counit, while it would twist the coproduct. However, as proved in [Koc04], the four preserved
structures uniquely determine the coproduct, so the cotwisted tensor product would never work in
the nontrivial case.

Therefore, we define a new concept: the warped tensor product.
6



Definition 3.1 (Warped Tensor Product). Let (A,∇A, ηA, βA) and (B,∇B, ηB, βB) be Frobenius
algebras with copairings αA and αB, respectively. Let γ : B⊗A→ A⊗B be a morphism in C with
a two-sided inverse; call this the warp. Define ∇γ , ηγ , βγ , αγ as

∇γ : ABAB
σ23−−→ AABB

∇A∇B−−−−→,

ηγ : 1
∼=−→ 11

ηAηB−−−→ AB,

βγ : ABAB
1Aγ1B−−−−→ AABB

βAβB−−−→ 11
∼=−→ 1,

αγ : 1
∼=−→ 11

αAαB−−−−→ AABB
1Aγ

−11B−−−−−−→ ABAB.

Denote by A⊗γ B the tuple (A⊗B,∇γ , ηγ , βγ). Call this the warped tensor product.

First, we show the necessity of the conditions given in Theorem 1.1.

3.2. Necessity. Let (A,∇A, ηA, βA) and (B,∇B, ηB, βB) be Frobenius algebras with copairings
αA and αB, respectively. Let γ : B ⊗ A → A ⊗ B be a morphism in C with a two-sided inverse.
Suppose that A⊗γB is a Frobenius algebra with copairing αγ . Then βγ is associative, and satisfies
the nondegeneracy relation with αγ .

Lemma 3.1. Suppose βγ is an associative pairing. Then for some morphism ψ : 1 → A⊗B in C,

γ : BA
σ12−−→ AB

∼=−→ A1B
1Aψ1B−−−−→ AABB

∇A∇B−−−−→ AB.

Proof. Since βγ is an associative pairing, the following diagram commutes.

ABAB AABB ABB

ABABAB AABBAB ABAB

ABAABB AABB

ABAB AABB 1

111ηBηA1

1111

σ23 ∇A11

11ηA1

σ23

σ45

∇A∇B11

1γ1

11∇A∇B βAβB

1γ1 βAβB

Combining this with its flipped diagram (the bottom-left portion in the diagram below, which
commutes analogously), the following diagram commutes.

AB

ABAB AABB ABAB AABB

AABB AABB AABB ABAB ABAB

ABAB AABB 1 AABB

1ηBηA1σ23

σ23
1γ1

∇A∇B

∇A1ηA1

1γ1

σ23

1ηB1∇B

1ηB1∇B
βAβB βAβB 1γ1

1γ1
1γ1 βAβB βAβB

Focus on the clockwise and counterclockwise paths given in the below diagram.

(3.1)

ABAB AABB AB ABAB AABB

AABB 1

σ23

1γ1

∇A∇B 1ηBηA1 1γ1

βAβB

βAβB
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Define ψ : 1 → A⊗B by

ψ : 1
∼=−→ 11

ηBηA−−−→ BA
γ−→ AB.

Intermediately, observe that the following diagram commutes by associativity and left-nondegeneracy.

AA AAAA AAA

A AAA A

αA11

∇A

1∇A1

11∇A 1βA

αA1

1

1βA

An analogous but flipped condition holds on B with right-nondegeneracy.
Thus, adding copairings to Diagram 3.1, the following diagram commutes, concluding the proof.

BA AB AABB

AABABB AAABBB AAABBB

AAABBB AB

αA11αB

γ

σ12 1ψ1

∇A∇B

11γ11

σ34 1∇Aψ∇B1

1βAβB1

1βAβB1

□

Now, we prove additional requirements using that γ has an inverse γ−1.

Lemma 3.2. Let (A,∇A, ηA) and (B,∇B, ηB) be Frobenius algebras, and let ψ : 1 → A ⊗ B be a
morphism in C. Define

γ : BA
σ12−−→ AB

∼=−→ A1B
1Aψ1B−−−−→ AABB

∇A∇B−−−−→ AB.

Then γ has a two-sided inverse γ−1 if and only if for some morphism φ : 1 → B ⊗ A in C, the
following diagram commutes (which we call the “inverse condition”).

(3.2)

1 AB ABAB

BA AABB

AB AABB AB

ψ

φ

ηAηB

1φ1

σ23

σ12 ∇A∇B

1ψ1 ∇A∇B

Furthermore, the inverse is given by

(3.3) γ−1 : AB
∼=−→ A1B

1Aφ1B−−−−→ ABAB
σ23−−→ AABB

∇A∇B−−−−→ AB
σ12−−→ BA.

Proof. First, suppose γ has a two-sided inverse γ−1.
Define

φ : 1
∼=−→ 11

ηBηA−−−→ BA
γ−1

−−→ AB.

Then the following diagram commutes.
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1

AB

BA AB

AB AABB

ηAηBφ

ηAηB

11
γ−1

γ

σ12

1ψ1

∇A∇B

Define

γ−1
0 : AB

∼=−→ A1B
1Aφ1B−−−−→ ABAB

σ23−−→ AABB
∇A∇B−−−−→ AB

σ12−−→ BA.

Then the following diagram commutes, so γ ◦ γ−1
0 is the identity on A⊗B.

AB ABAB AABB AB BA

AAABBB AABB

AABB AB

1φ1

1ηAηB1

11

γ−1
0

σ23 ∇A∇B

11ψ11

σ12

1ψ1

γ

∇A11∇B

1∇A∇B1 ∇A∇B

∇A∇B

Using the standard argument, by associativity of composition,

γ−1
0 = (γ−1 ◦ γ) ◦ γ−1

0 = γ−1 ◦ (γ ◦ γ−1
0 ) = γ−1.

Next, the following diagram commutes, giving the final condition.

1 BA AB

ABAB

BA AABB

AB

ηBηA

ψ

ηAηB

γ

11

σ12

1φ1

γ−1

σ23

σ12
∇A∇B

Now, suppose that for some morphism φ : 1 → B ⊗A in C, Diagram 3.2 commutes. Define

γ−1
0 : AB

∼=−→ A1B
1Aφ1B−−−−→ ABAB

σ23−−→ AABB
∇A∇B−−−−→ AB

σ12−−→ BA.

The commutativity of the same diagram we used for γ ◦ γ−1
0 in the proof of the other direction

again implies that γ ◦ γ−1
0 is the identity, so γ−1

0 is an inverse on one side.

Also, γ−1
0 ◦ γ is the identity due to the commutativity of the following diagram, so γ−1

0 is indeed
a two-sided inverse.
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BA AB AABB AB

AABABB ABAB

AAABBB ABB

AABB AB

BA

σ12

11

1ψ1

1ηAηB1

11

∇A∇B

11φ11 1φ1

∇A11∇B

σ34 σ23

1∇A∇B1

∇A11∇B

1∇B

∇A∇B

σ12

Therefore, if for some φ : 1 → A⊗B, Diagram 3.2 commutes, then γ has a two sided inverse

γ−1 : AB
∼=−→ A1B

1Aφ1B−−−−→ ABAB
σ23−−→ AABB

∇A∇B−−−−→ AB
σ12−−→ BA.

□

We pivot to the nondegeneracy relations. We must first make a simplification.

Lemma 3.3. Consider Frobenius algebras (A,∇A, ηA, βA) and (B,∇B, ηB, βB), and let γ : B⊗A→
A ⊗ B be a warp given by ψ as before. Let γ−1 be the inverse, given by φ as before. Then the
following diagram commutes.

AB

BAAB

AABB ABABAB

AAABBB

ABBB ABB ABBB ABBB AB

φ11

αγ11

σ13

11ψ11

11βγ

ϕA111

11∇B 11∆B σ23 11βB

Proof. In the following commutative diagram, the clockwise outer path is (1A ⊗ 1B ⊗ βγ) ◦ (αγ ⊗
1A ⊗ 1B), so we conclude.
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AB

BAAB

ABAB AAABBBAB AAABBABB AAABBAABBB

AABB AAABBAB AAABABB AAABAABBB

AAABBB ABBAB ABABB AAAAABBBB

ABBB ABBBB ABAABBB AAABBBB

ABB ABBB AAABBBB ABBB

ABBB AB

φ11

σ12

αA11αB11

αA1∆B11
σ23

1∆B11

σ67

111∇B111 111∇B111

111111ψ11

111∇B11111

11ψ11

σ56 11111ψ11

σ46

ϕA111

σ34

111ψ11 11ϕA1111

11∇B

11∆B

111∇B σ24 1βA1∇B1

11∆B

σ23

ϕA1∇B1

ϕA11∇B 11βB

11βB

□

Now, we show that the nondegeneracy relations imply conditions indicating a form of centrality;
these will be revisited in Definition 3.2.

Lemma 3.4. Let (A,∇A, ηA, βA) and (B,∇B, ηB, βB) be Frobenius algebras, and let γ, γ−1, φ, ψ
be given as before. Suppose that A ⊗γ B is a Frobenius algebra with copairing αγ (on both sides).
Then the following diagrams commute.

(3.4)

B ABB A AAB

ABB AB AAB AB

ψ1

σ23
1∇B

1ψ

σ12 ∇A1

1∇B ∇A1

Proof. Assuming the nondegeneracy relation on A⊗γB, the counterclockwise path given in Lemma
3.3 is the identity. For clarity in describing approach, let χ = 1A⊗ 1B denote this counterclockwise
path. We first consider the composition

χ1 : B
∼=−→ 1B

ψ1B−−→ ABB
σ12−−→ BAB

1Bχ−−→ BAB
σ12−−→ ABB

1A∇B−−−−→ AB.

We aim to derive an intermediate result, with which we can simplify χ.
Due to the associativity of multiplication and the Frobenius associativity relation, the following

diagram commutes.
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BAB BBAABB BAABB BAAABBB BABB

BBAAABB BBABB BABBB ABBBB ABBB

ABBB ABB ABBBB

ABBB

ABBB

1φ11

1φ1ψ1

σ24 111ψ11 1ϕA1∇B

σ12σ35

11ϕA11 σ24 σ12σ35

111∇B

11∇B1

1∇B11
11∆B1

1∇B1

1∇B1

1∆B1
1∇B11

σ34

Furthermore, because the following diagram commutes,

BB BB BBB

BBB BBB

σ12

1∆B

∆B1

σ23
σ13

σ12

the following rectangle also commutes.

BABB BABBB

ABBB BABBB

ABBBB BAB

ABBB ABB

ABBB AB

111∆B

σ12σ34 σ34

11∆B1 11βB

1∇B11 σ12

σ34 1∇B

11βB

Overlaying this at the right of the prior diagram, the clockwise path is

BAB
1Bχ−−→ BAB

σ12−−→ ABB
1A∇B−−−−→ AB.

The following diagram commutes, essentially reordering the counterclockwise path in the overlaid
diagram.

12



BAB BBAAABB BBABB

BBAAB BABBB

BAABB ABBBB

AABBB AAABBBB AAABBBB ABBBB

ABB AABBB AABBB ABBB

1φ1ψ1

1φ11

11ϕA11

σ24

σ24 σ12

σ13 σ35

11ψ111

∇A∇B1

σ47

∇A11∇B1 ∇A1∇B11

ϕA1111

1∇B11

1ψ11 σ35 ∇A111

The counterclockwise path in the above diagram is much easier to work with, especially because
part of it is related to the inverse conditions given in Diagram 3.2 by commutativity of the following
diagram.

1 AB BA BBAA

BA BAAB

AB AABB

ψ

φ

σ12 1φ1

σ24

σ12 σ13

1ψ1

Collecting our progress so far, in the following diagram, which commutes by unitality and the
inverse conditions given by Diagram 3.2, the clockwise path is χ1.

B BAB ABB AABBB

ABB ABB

ABBB AABBB

ABBB AABBB

AB ABBB ABBB ABB

φ

ηAηB1
ψ1

σ12 1ψ11

∇A∇B1

11∆B

σ23

1ψ11

σ23 σ35

11βB
1111 ∇A∇1B

11βB σ34 1∆B1

Since χ is just the identity by nondegeneracy, χ1 is given by

χ1 : B
∼=−→ 1B

ψ1B−−→ ABB
1A∇B−−−−→ AB.

Therefore, the commutativity of the above diagram implies the commutativity of the following
diagram.

AB AABB

AABB AABBB AABBB AAB

1ψ1

1ψ1 11∇B

111∆B σ34 111βB

13



Now that we have this intermediate result, we can simplify χ due to the commutativity of the
following diagram (where χ is the counterclockwise path).

AB

BAAB

AABB AB AABB

AAABBB AABB AABBB AABBB AAB

ABBB ABB ABBB ABBB AB

φ11

σ13

∇A∇B

11ψ11

1ψ1

1ψ1 11∇B

∇A∇B

ϕA111

∇A11∇B 111∆B

∇A11

σ34

∇A111

111βB

∇A111 ∇A1

11∇B 11∆B σ23 11βB

Let χ′ denote the clockwise path here; it is also the identity, but this distinction improves clarity.
We now consider the composition

χ2 : A
∼=−→ 1A

ψ1A−−→ ABA
σ23−−→ AAB

χ′
−→ AAB

∇A1B−−−−→ AB.

The following diagram commutes by associativity of multiplication and the inverse conditions given
in Diagram 3.2.

A

ABA ABABA

AAB AABBA ABA

ABAAB AAABB AAB AAABB AAB

AAABB AAB AAABB AAB AB

ψ1
ηη1

1ψ

1φ11

σ23 σ23

1φ11

∇A∇B1

σ53 σ23

σ24 1∇A∇B

∇A1∇B 1ψ1 ∇A1∇B

∇A1
11111

1∇A∇B 1ψ1 1∇A∇B ∇A1

The counterclockwise path here is χ2. As before, since χ
′ is the identity, χ2 is given by

χ2 : A
∼=−→ 1A

ψ1A−−→ ABA
σ23−−→ AAB

∇A1B−−−−→ AB.

Therefore, the following diagram commutes.

A AAB

ABA AAB AB

ψ1

1ψ

∇A1

σ23 ∇A1

14



This is almost the desired condition; to finish, note that the following diagram commutes by
naturality.

(3.5)

A AAB

ABA AAB

1ψ

ψ1 σ12
σ31

σ23

Combining these, we finally reach the first of the two conditions claimed in Diagram 3.4. The other
follows analogously; in particular, it is recovered by reversing the order of tensor products in each
object and morphism in the above proof, and swapping A with B. □

So far, we have shown that a form of inverse and centrality conditions are necessary. These are
not the same as the ones given in Theorem 1.1, but as demonstrated in the next subsection, these
are enough to imply the desired conditions.

3.3. Centrality Conditions. Let Frobenius algebras (A,∇A, ηA, βA) and (B,∇B, ηB, βB) be Frobe-
nius algebras with copairings αA and αB, respectively. Let ψ : 1 → A⊗ B and φ : 1 → B ⊗ A be
morphisms in C, and consider γ and γ−1 given by

γ : BA
σ12−−→ AB

∼=−→ A1B
1Aψ1B−−−−→ AABB

∇A∇B−−−−→ AB,

and

γ−1 : AB
∼=−→ A1B

1Aφ1B−−−−→ ABAB
σ23−−→ AABB

∇A∇B−−−−→ AB
σ12−−→ BA.

The conditions forced by the nondegeneracy relations as in the prior subsection essentially say
that ψ and φ are central, and this allows for the simplification of many previous diagrams and
operations. In this regard, it inconvenient that φ maps to B ⊗ A instead of A ⊗ B; accordingly,
define

φ′ : 1
φ−→ BA

σ12−−→ AB.

First, the centrality conditions should be restated and related to what we have shown is necessary.

Definition 3.2. Let (A,∇A, ηA, βA) and (B,∇B, ηB, βB) be Frobenius algebras, and let ψ : 1 →
A⊗B and φ : 1 → B⊗A be morphisms in C. Call the commutativity of the following two diagrams
the condensed centrality conditions,

AB ABAB AB ABAB

ABAB AB ABAB AB

11ψ

ψ11 ∇γ φ′11

11φ′

∇γ

∇γ ∇γ

and call the commutativity of the following four diagrams the decomposed centrality condi-
tions.

B ABB A AAB

ABB AB AAB AB

ψ1

σ23
1∇B

1ψ

σ12 ∇A1

1∇B ∇A1

B ABB A AAB

ABB AB AAB BA

φ′1

σ23
1∇B

1φ′

σ12 ∇A1

1∇B ∇A1

Lemma 3.5. The two decomposed centrality conditions relating to ψ are equivalent to the condensed
centrality condition for ψ, and the same holds for φ′.
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Proof. We prove this for ψ; the result follows analogously for φ′.
First, assume the condensed centrality condition. We show that the decomposed centrality

condition for A holds, and it follows analogously for B.
Due to the condensed centrality condition and unitality, the following diagram commutes.

A AAB

AB ABAB

ABA ABAB AB

AAB

1ηB

ψ1

1ψ

1ηB11

∇A1

ψ11

11ψ

∇γ

111ηB

σ23

∇γ

∇A1

Recalling that Diagram 3.5 commutes, this implies the decomposed centrality condition on A.
Now, assume the decomposed centrality conditions for ψ. The condensed centrality condition

holds by the commutativity of the following diagram.

AB

ABAB AABB

AABB AB

ABAB

AABB

ψ11

11ψ

σ23

σ31 σ12
∇A∇B

σ42

σ34

∇A∇B

σ23

∇A∇B

□

Throughout the rest of the section, assume the condensed centrality condition for ψ, because the
two decomposed conditions follow due to Lemma 3.4.

Now, we rewrite the inverse relations on ψ and φ.

Lemma 3.6. Let (A,∇A, ηA, βA) and (B,∇B, ηB, βB) be Frobenius algebras, and let ψ, φ, and φ′

be defined as before. Suppose that the condensed centrality condition on ψ holds. Then the inverse
relations on ψ and φ in Diagram 3.2 imply to the commutativity of the following diagram.

1 ABAB

ABAB AB

φ′ψ

ψφ′ ηAηB ∇γ

∇γ

Proof. By the decomposed centrality conditions on ψ, the following diagram commutes.
16



1

BA AB ABAB AABB AABB

AABB AB

φ
φ′

σ12

1ψ1

11ψ σ24

σ23

σ34

∇A∇B
∇A∇B

1111

∇A∇B

Similarly, the following diagram also commutes.

1

BA AB ABAB AABB AABB

AABB AB

φ
φ′

σ12

1ψ1

ψ11 σ31

σ23

σ21

∇A∇B
∇A∇B

1111

∇A∇B

The inverse relations on ψ and φ in Diagram 3.2 state that the counterclockwise paths are just

1
∼=−→ 11

ηAηB−−−→ AB, so the following diagram commutes, concluding the proof.

1 AB ABAB

AB

ABAB AB

φ′

φ′

ηAηB

11ψ

∇γ

ψ11

∇γ

□

Using the new inverse relations from the above result, the centrality condition on φ′ can be
recovered.

Lemma 3.7. Consider Frobenius algebras (A,∇A, ηA, βA) and (B,∇B, ηB, βB), and let ψ, φ, and
φ′ be defined as before. Suppose that the condensed centrality condition on ψ holds. Then the
condensed centrality condition on φ′ holds.

Proof. The condensed centrality condition on φ′ follows by essentially multiplying the centrality
condition on ψ by φ′ on both sides and using associativity, explicitly given by the commutativity
of the following diagram.

AB ABAB ABABAB ABAB

ABAB AB AB

ABABAB ABABAB ABAB

ABAB AB ABAB AB

ψ11

ηAηB11

11

1111ηAηB

11ψ ∇γ

φ′1111 ∇γ11

∇γ

∇γ

1111φ′ φ′11φ′
11φ′

11∇γ
ϕγ ∇γ

∇γ φ′11 ∇γ

17



□

By now, we have fully shown that the inverse and centrality conditions as formulated in Theorem
1.1 are necessary. In the remainder of this subsection, we reformulate key maps assuming the inverse
and centrality conditions but not necessarily that A⊗γ B is a Frobenius algebra. This will vastly
simplify the proof of sufficiency, and it will also help to better understand what the possibilities for
A⊗γ B look like.

Lemma 3.8. Consider Frobenius algebras (A,∇A, ηA, βA) and (B,∇B, ηB, βB), and let γ, γ′, ψ,
φ, and φ′ be defined as before. Suppose that the condensed centrality condition on ψ holds. Then
the warp is given by

γ : BA
σ12−−→ AB

∼=−→ AB1
1A1Bψ−−−−→ ABAB

∇γ−−→ AB,

and its inverse is given by

γ−1 : AB
∼=−→ AB1

1A1Bφ
′

−−−−−→ ABAB
∇γ−−→ AB

σ12−−→ BA.

Proof. To reformulate γ, first note that the following diagram commutes by the decomposed cen-
trality conditions on ψ.

AB ABAB

AABB AABB

AB

11ψ

1ψ1

∇γ

σ23
σ42

σ34

∇A∇B ∇A∇B

Because γ is the counterclockwise path precomposed with σ12, we conclude.
The proof for γ−1 is similar: the following diagram commutes by the decomposed centrality

conditions on φ′, and γ−1 is the counterclockwise path composed with σ12.

AB ABAB

AABB AABB

AB

11φ′

1φ′1 σ23

∇γ

σ42

σ34

∇A∇B ∇A∇B

□

Note that due to the condensed centrality conditions, it is equivalent to say

γ : BA
σ12−−→ AB

∼=−→ 1AB
ψ1A1B−−−−→ ABAB

∇γ−−→ AB,

and similar for γ−1.
With this new formulation of γ and γ−1, the pairing and the copairing can also be rewritten. To

do this, we use that the standard tensor product (A ⊗ B,∇σ, ησ, βσ) is a Frobenius algebra with
copairing ασ, as stated in Proposition 2.1. By definition, ∇σ is the same as ∇γ , and ησ is the same
as ηγ . This will help in reformulating βγ and αγ , which is done below.

Lemma 3.9. Consider Frobenius algebras (A,∇A, ηA, βA) and (B,∇B, ηB, βB) with copairings αA
and αB, respectively. Let ψ : 1 → A⊗B and φ′ : 1 → A⊗B be morphisms in C as before, satisfying
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the inverse and centrality conditions. Define γ and γ−1 as before, or equivalently as in Lemma 3.8.
Then the pairing βγ is given by

βγ : ABAB
∼=−→ ABAB1

1A1B1A1Bψ−−−−−−−−→ ABABAB
1A1B∇γ−−−−−→ ABAB

βσ−→ 1,

and the copairing αγ is given by

αγ : 1
ασ−−→ ABAB

∼=−→ ABAB1
1A1B1A1Bφ

′
−−−−−−−−→ ABABAB

1A1B∇γ−−−−−→ ABAB.

Proof. For βγ , we will use the equivalent formulations of γ given in Lemma 3.8
The following diagram commutes by the associativity of βσ and the centrality conditions on ψ.

Because the clockwise path is βγ , it gives the desired reformulation.

ABAB AABB AABABB AAABBB

ABABAB ABAABB AAABBB AABB

ABAABB AAABBB AABB 1

ABAB

σ23

1111ψ
111ψ1

111ψ1 σ34

1∇A∇B1

11∇γ

σ46

σ45

σ23

σ24

111111

1∇A∇B1

1∇A1∇B βAβB

11∇A∇B

σ24 1∇A1∇B

σ56

βAβB

σ23 βσ

For αγ , we will use the original formulation of γ−1 given in Equation 3.3. Because Diagram 2.4
commutes for Frobenius algebras, the following diagram commutes.

1 AABB AABABB

ABAB AB AAABBB AABB

ABABAB ABAABB ABAB

ABAABB

αAαB

ασ
ψ∗ 11ψ∗11

111ψ∗1

σ35
1∇γ1

1111ψ∗ ∆σ

1∇A∇B1

σ23

σ45

σ53 11∇A∇B

σ34
11∇A∇B

□

Again, the 1 factor can be placed on the left here. This does not immediately follow from the
centrality conditions, so a proof is included in Lemma 3.10 in Section 3.4.

So far, we have proved that if the warped tensor product of two Frobenius algebras is Frobenius,
then all of the conditions listed in Theorem 1.1 are necessary. The map φ′ used so far corresponds
to ψ∗ in the theorem.

3.4. Sufficiency. We now show that the conditions given in Theorem 1.1 sufficient for the warped
tensor product of two Frobenius algebras to be Frobenius.

Consider Frobenius algebras (A,∇A, ηA, βA) and (B,∇B, ηB, βB) with copairings αA and αB,
respectively. Let C denote A ⊗ B. Let ψ : 1 → C and ψ∗ : 1 → C be morphisms in C satisfying
the centrality and inverse conditions as in Theorem 1.1. Define γ and γ−1 as in Lemma 3.8.

The tuple (C,∇γ , ηγ) is the standard tensor product of (A,∇A, ηA) and (B,∇B, ηB). Since the
tensor product of algebras is an algebra, A⊗γ B indeed has an algebra structure. Therefore, to be
a Frobenius algebra, only the associativity and nondegeneracy of the pairing βγ must be satisfied.
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Recall from Lemma 3.9 that the pairing and copairing are given by

βγ : CC
∼=−→ CC1

1C1Cψ−−−−→ CCC
1C∇γ−−−→ CC

βσ−→ 1,

and

αγ : 1
ασ−−→ CC

∼=−→ CC1
1C1Cψ

∗
−−−−−→ CCC

1C∇γ−−−→ CC,

and recall that the 1 factor can be placed on the other side without changing anything (as formally
stated below).

Lemma 3.10. The following two diagrams commute.

CC CCC CC 1 CC

CCC CCC

CC 1 CC CCC CC

11ψ

ψ11

1∇γ

βσ

ασ

ασ

11ψ∗

∇γ1 1∇γ

βσ ψ∗11 ∇γ1

Proof. Recall from Proposition 2.1 that (C,∇γ , ηγ , βσ) is a Frobenius algebra with copairing ασ.
Let ∆σ and ϵσ be as given by Proposition 2.4. Then using the associativity of the pairing and the
definition of the pairing given in Proposition 2.3, the following diagram commutes, giving the first
result.

CC CCC CC

C CC

CCC CC C

CC 1

11ψ

ψ11

∇γ ∇γ1

1∇γ

βσ

1ψ

ψ1 ∇γ

βσ1∇γ

∇γ1

∇γ

βσ ϵσ

βσ

Using Diagram 2.4, the following diagram commutes, giving the other result.

1 CC

C CCC

CC CCC CC

ασ

ασ

φ′
φ′11

1ασ

ασ1
∆σ

1∇γ

11φ′ ∇γ1

□

Finally, we show these conditions are sufficient to guarantee that A⊗γ B is a Frobenius algebra.

Lemma 3.11. The pairing βγ is associative, so the following diagram commutes.

CCC CC

CC 1

1∇γ

∇γ1 βγ

βγ

Proof. Because βσ is an associative pairing and ∇γ is an associative multiplication, the following
diagram commutes, concluding.

20



CCC CC CCC

CC CCCC CC

CCC CCC

CC 1

1∇γ

111ψ
∇γ1

11ψ

1∇γ

11ψ

1∇γ1

11∇γ

∇γ11

βσ

1∇γ

∇γ1

1∇γ

βσ

□

Lemma 3.12. The pairing βγ is nondegenerate with copairing αγ, so the following two diagrams
commute.

C CCC C CCC

C C

αγ1

1
1βγ

1αγ

1
βγ1

Proof. By the associativity of ∇γ and the inverse and centrality conditions, the following diagram
commutes.

C CCC CCCC

CCCC CCC

CCCCC CCCC

CCCC CCC

C

ασ1 11φ′1

1φ′11

1ηγ11

1∇γ1

1∇γ1

1ψ111 1ψ11

11∇γ1

1∇γ11 1∇γ1

1∇γ1

1βσ

The clockwise path is (1C ⊗ βγ) ◦ (αγ ⊗ 1C), while by unitality, the counterclockwise path is
(1C⊗βσ)◦(ασ⊗1C). Since βσ is nondegenerate with copairing ασ, this shows the first nondegeneracy
relation.

The second diagram follows analogously – in particular, by flipping the order of the tensor
products in each object and morphism in the diagram, since due to Lemma 3.10, the clockwise
path is still (βγ ⊗ 1C) ◦ (1C ⊗ αγ). □

Therefore, the conditions listed in Theorem 1.1 are sufficient to ensure that the warped tensor
product of Frobenius algebras is Frobenius, concluding the proof.

4. Implications of Theorem 1.1

In this section, we discuss important consequences of Theorem 1.1.

4.1. Properties preserved by warps. We state the definitions of important properties of Frobe-
nius algebras and classify when the warped tensor product preserves them.
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Throughout this subsection, let (A,∇A, ηA, βA) and (B,∇B, ηB, βB) be Frobenius algebras. Call
the standard tensor product (A⊗B,∇σ, ησ, βσ). Let γ = Υ ◦ σ be a warp satisfying the conditions
in Theorem 1.2, where

Υ : AB
∼=−→ 1AB

ψ11−−→ ABAB
∇σ−−→ AB.

Call the warped tensor product’s pairing βγ and let σAB denote the braiding on (AB)(AB).
First consider commutativity. The proof itself is less interesting; since this is a property of

algebras, it is essentially the same as for the standard tensor product. However, preservation of
commutativity is the most important, because it shows that the new symmetric monoidal structures
are closed over commutative Frobenius algebras, which are equivalent to TQFTs.

Definition 4.1. A Frobenius algebra (A,∇A, ηA, βA) is commutative if the following diagram
commutes.

A⊗A A⊗A

A

σ12

∇A

∇A

Proposition 4.1. If Frobenius algebras A and B (as written earlier) are commutative, then A⊗γB
is commutative.

Proof. Since multiplication is the same as for the standard tensor product, the proof works the same
way. Because the following diagram commutes (where the counterclockwise path is ∇σ), A⊗γ B is
commutative.

ABAB BABA ABAB

AABB AABB AABB

AB

σ23

σ14

σAB

σ14

σ23

∇σ

σ12

∇A∇B

σ34

∇A∇B ∇A∇B

□

The next property is symmetry, a generaliztion of commutativity.

Definition 4.2. A Frobenius algebra (A,∇A, ηA, βA) is symmetric if the following diagram com-
mutes.

A⊗A A⊗A

1

σ12

βA
βA

Proposition 4.2. If Frobenius algebras A and B are symmetric, then A⊗γ B is symmetric.

Proof. As with commutativity, the standard tensor product of two symmetric Frobenius algebras is
symmetric. The proof is standard and similar as before, so we omit it. Then, the the result follows
because the following diagram commutes.
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ABAB ABAB

ABAB ABAB

1

σAB

Υ11 11Υ

βγ

σAB

βσ
βσ

□

Definition 4.3. A Frobenius algebra (A,∇A, ηA, βA) is special if βA ◦ (ηA ⊗ ηA) = 1.

Proposition 4.3. Let ϵσ = βσ ◦ (1⊗ ησ). If Frobenius algebras A and B are special, then A⊗γ B
is special if and only if ϵσ ◦ ψ = 1.

Proof. Again, we omit the proof that the standard tensor product A⊗σB is special. The following
diagram commutes (where the clockwise path is βγ ◦ (ησ ⊗ ησ)), so A⊗γ B is special.

1 ABAB ABABAB

AB ABAB

AB 1

ησησ

ησ

ψ

ψ1111

∇σ11ησ11

ψ11

βσ
11ησ

ϵσ

□

The condition ϵσ ◦ψ = 1 can not be simplified much further; in particular, if ψ0 has ϵσ ◦ψ0 ̸= 0,
then ψ = ψ0

ϵσ◦ψ0
would have ϵ0 ◦ ψ = 1.

4.2. New symmetric monoidal structures. We ask when the warped tensor product forms a
symmetric monoidal structure. If we instead were to consider a general monoidal structure, the
condition βA⊠B = βB⊠A would be omitted, so ΥA,B = ΥB,A would no longer be necessary. In the
family of examples provided in Section 4.3, ∼= would not involve the trivial twisting map σ anymore,
so it would denote equivalence up to associativity and unitality.

We introduce terminology to describe classes ψA,B that create valid warps.

Definition 4.4 (Warpable Classes). A class of morphisms ψA,B : 1 → A ⊗ B is warpable if
defining

ΥA,B = AB
∼=−→ AB1

11ψA,B−−−−→ ABAB
∇σ−−→ AB,

there exists a class of morphisms ψ∗
A,B : 1 → A⊗B such that the below diagrams commute.

AB ABAB 1 ABAB

ABAB AB ABAB AB

11ψ

ψ11 ∇σ

ηAηB

ψψ∗

ψ∗ψ ∇σ

∇σ ∇σ

In the above diagrams, ψ is short for ψA,B, and ψ
∗ similarly.

Now, consider some warpable class ψA,B and the corresponding ΥA,B.
As before, suppress the isomorphism constraints of C as a monoidal category with ⊗.

Question 4.4. When does ⊠ respect the suppressed constraints? In other words, when are βA⊠(B⊠C) =
β(A⊠B)⊠C , βI⊠A = βA, βA⊠I = βA, and βA⊠B = βB⊠A?
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Recall that βA⊠B = βA⊗B ◦ (1⊗ΥA,B).
Suppose some morphisms f, g : C → C satisfy βC ◦ (1⊗ f) = βC ◦ (1⊗ g). Then

f = (1⊗ βC) ◦ (αC ⊗ f) = (1⊗ βC) ◦ (αC ⊗ g) = g.

Clearly f = g implies the former condition. Therefore, βC ◦ (1 ⊗ f) = βC ◦ (1 ⊗ g) if and only if
f = g.

For the first condition,

βA⊠(B⊠C) = βA⊗(B⊠C) ◦ (1⊗ΥA,B⊠C) = βA⊗(B⊗C) ◦ (1⊗ (ΥB,CΥA,B⊠C)),

and similarly

β(A⊠B)⊠C = β(A⊗B)⊗C ◦ (1⊗ (ΥA,BΥA⊠B,C)).

Then βA⊠(B⊠C) = β(A⊠B)⊠C when ΥB,CΥA,B⊠C = ΥA,BΥA⊠B,C . Proceeding similarly for the other
conditions, the resulting conditions are:

ΥB,CΥA,B⊠C = ΥA,BΥA⊠B,C ; ΥI,A = 1; ΥA,I = 1; ΥA,B = ΥB,A.

This answers Question 4.4 and concludes the proof of Theorem 1.2.

4.3. A family of solutions. For two Frobenius algebras A and B, say that A ∼= B if they can be
related solely by the suppressed isomorphism constraints. Define this for algebra in the same way.

Also, let F denote the forgetful functor F : FrobC → AlgC. This functor essentially outputs the
same vector space, multiplication, and unit, forgetting the additional structure of the pairing.

Consider a collection of maps θA : 1 → A satisfying the same conditions as ψA,B, and let θ∗A
denote the “multiplicative inverses.” Then define

φA : A
∼=−→ A1

1θA−−→ AA
∇A−−→ A.

Suppose that φA = φB whenever F(A) ∼= F(B). Then a family of working ψ is given by the
multiplication ψA,B = θA⊗Bθ

∗
Aθ

∗
B.

This family is a concrete example of a new multiplicative structure on Frobenius algebras. While
there are not any clear special properties about this family in particular, it gives assurance that
although the conditions listed in Theorem 1.2 are still complicated, they have nontrivial solutions.

The condition that F(A) ∼= F(B) is much more restrictive than that A ∼= B, but is used here to
ensure that θA⊗B = θA⊠B. As a future direction, we pose the question of whether such a condition
is necessary in general.

Question 4.5. Are there any classes of morphisms ψ inducing a symmetric monoidal structure
which detect the Frobenius structure? In other words, does there exist a warpable class ψ which
satisfies the conditions in Theorem 1.2 such that for some Frobenius algebras A, B, and C, F(A) ∼=
F(B) but ψA,C ̸= ψB,C?
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