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Abstract. A commutative monoid M is called a linearly orderable monoid if there exists a total
order on M that is compatible with its operation. The finitary power monoid of a commutative

monoid M is the monoid consisting of all nonempty finite subsets of M under the so-called sumset.

In this paper, we investigated whether certain atomic and divisibility properties ascend from linearly
orderable monoids to their corresponding finitary power monoids.

1. Introduction

Let M be a commutative monoid (i.e., a commutative semigroup with an identity element). The
power monoid P(M) of M is the commutative monoid consisting of all nonempty subsets of M under
the so-called sumset or Minkowski sum: for any nonempty subsets S and T of M ,

S + T := {s+ t : s ∈ S and t ∈ T}.
The finitary power monoid of M , denoted here by Pfin(M), is the submonoid of P(M) consisting
of all finite nonempty subsets of M . Both power monoids and finitary power monoids have been
investigated in the literature of semigroup theory from several decades. For instance, see [25] and its
references for results until the eighties, and see [27] and its references for more recent results. In the
scope of this paper, the algebraic objects we are interested in are finitary power monoids of linearly
orderable monoids (i.e., commutative monoids that can be endowed with a total order compatible
with their corresponding operations).

In the setting of power monoids, one problem that has received a great deal of attention is the iso-
morphism problem: this is the problem of deciding, given a class C of commutative monoids, whether
non-isomorphic monoids in C induce non-isomorphic (finitary) power monoids. A compendium of
progress on the isomorphism problem and further problems in the context of power monoids can be
found in [23] as well as in the works cited there. The study of the isomorphism problem is still quite
active. For instance, the isomorphism problem for power monoids of rank-1 torsion-free commutative
monoids was recently solved in [26]. It follows from [10, Theorem 3.12] that every rank-1 torsion-free
cancellative commutative monoid that is not a group can be realized as a Puiseux monoid (i.e., an
additive submonoid of Q≥0).

Arithmetic and factorization aspects of finitary power monoids were previously studied in [9], while
atomic and ideal-theoretical aspects of finitary power monoids were previously studied in [5] in the
setting of numerical monoids (i.e., Puiseux monoids consisting of nonnegative integers). Another
classical problem in the setting of (finitary) power monoids that has attracted the attention of several
semigroup theorists for many year is that of the potential ascent of monoidal properties, which boils
down to the following question: does the fact that a commutative monoid M satisfies a given property
p imply that the (finitary) power monoid of M also satisfies the property p? As for the isomorphism
problem, progress in this direction until the eighties can be found in [25] and in the papers it references.
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Moreover, in the recent paper [13], the authors investigate the ascent of atomic and factorization
properties from Puiseux monoids to their corresponding finitary power monoids.

In this paper we investigate the ascent of ideal-theoretical and atomic properties from linearly or-
derable commutative monoids to their corresponding finitary power monoids. A commutative monoid
satisfies the ascending chain on principal ideals (ACCP) if every ascending chain of principal ideals
eventually stabilizes. Two condition weaker than the ACCP were introduced in [15]: the quasi-ACCP
and the almost ACCP. In Section 3, we prove that these two properties ascend from linearly orderable
commutative monoids to their corresponding finitary power monoids. In Section 4, we generalize
the following result established in [13]: there exists an atomic Puiseux monoid whose finitary power
monoid is not atomic. In order to do so, we produce an atomic Puiseux monoid whose finitary power
monoid is not even nearly atomic (near atomicity is a weaker notion of atomicity recently introduced
in [20].

2. Preliminary

2.1. General Notation. As is customary, Z, Q, R, and C will denote the set of integers, rational
numbers, real numbers, and complex numbers, respectively. We let N and N0 denote the set of positive
and nonnegative integers, respectively. Also, we let P denote the set of primes. For b, c ∈ Z with b ≤ c,
we let Jb, cK denote the set of integers between b and c:

Jb, cK = {n ∈ Z : b ≤ n ≤ c}.
In addition, for S ⊆ R and r ∈ R, we set

S≥r := {s ∈ S : s ≥ r} and S>r := {s ∈ S : s > r}.
For a nonzero q ∈ Q, let (n, d) be the unique pair with n ∈ Z and d ∈ N such that q = n

d and
gcd(n, d) = 1. We will denote n and d by n(q) and d(q), respectively, setting d(S) := {d(s) : s ∈ S} for
any subset S of Q\{0}. For each p ∈ P and n ∈ Z\{0}, we let vp(n) denote the p-adic valuation of n,
that is, the maximum m ∈ N0 such that pm | n, and for q ∈ Q\{0}, we set vp(q) := vp(n(q))−vp(d(q))
(after defining vp(0) := ∞, the map vp : Q → Z ∪ {∞} is the p-adic valuation map).

2.2. Commutative Monoids. We recall that a monoid is a semigroup with an identity element.
Throughout this paper, identity elements are required to be inherited by submonoids and preserved
by monoid homomorphisms. Moreover, we will tacitly assume that all monoids we will deal with are
commutative and additively written. Let M be a monoid. We set M• := M \ {0}, and we say that
M is trivial if M = {0}. The monoid M is called cancellative if for all a, b, c ∈ M , the equality
a + b = a + c implies that b = c. Also, M is called torsion-free if for all b, c ∈ M and n ∈ N, the
equality nb = nc implies b = c. The group of invertible elements of M is denoted by U (M), and M
is called reduced if the only invertible element of M is 0. The quotient M/U (M) is a monoid that is
called the reduced monoid of M and is denoted by Mred.

The group gp(M) consisting of all the formal differences of elements of M (under the operation
naturally extended from that of M) is called the Grothendieck group of M . When a monoid M is
cancellative it can be minimally embedded into its Grothendieck group and this embedding is minimal
in the following sense: gp(M) is the unique abelian group up to isomorphism such that any abelian
group containing an isomorphic copy of M will also contain an isomorphic copy of gp(M). The rank
of a cancellative monoid M is defined to be the rank of gp(M) as a Z-module or, equivalently, the
dimension of the Q-vector space Q⊗Z gp(M). Thus, the rank of a cancellative monoid gives a sense
of its size or, more accurately, the size of the smallest vector space that contains one of its isomorphic
copies. It follows from [10, Theorem 3.12] that a cancellative torsion-free monoid has rank 1 if and
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only if it is isomorphic to an additive submonoid of Q. The additive submonoids of Q that are not
nontrivial groups are called Puiseux monoids and have been actively investigated during the past
decades. They will be helpful in this paper to provide the most significant (counter)examples we
need.

Let S be a subset of M . We let ⟨S⟩ denote the smallest submonoid of M containing S, and we
call ⟨S⟩ the submonoid of M generated by S. If M = ⟨S⟩, then S is called a generating set of M ,
and M is called finitely generated provided that M has a finite generating set. Observe that any
finitely generated Puiseux monoid is isomorphic to an additive (co-finite) submonoid of N0 (additive
co-finite submonoids of N0 are called numerical monoids).

For b, c ∈ M , we say that c (additively) divides b if b = c+d for some d ∈ M , in which case we write
c |M b. A submonoid N of M is said to be divisor-closed provided that the only pairs (b, c) ∈ N ×M
with c |M b are those with c ∈ N . A maximal common divisor (MCD) of a nonempty subset S of M
is a common divisor d ∈ M of S such that the only common divisors of the set {s− d : s ∈ S} are the
invertible elements of M . The monoid M is called an MCD-monoid provided that every nonempty
finite subset of M has an MCD. Also, for k ∈ N, we say that M is a k-MCD-monoid if every subset
of M with cardinality k has a maximal common divisor. Observe that every monoid is a 1-MCD-
monoid, while a monoid is an MCD-monoid if and only if it is a k-MCD-monoid for every k ∈ N. The
notion of a k-MCD monoid seems to be introduced by Roitman in [24].

2.3. Atomicity and Ascending Chains of Principal Ideals. An element a ∈ M\U (M) is called
an atom (or irreducible) if whenever a = b+ c for some b, c ∈ M , then either b ∈ U (M) or c ∈ U (M).
The set of atoms of M is denoted by A (M). An element b ∈ M is called atomic if either b ∈ U (M)
or b can be written as a sum of finitely many atoms (allowing repetitions). As coined in Cohn [8],
the monoid M is atomic if every element of M is atomic. Following the more recent paper [20] by
Lebowitz-Lockard, we say that M is nearly atomic if there exists c ∈ M such that b + c is atomic
for all b ∈ M . It follows directly from the definitions that every atomic monoid is nearly atomic.
Following Boynton and Coykendall [6], we say that the monoid M is almost atomic (resp., quasi-
atomic) provided that for each b ∈ M , there exists an atomic element (resp., an element) c ∈ M such
that b+ c is atomic. One can verify that every nearly atomic monoid is almost atomic, and it follows
directly from the definitions that every almost atomic monoid is quasi-atomic.

A subset I of M is said to be an ideal of M provided that I +M := {b+ c : b ∈ I and c ∈ M} = I
(or, equivalently, I +M ⊆ I). An ideal I is principal if the equality I = b+M holds for some b ∈ M .
An element b ∈ M is said to satisfy the ascending chain condition on principal ideals (ACCP) if every
ascending chain of principal ideals of M containing the ideal b+M stabilizes. The monoid M is said
to satisfy the ACCP if every element of M satisfies the ACCP. An ascending chain of principal ideals
of M is said to start at an element b ∈ M if the first ideal in the chain is b+M . Two ideal-theoretical
notions weaker than the ACCP were introduced in [15]: the quasi-ACCP and the almost ACCP. We
say that M satisfies the almost ACCP (resp., quasi-ACCP) if for any nonempty finite subset S of M ,
there exists an atomic common divisor (resp., a common divisor) d ∈ M of S such that for some s ∈ S
the element s− d satisfies the ACCP. It follows directly from the definitions that every monoid that
satisfies the almost ACCP also satisfies the quasi-ACCP.

It is well known that every cancellative monoid that satisfies the ACCP is atomic (see [11, Proposi-
tion 1.1.4]), and so every cancellative monoid that satisfies the ACCP also satisfies the almost ACCP.
However, not every atomic monoid satisfies the ACCP, and several examples of cancellative monoids
and integral domains witnessing this observation can be found in recent papers, including [15]. More-
over, it follows from [15] that every monoid satisfying the almost ACCP is atomic (in Section 4, we
will construct a new rank-one atomic monoid that does not satisfy the almost ACCP). The property
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of satisfying the quasi-ACCP does not imply that of being atomic as illustrated by the simple Puiseux
monoid Q≥0.

2.4. Irreducible Divisors and Factorizations. We say that M is a Furstenberg monoid or satisfies
the Furstenberg property if every non-invertible element of M is divisible by an atom. The Furstenberg
property was introduced by Clark in [7]. It follows from the definitions that every atomic monoid
is a Furstenberg monoid. Following Grams and Warner [18], we say that M is an IDF-monoid if
every element of M is divisible by only finitely many atoms up to associates (two elements of M are
associates if their differences belong to U (M)). Then we say that M is a TIDF-monoid provided that
it is a Furstenberg IDF-monoid. The TIDF (tightly irreducible divisor finite) property was introduced
and first investigated by Zafrullah and the second author in [16].

Now assume that the monoid M is atomic, which is equivalent to the fact that the reduced monoid
Mred is atomic. Let Z(M) be the free (commutative) monoid on the set of atoms A (Mred). The ele-
ments of Z(M) are called factorizations. Let π : Z(M) → Mred be the unique monoid homomorphism
fixing the set A (Mred). For any b ∈ M , we set Z(b) := π−1(b+ U (M)) and call the elements of Z(b)
(additive) factorizations of b. If |Z(b)| < ∞ for every b ∈ M , then M is called a finite factorization
monoid (or an FFM for short). It follows from [19, Theorem 2] that a monoid is an FFM if and
only if it is an atomic IDF-monoid. In particular, every FFM is a TIDF-monoid. It follows from [11,
Corollary 1.4.4] that every FFM satisfies the ACCP.

2.5. Linearly Ordered Groups and Monoids. The class consisting of linearly ordered monoids
contains all Puiseux monoids and plays a fundamental role in this paper. The monoid M is called
linearly ordered with respect to a total order relation ⪯ on M if ⪯ is compatible with the operation
of M , which means that for all b, c, d ∈ M the order relation b ≺ c ensures that b+ d ≺ c+ d. We say
that the monoid M is linearly orderable provided that M is a linearly ordered monoid with respect
to some total order relation on M . More than a century ago, it was proved by Levi [21] that every
torsion-free abelian group is a linearly orderable monoid (or, simply, linearly orderable). From this
Levi’s result one can deduce the following well-known theorem.

Theorem 2.1. A monoid is linearly orderable if and only if it is cancellative and torsion-free.

Let G be a linearly ordered abelian group (additively written) with respect to a total order rela-
tion ⪯. The nonnegative cone of G is the submonoid G+ of G consisting of all nonnegative elements;
that is,

G+ := {g ∈ G : 0 ⪯ g}.
A submonoid of G+ is called a positive submonoid of G. In general, the monoid M is called a positive
monoid provided that M is isomorphic to a submonoid of the nonnegative cone of a linearly ordered
abelian group. Observe that, as a consequence of Theorem 2.1, if the monoid M is cancellative,
reduced, and torsion-free, then its Grothendieck group gp(M) can be turn into a linearly ordered
monoid so that M is a positive monoid of gp(M).

For g ∈ G, we set |g| := max{±g}. For g, h ∈ G, we write g = O(h) whenever |g| ⪯ n|h| for some
n ∈ N. Now consider the equivalence relation ∼ on G obtained as follows: for g, h ∈ G, write g ∼ h
whenever both equalities g = O(h) and h = O(g) hold. Set ΓG := (G \ {0})/ ∼ and consider the
quotient map v : G \ {0} → ΓG. Then the binary relation ≤ on Γ defined by writing v(g) ≤ v(h)
for any g, h ∈ G \ {0} such that h = O(g) is a total order relation. The elements of ΓG are called
Archimedean classes of G, and the quotient map v is called the Archimedean valuation on G. The
group G is called Archimedean provided that ΓG is a singleton. A monoid is called Archimedean if it
is a positive monoid of an Archimedean group. According to one of the well-known Hölder’s theorems,
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a linearly orderable abelian group is Archimedean if and only if it is order-isomorphic to a subgroup
of the additive group R.

2.6. Finitary Power Monoid. Let M be a monoid. We let Pfin(M) denote the monoid consisting
of all nonempty finite subsets of M under the so-called sumset operation: for any nonempty finite
subsets S and T of M ,

S + T := {s+ t : (s, t) ∈ S × T}.

The monoid Pfin(M) is called the finitary power monoid of M . To simplify notation, in the scope of
this paper we call the monoid Pfin(M) the power monoid of M1.

We say that the monoid M is unit-cancellative provided that for all b, c ∈ M the equality b+ c = b
implies that c ∈ U (M). It follows from [9, Proposition 3.5] that if M is a linearly orderable monoid,
then Pfin(M) is a unit-cancellative monoid. On the other hand, it is worth emphasizing that power
monoids are extremely non-cancellative in the sense that Pfin(M) is cancellative if and only if the
monoid M is trivial. We proceed to prove some preliminary results about power monoids that we will
need in the coming sections.

Lemma 2.2. Let M be a linearly ordered monoid. For any A,B,C ∈ Pfin(M) with A+B = C, the
following statements hold:

minA+minB = minC and maxA+maxB = maxC.

Proof. We only verify that minA +minB = minC as the other identity follows similarly. Let ⪯ be
the total order relation under which M is a linearly ordered monoid. Since minC belongs to C and
C = A+B, we can take some a ∈ A and b ∈ B such that a+b = minC. As minA ⪯ a and minB ⪯ b,
minA+minB ⪯ minC. On the other hand, the fact that minA+minB ∈ A+B = C ensures that
minC ⪯ minA+minB. □

The following corollary is an immediate consequence of Lemma 2.2.

Corollary 2.3. Let M be a linearly ordered monoid. If A,B ∈ Pfin(M), then A |Pfin(M) B implies
that minA |M minB.

The following lemma will also be helpful later.

Lemma 2.4. Let M be a linearly ordered monoid. For A,B ∈ Pfin(M) such that A |Pfin(M) B, if
minA = minB, then either A = B or |A| < |B|.

Proof. Take A,B ∈ Pfin(M) such that A |Pfin(M) B, and assume that minA = minB. If A = B,
then we are done. Therefore assume that A ̸= B. Since A |Pfin(M) B, we can take D ∈ Pfin(M) such
that A + D = B. By Lemma 2.2, the equality minA + minD = minB holds. Hence the equality
minA = minB implies that minD = 0. As a result, A = A+ {0} ⊆ A+D = B, and so the inequality
|A| < |B| follows from the fact that A ̸= B. □

1In general, the power monoid of M is the larger monoid consisting of all nonempty subsets of M under the same

sumset operation.
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3. Ascending Chain of Principal Ideals

It is known that if a linearly orderable monoid M satisfies the ACCP, then the power monoid
of M also satisfies the ACCP. In this section, we will establish parallel ascent results for the quasi-
ACCP and the almost ACCP. Before proving the ascent of these two properties, we need the following
preliminary known lemma (we include a proof here for the sake of completeness).

Lemma 3.1. Let M be a linearly orderable monoid. For any S, T ∈ Pfin(M), the following statements
hold.

(1) |S + T | ≥ |S|+ |T | − 1 ≥ max{|S|, |T |}.
(2) If |S| ≥ 2, then |S + T | > |T |.

Proof. (1) Take S, T ∈ Pfin(M). The first inequality |S + T | ≥ |S| + |T | − 1 is [9, Proposition 3.5],
and the second inequality follows immediately.

(2) Let ⪯ be a total order relation on M turning M into a linearly ordered monoid. Set s := minS
and t := minT . Because |S| ≥ 2, we can take r ∈ S\{s}. Now observe that s+t ≺ r+t = min({r}+T ),
so {s + t} /∈ {r} + T . This means that |{s + t} ∪ ({r} + T )| = |T | + 1. Finally, the inclusion
{s + t} ∪ ({r} + T ) ⊆ S + T , along with the fact that T and {r} + T have the same cardinality,
guarantees that |S + T | ≥ |T |+ 1 > |T |. □

For any monoid M , it is clear that the set consisting of all the singletons of M is a submonoid
of Pfin(M). In light of the second part of the previous lemma, we obtain that such a submonoid is
divisor-closed. We record this easy remark here for future reference.

Corollary 3.2. Let M be a linearly orderable monoid. Then {S ∈ Pfin(M) : |S| = 1} is a divisor-
closed submonoid of Pfin(M).

We are in a position to establish the main result of this section, the ascent of the quasi-ACCP and
the almost ACCP to power monoids in the class of linearly orderable monoids.

Theorem 3.3. Let M be a linearly orderable monoid. Then the following statements hold.

(1) If M satisfies the quasi-ACCP, then Pfin(M) also satisfies the quasi-ACCP.

(2) If M satisfies the almost ACCP, then Pfin(M) also satisfies the almost ACCP.

Proof. To make our notation less cumbersome, we write P instead of Pfin(M).

(1) Assume that M satisfies the quasi-ACCP. In order to argue that P satisfies the quasi-ACCP,
fix a nonempty finite subset {S1, . . . , Sn} of P. Now set S := S1 ∪ · · · ∪Sn. Because S is a nonempty
finite subset of M , the fact that M satisfies the quasi-ACCP allows us to pick a common divisor d ∈ M
of S and also an element s ∈ S such that s − d satisfies the ACCP in M . Take an index j ∈ J1, nK
such that s ∈ Sj . For each i ∈ J1, nK, the inclusion Si ⊆ S ensures that d is a common divisor of Si

in M , and so {d} |P Si.
Thus, it suffices to show that Sj−{d} satisfies the ACCP in P. To do this, take an ascending chain

(Bn + P)n≥0 of principal ideals of P starting at Sj − {d} and, as B0 and Sj − {d} are associates,
we can assume that B0 = Sj − {d}. Now set b0 := s − d and take b1 ∈ B1 such that b1 |M b0, and
then note that if b0, . . . , bn are elements in M such that bi ∈ Bi and bi |M bi−1 for every i ∈ J1, nK,
then the fact that Bn+1 |P Bn allows us to take bn+1 ∈ Bn+1 such that bn+1 |M bn. Hence we
have inductively constructed a chain (bn +M)n≥0 of principal ideals of M with b0 = s− d such that
bn ∈ Bn for every n ∈ N0. Since the ascending chain (bn +M)n≥0 starts at s− d, which is an element
satisfying the ACCP in M , there exists an index k1 ∈ N such that whenever n > k1 the equality
bn +M = bn−1 +M holds, and so bn−1 − bn ∈ U (M). On the other hand, it follows from part (1)
of Lemma 3.1 that, for each n ∈ N0, the divisibility relation Bn+1 |P Bn implies that |Bn| ≥ |Bn+1|,
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whence there exists an index k2 ∈ N such that |Bn| = |Bk2
| for every n ≥ k2. Now, for each n ∈ N,

take a subset Cn of M such that Bn−1 = Bn + Cn. Then by part (2) of Lemma 3.1, for each n ∈ N
with n > k2 the set Cn must be a singleton, and so Cn = {bn−1 − bn}. As a consequence, for each
n ∈ N with n > max{k1, k2}, we obtain that the element Cn of P is the singleton containing the
invertible element bn−1 − bn, and so the chain (Bn + P)n≥0 must stabilize. Thus, we conclude that
Sj − {d} satisfies the ACCP.

(2) Suppose now that M satisfies the almost ACCP. As in the previous part, fix a nonempty finite
subset {S1, . . . , Sn} of P, and use the fact that M satisfies the almost ACCP to find an atomic
common divisor d ∈ M of S1 ∪ · · · ∪ Sn such that s− d satisfies the ACCP in M . If d is an invertible
element of M , then {d} is an invertible element of P. Otherwise, we can write d = a1 + · · ·+ aℓ for
some a1, . . . , aℓ ∈ A (M), in which case, {a1}, . . . , {aℓ} ∈ A (M) and so {d} can be written as a sum
of atoms in P, namely, {d} = {a1}+ · · ·+{aℓ}. Hence {d} must be an atomic element in P. Finally,
proceeding mutatis mutandis as we did in part (1), we can show that Sj − {d} satisfies the ACCP in
P, where j is an index in J1, nK such that d ∈ Sj . Hence we conclude that the power monoid P also
satisfies the almost ACCP. □

4. Atomicity and Maximal Common Divisors

In this first section, we will investigate the ascent of atomicity as well as the ascent of some weaker
notions of atomicity from linearly ordered monoids to their corresponding power monoids.

4.1. Existence of Maximal Common Divisors. Our next goal is to prove that, for any linearly
orderable monoid M , the power monoid Pfin(M) is atomic if and only if M is an atomic MCD-
monoid. This result not only generalizes but also strengths [13, Theorem 3.2], in the sense that it
gives a complete characterization of atomic power monoids of linearly ordered monoids (which are
more general than Puiseux monoids). Given that the existence of maximal common divisors (MCDs)
is essential for our characterization, let us first argue that the existence of MCDs transfers between
any linearly orderable monoid and its power monoid.

Proposition 4.1. For a linearly orderable monoid M , the following conditions are equivalent.

(a) M is an MCD-monoid.

(b) Pfin(M) is an MCD-monoid.

(c) Pfin(M) is a k-MCD-monoid for some k ∈ N≥2

Proof. (a) ⇒ (b): Assuming that M is an MCD-monoid, let us show that each nonempty finite subset
S of Pfin(M) has an MCD by using induction on

∑
S∈S |S|. For the base case, note that if, for

a nonempty finite subset S of Pfin(M), the equality
∑

S∈S |S| = 1 holds, then S = {{m}} for
some m ∈ M , which implies that {m} is an MCD of S in Pfin(M). Now fix n ∈ N such that every
nonempty finite subset S of Pfin(M) with

∑
S∈S |S| ≤ n has an MCD in Pfin(M). Let T be a

nonempty finite subset of Pfin(M) with
∑

T∈T |T | = n+ 1, and let us argue that T has an MCD in
Pfin(M). Consider the following two cases.

Case 1: T has a common divisor in Pfin(M) that is not a singleton. Let D be a common divisor
of T in Pfin(M) such that |D| ≥ 2. Then we can write T = D + T ′ for some T ′ in Pfin(M),
in which case the inequality

∑
T∈T ′ |T | <

∑
T∈T |T | holds in light of Lemma 3.1. Therefore our

induction hypothesis ensures the existence of an MCD T ′ of T ′ in Pfin(M). It immediately follows
now that D + T ′ is an MCD of T in Pfin(M).
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Case 2: Each common divisor of T in Pfin(M) is a singleton. Because M is an MCD-monoid,
the finite nonempty subset U :=

⋃
T∈T T of M must have an MCD, namely, m0 ∈ M . As m0 is a

common divisor of T in M for all T ∈ T , it follows that {m0} is a common divisor of T . To argue
that {m0} is indeed an MCD of T , take a nonempty finite subset D′ of M such that {m0}+D′ is a
common divisor of T . By assumption, {m0} +D′ is a singleton, and so D′ = {d} for some d ∈ M .
Now the fact that m0 is an MCD of U ensures that d ∈ U (M). Hence {m0} is an MCD of T in
Pfin(M).

(b) ⇒ (c): This is straightforward.

(c) ⇒ (a): Assume that Pfin(M) is a k-MCD monoid for some k ∈ N≥2, and so a 2-MCD-monoid.
To show that M is an MCD-monoid, it suffices to fix a finite subset S of M with |S| ≥ 2 and prove
that S has an MCD in M . Take s0 ∈ S, and then set T := {{s0}, S \ {s0}}, which is a subset of
Pfin(M). Because T contains a singleton, it follows from Lemma 3.1 that all common divisors of T
in Pfin(M) are singletons. In addition, as Pfin(M) is a 2-MCD-monoid and |T | = 2, we can take
m0 ∈ M such that {m0} is an MCD of T in Pfin(M). This immediately implies that m0 is an MCD
of S in M . □

For a monoid M , we say that an element S of Pfin(M) is indecomposable if whenever we can write
S = U + V for some U, V ∈ Pfin(M) either |U | = 1 or |V | = 1. In order to establish the primary
result of this section, we need the following lemma.

Lemma 4.2. Let M be a linearly orderable monoid, and let S be a finite subset of M with |S| ≥ 2.
Then the following statements hold.

(1) If minS +maxS > 0, then S ∪ {4maxS} is indecomposable.

(2) If minS +maxS < 0, then S ∪ {4minS} is indecomposable.

Proof. Take s1, . . . , sn ∈ M with s1 < · · · < sn such that S = {s1, . . . , sn}.
(1) Assume that minS + maxS ≥ 0, and set T := S ∪ {4sn}. From s1 + sn > 0, we obtain

that sn > 0. Assume, towards a contradiction, that we can pick U and V to be non-singletons
nonempty finite subsets of M such that T = U + V in Pfin(M). Now set u1 := maxU and then set
u2 := max(U \ {u1}). Similarly, set v1 := maxV and then set v2 := (V \ {v1}). Therefore, we see that
4sn = maxT = max(U + V ) = u1 + v1 and

sn = max(T \ {4sn}) = max
(
(U + V ) \ {u1 + v1}

)
∈ {u1 + v2, u2 + v1}.

Assume, without loss of generality, that sn = u2+v1. Then (u1+v1)− (u2+v1) = 3sn and, therefore,
u1 = u2 + 3sn. Similarly, it follows from sn ≥ u1 + v2 that (u1 + v1) − (u1 + v2) ≥ 3sn, and so
v2 + 3sn ≤ v1. Thus, u2 + v2 + 6sn ≤ u1 + v1 = 4sn, which implies that u2 + v2 + 2sn ≤ 0. On the
other hand, we find that

u2 + v2 + 2sn ≥ minU +minV + 2sn ≥ (s1 + sn) + sn ≥ sn > 0,

which contradicts the inequality u2+v2+2sn ≤ 0. As a consequence, T is an indecomposable element
of Pfin(M).

(2) Now assume that minS +maxS < 0. This part is symmetric to part (1): indeed, after setting
T := S ∪ {4s1}, we can take the elements u1 and u2 (resp., v1 and v2) to be the smallest element and
second smallest element of U (resp., V ), and then we can repeat the argument already given in the
proof of the previous part. □

We are in a position to characterize the atomic power monoids of linearly orderable monoids.

Theorem 4.3. For any linearly orderable monoid M , the following conditions are equivalent.
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(a) M is an atomic MCD-monoid.

(b) Pfin(M) is an atomic monoid.

(c) Pfin(M) is an atomic MCD-monoid.

(d) Pfin(M) is an atomic k-MCD-monoid for some k ∈ N≥2.

Proof. Let M be a linearly orderable monoid, and set M := {{m} : m ∈ M}, which is a divisor-closed
submonoid of Pfin(M).

(a) ⇒ (c): The proof that Pfin(M) is an atomic monoid follows the line of the proof of [13,
Theorem 3.2] mutatis mutandis. Then, it follows from Proposition 4.1 that Pfin(M) is an atomic
MCD-monoid.

(c) ⇒ (d): This is straightforward.

(d) ⇒ (b): This is also straightforward.

(b) ⇒ (a): Because M is a divisor-closed submonoid of Pfin(M), from the fact that Pfin(M) is
atomic one obtains that M is atomic. As a consequence, M is also atomic as it is naturally isomorphic
to M .

To prove that M is an MCD-monoid, we fix a nonempty finite subset S of M and argue that S
has an MCD in M . As every singleton has an MCD in M , we can assume that |S| ≥ 2. On the other
hand, after replacing S by a suitable subset, we can further assume that s + t ̸= 0 for all s, t ∈ S.
Take s1, . . . , sn ∈ M with s1 < · · · < sn such that S = {s1, . . . , sn}. Now set T := S ∪ {t}, where
t := 4sn if s1 + sn > 0 and t := 4s1 if s1 + sn < 0.

Since Pfin(M) is an atomic monoid, we can write T = A1 + · · · + Aℓ for some atoms A1, . . . , Aℓ

of Pfin(M). In light of Lemma 4.2, we can assume that Ai is a singleton if and only if i ∈ J1, ℓ− 1K
(at least one of A1, . . . , Aℓ is not a singleton because T is not a singleton). Write Ai = {ai} for every
i ∈ J1, ℓ − 1K. Thus, the fact that {a1}, . . . , {aℓ−1} are atoms of Pfin(M) implies that they are also
atoms of the divisor-closed submonoid M of Pfin(M), whence the natural isomorphism between M
and M ensures that a1, . . . , aℓ−1 ∈ A (M). Set A := {a1 + · · ·+ aℓ−1} and T := {S, {t}}, and let us
argue the following claim.

Claim. A is an MCD of T in Pfin(M).

Proof of Claim. Since A+Aℓ = T = {s1, . . . , sn} ∪ {t} and A is a singleton, we see that A divides
both S = {s1, . . . , sn} and {t} in Pfin(M), so A is a common divisor of T . Now suppose that A+D
divides both S and {t} in Pfin(M) for some nonempty finite subset D of M . Then D must be a
singleton because it divides the singleton {t} in Pfin(M). Because A + D is a singleton and also a
common divisor of S and {t} in Pfin(M), it follows that A +D divides T in Pfin(M). Now take a
nonempty finite subset D′ of M such that (A+D) +D′ = T = {a1 + · · ·+ aℓ−1}+Aℓ. This implies
that D +D′ = Aℓ (every singleton is a cancellative element in Pfin(M)). Now the fact that Aℓ is an
atom of Pfin(M) guarantees that either D or D′ is invertible in Pfin(M). Since D′ is not a singleton
(because Aℓ is not a singleton), it follows that D is invertible in Pfin(M). Hence we conclude that A
is an MCD of T in Pfin(M), and the claim is established.

It follows from the established claim that s := a1 + · · ·+ aℓ−1 is a common divisor of S in M . To
argue that s is an MCD of S in M , take d ∈ M such that s+ d is a common divisor of S in M . Then
A+{d} divides both S and {t} in Pfin(M), and so the established claim implies that {d} is invertible
in Pfin(M). Therefore d ∈ U (M), and so s is an MCD of S in M . We can now conclude that M is
an atomic MCD-monoid, which concludes our proof. □
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4.2. Non-Ascent of Atomicity. Next we construct an atomic rank-one torsion-free monoid M
whose power monoid Pfin(M) is not atomic, confirming the result first given in [13, Section 3] that
the property of being atomic does not ascend to power monoids. First, we argue the following lemma.

Lemma 4.4. Let M be a Puiseux monoid generated by a set S, and let (p, a) be the only pair in P×S
such that p | d(s). Then the following statements hold.

(1) a ∈ A (M).

(2) For each q ∈ M , the following set is a singleton:

(4.1)
{
c+ pZ : q = ca+ r for some c ∈ N0 and r ∈

〈
S \ {a}

〉}
.

Proof. (1) This follows immediately as if a ∈ ⟨S \ {a}⟩, then we could take c1, . . . , cℓ ∈ N and
s1, . . . , sℓ ∈ S \ {a} such that a = c1s1 + · · · + cℓsℓ, which is not possible because vp(a) ≤ −1 while
vp(c1s1 + · · ·+ cℓsℓ) ≥ 0.

(2) Set N := ⟨S \ {a}⟩, and observe that vp(r) ≥ 0 for every r ∈ gp(N). Now fix q ∈ M , and
let Cq be the set described in (4.1). Let c1 + pZ and c2 + pZ be two elements of Cq, and then write
q = c1a+ r1 = c2a+ r2 for some r1, r2 ∈ N . Since (c1 − c2)a = r2 − r1 ∈ gp(N), we see that

vp(c1 − c2) ≥ 1 + vp((c1 − c2)a) = 1 + vp(r2 − r1) ≥ 1,

which means that p | c1 − c2 or, equivalently, c1 + pZ = c2 + pZ. As a consequence, we can conclude
that Cq is a singleton for each q ∈ M . □

Based on part (2) of Lemma 4.4, we introduce the following notation.

Notation. Let the notation be as in Lemma 4.4. For each q ∈ M , we let ca,p(q) denote the unique
element of Z/pZ contained in the singleton (4.1), and we set ca(q) instead of ca,p(q) when p is unique
given a. This satisfies some useful properties: for instance, one can check that

ca,p(q + r) = ca,p(q) + ca,p(r) for all q, r ∈ M.

Also note that ca,p(q) is the same for any S we choose where a satisfies the desired condition. Thus,
as long as S exists, the notation is well defined.

We proceed to produce an example of an atomic Puiseux monoid that is not 2-MCD. The following
example, which is motivated by [13, Example 3.3], not only improves the choice of the generating set
of the later, but will also help us resolve the question of whether near atomicity ascends to power
monoids in the class of linearly orderable monoids.

Example 4.5. (cf. [13, Example 3.3]) Let pn be the nth prime in P≥5, and consider the Puiseux
monoid M generated by the set A1 ∪A2, where

A1 :=

{
1

2np2n+2
: n ∈ N0

}
and A2 :=

{
1

p2n+1

(
1

3
+

1

2n

)
: n ∈ N0

}
.

By part (1) of Lemma 4.4, every element of A1∪A2 is an atom of M and, therefore, A (M) = A1∪A2.
Hence M is an atomic monoid. We will argue that M is not a 2-MCD monoid by showing that the
subset

{
1, 4

3

}
of M does not have an MCD (both 1 and 4

3 belong to M).
For z ∈ Z(M) and a ∈ A (M), we let za be the number of copies of a that appear in z, and let pa

be the unique prime in P≥5 dividing d(a). Observe that, for each r ∈ M , if the equality vpa
(r) = 0

holds, then for any z ∈ Z(r) there exists da ∈ N0 such that za = dapa.
We claim that a ∤M 1 for any a ∈ A2. Suppose, by way of contradiction, that a |M 1 for some

a ∈ A2, and fix z ∈ Z(1) with za ≥ 1. The equality vpa
(1) = 0 implies that da := za

pa
∈ N0, and so that

da ≥ 1. Now the fact that 1 ≥ zaa = da
(
1
3 +

1
2n

)
for some n ∈ N0 ensures that da ∈ {1, 2}. Thus, one

can deduce from v3(1) = 0 that (as an atom of A2 appears in z) there must exist pairwise distinct



ON FINITARY POWER MONOIDS OF LINEARLY ORDERABLE MONOIDS 11

atoms a1, a2, a3 ∈ A2 at least two of them appearing in z such that da1
+ da2

+ da3
= 3k for some

k ∈ N. As a consequence,
3∑

i=1

zai
ai ≥

3∑
i=1

dai

(
1

3
+

1

2ni

)
> 1

for some n1, n2, n3 ∈ N0, which contradicts that 1 ≥
∑3

i=1 zai
ai (as

∑3
i=1 zai

ai is a factorization of a
divisor of 1 in M). Therefore a ∤M 1 for any a ∈ A2, as claimed.

Let us prove now that
{
1, 4

3

}
has no MCD in M . Fix a common divisor q ∈ M of

{
1, 4

3

}
, and let

us find a positive common divisor of
{
1 − q, 4

3 − q
}
in M . Since q |M 1, it follows from the claim

proved in the previous paragraph that a ∤M q for any a ∈ A2. Let z be a factorization of 4
3 − q. Since

v3
(
4
3 − q

)
= −1, the inclusion v3(A1) ⊆ N0 implies that at least one atom from A2 appears in z. As

the sum of any four atoms of A2 is larger than 4
3 , at most three pairwise distinct atoms of A2 can

appear in z. Let {a1, a2, a3} be a 3-subset of A2 containing the atoms of A2 that appear in z. Then
v3
(
4
3 − (za1

a1 + za2
a2 + za3

a3)
)
≥ 0, and so

v3

(
4

3
− da1

+ da2
+ da3

3

)
= v3

(
4

3
−

3∑
i=1

dai

(
1

3
+

1

2ni

))
= v3

(
4

3
−

3∑
i=1

zai
ai

)
≥ 0.

for some n1, n2, n3 ∈ N0. Thus, da1
+ da2

+ da3
∈ 1 + 3N0, and so da1

+ da2
+ da3

= 1 because the
inequality da1

+ da2
+ da3

≥ 4 implies that za1
a1 + za2

a2 + za3
a3 > 4

3 . Therefore there is a unique

index n ∈ N0 such that the atom an := 1
p2n+1

(
1
3 +

1
2n

)
∈ A2 appears in z, and it appears exactly p2n+1

times. Then we can take r ∈ ⟨A1⟩ such that 4
3 − q = p2n+1an + r =

(
1
3 + 1

2n

)
+ r, which implies that

1− q =
1

2n+1
+

(
1

2n+1
+ r

)
and

4

3
− q =

1

2n+1
+

(
1

3
+

1

2n+1

)
+ r.

Hence 1
2n+1 is a positive common divisor of the set

{
1 − q, 4

3 − q
}
in M , and so we conclude that{

1− q, 4
3 − q

}
does not have an MCD in M . Thus, M is not an MCD-monoid.

The following remark is an immediate consequence of Theorem 4.3.

Remark 4.6. Although the monoid constructed in Example 4.5 is atomic, its power monoid is not
atomic.

5. Notions Weaker than Atomicity

In this section, we study three natural generalizations of atomicity that have been recently consid-
ered in the literature: near atomicity, almost atomicity, and quasi-atomicity.

5.1. Near Atomicity. Motivated by the construction provided in Example 4.5, in this section we will
produce an atomic Puiseux monoid whose power monoid is not even nearly atomic, giving a negative
answer to the question of whether near atomicity ascends from linearly orderable monoids to their
corresponding power monoids.

Lemma 5.1. Let M be a Puiseux monoid, and let T be an element of Pfin(M). Suppose that any
divisor S of T in Pfin(M) is such that for any singleton {x} dividing S in Pfin(M) there exists a
singleton {y} /∈ {{0}, S} dividing S − {x} in Pfin(M). Then T is not divisible by any atoms.

Proof. Suppose, by way of contradiction, that S is an atom of Pfin(M) that divides T . Then
{0} |Pfin(M) S, so there is some {x} |Pfin(M) S − {0} = S where {x} /∈ {{0}, S}. Since M is
reduced, {x} and S − {x} are not invertible elements, which contradicts that S is an atom. □

Now we present a fact which will become useful to prove the main theorem of this section.
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Lemma 5.2. Let M be a Puiseux monoid, and let p be a prime such that there exists a unique atom
a in M whose denominator is divisible by p. If the map ca,p is constant on S for some S ∈ Pfin(M),
then ca,p is constant on any divisor D of S in Pfin(M).

Proof. Let S be an element of Pfin(M) such that the map cp,a is constant on S, and let D be a divisor
of S in Pfin(M). Write S = C +D for some C ∈ Pfin(M). Then for any r, s ∈ D and t ∈ C, we see
that

ca,p(r) + ca,p(t) = ca,p(r + t) = ca,p(s+ t) = ca,p(s) + ca,p(t).

Hence ca,p(r) = ca,p(s), and so we conclude that ca,p is also constant on D. □

We proceed to prove that near atomicity does not ascend from linearly orderable monoids to their
corresponding power monoids. This is the primary result of this section.

Theorem 5.3. There exists an atomic linearly orderable monoid whose power monoid is not even
nearly atomic.

Proof. Let N , D, Q, and the terms of the sequence (Pk)k≥1 be pairwise disjoint infinite subsets of
P≥3. Also, let the sequences (ni)i≥1, (di)i≥1, and (qi)i≥1 be strictly increasing enumerations of the
sets N , D, and Q, respectively, and for each k ∈ N, let (pk,i)i≥1 be a strictly increasing enumeration
of Pk. Now let M be the Puiseux monoid generated by the set

⋃
n∈N0

Ak, where

A0 :=

{
1

2iqi
: i ∈ N

}
and Ak :=

{
1

pk,i

(
nk

dk
+

1

2i

)
: i ∈ N

}
for every k ∈ N. Now set a0,i := 1

2iqi
and ak,i := 1

pk,i

(
nk

dk
+ 1

2i

)
∈ Ak for all (k, i) ∈ N × N. After

replacing, for each k ∈ N, the sequence (pk,i)i≥1 by a suitable subsequence, one can assume that
pk,i > 2ink + dk for every i ∈ N. Hence the pk,i-valuation of ak,i is negative for all (k, i) ∈ N × N.
Thus, it follows from part (1) of Lemma 4.4 that A (M) =

⋃
k∈N0

Ak and, therefore, M is atomic. For
all r ∈ M and i ∈ N, we set

ca0,i
(r) := ca0,qi(r) and cak,i

(r) := cak,i,pk,i
(r).

Now set bk,i := nk

dk
+ 1

2i for all (k, i) ∈ N × N, and observe that N :=
〈
bk,i : (k, i) ∈ N × N

〉
is a submonoid of M . In addition, it follows from part (1) of Lemma 4.4 that N is atomic with
A (N) = {bk,i : (k, i) ∈ N× N}.

We will prove that P := Pfin(M) is not nearly atomic. Fix S ∈ P and let us find T ∈ P such that
S+T is not atomic. Because S is a finite set, we can take j ∈ N large enough so that pk,1 > max d(S)
for all k ≥ j, while dj > max d(S) and nj > maxS. Now set T := {tj , tj+1}, where tj := bj,1 and
tj+1 := bj+1,1. Fix (s, t) ∈ S × T and c ∈ {0, 1}, and then write

(5.1) s+ ct = rj +
∑
k≥j

∑
i∈N

ck,iak,i,

where rj ∈ M and {ck,i : (k, i) ∈ N≥j × N} ⊆ N0 (with ck,i = 0 for almost all (k, i) ∈ N≥j × N)
such that dk ∤ d(rj) ≥ 0 and pk,i ∤ d(rj) ≥ 0 for all (k, i) ∈ N≥j × N. For any (k, i) ∈ N≥j × N, we
see that pk,i ≥ pk,1 > max d(S) and so pk,i ∤ d(s). Thus, for each (k, i) ∈ N≥j × N, we obtain that
pk,i ∤ d(s+ ct), and so pk,i | ck,i. Therefore

(5.2) s+ ct = rj +
∑
k≥j

∑
i∈N

ck,i
pk,i

(nk

dk
+

1

2i

)
= rj + r′j +

∑
k≥j

ck
nk

dk
,

where r′j is a nonnegative dyadic rational and ck :=
∑

i∈N
ck,i

pk,i
∈ N0. For each index k ≥ j, the fact

that dk ≥ dj > max d(S) implies that dk ∤ d(s). Thus, if c = 0, then for each index k ≥ j we obtain
that ck

dk
∈ N0 and so the fact that nk ≥ nj > maxS (along with (5.2)) implies that ck = 0, whence
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ck,ℓ = 0 for every ℓ ∈ N. Thus, any factorization of s in M contains no copy of the atom ak,ℓ for
any pair (k, ℓ) ∈ N≥j × N. Proceeding similarly, we can argue that if c = 1, then ak,ℓ ∤ s+ t for each
pair (k, ℓ) ∈ N≥j+2 ×N, from which we can deduce that any factorization z of s+ tj (resp., s+ tj+1)
contains no copy of the atom ak,ℓ for any pair (k, ℓ) ∈ N≥j+2 ×N and also that we can pick an index
i ∈ N such that z has either 0 or pj,i (resp., pj+1,i) copies of the atom aj,i (resp., aj+1,i). Now, for
each s ∈ S, define

caj,ipj,i
(s) = cdj ,aj,ipj,i

(
s−

n∑
m=1

caj,m
(s)aj,m

)
,

where vaj,m
(s) = 0 whenever m > n (a finite n exists as the element s is atomic). Note that this is

equal for large enough i ∈ N. Before proceeding, we need to establish the following claim.

Claim. Whenever we write S + T as a finite sum of elements of P, there is a summand S′ satisfying
the following property: for any s ∈ S′, there is another element t ∈ S′ such that one of the following
inequalities holds for any sufficiently large index i ∈ N:

(5.3) caj,ipj,i
(s) > caj,ipj,i

(t) or caj+1,ipj+1,i
(s) > caj+1,ipj+1,i

(t).

Proof of Claim. First, observe that T satisfies the property in our claim because caj,ipj,i(tk) =
caj+1,ipj+1,i(tj+1) = 1 and caj+1,ipj+1,i(tj) = caj,ipj,i(tj+1) = 0. Now observe that S does not have
any factors from Aj or Aj+1, and so S + T also satisfies the desired property. Now notice that from
bounding, these values are actually the exact multiplicities for every factorization. This means that
for any B,C ∈ P such that B + C |P S + T , if a, b ∈ B and c ∈ C, then Lemma 5.2 (along with the
previous observation) ensures that the term

∑n
m=1 caj,m

(s)aj,m does not depend on a and b and, as a
consequence,

caj,ipj,i(a+ c)− caj,ipj,i(b+ c) = caj,ipj,i(a)− caj,ipj,i(b).

Now write S + T = S1 + · · · + Sℓ for some S1, . . . , Sℓ ∈ P, and then take an index m such that
caj,mpj,m

(s) = 0 for any s ∈ S1 ∪ · · · ∪ Sℓ. If for each summand Si there exists an element si ∈ Si

for which no corresponding t exists (as in the property of our claim), then s1 + · · ·+ sℓ is an element
in S + T with no corresponding t, which is not possible because S + T satisfies the desired property.
This is because, for each i ∈ J1, ℓK, the coefficients vaj,mpj,m

(si) and caj+1,mpj+1,m
(si) are minimum in

Si, and so the corresponding coefficients for s1 + · · · + sℓ are minimum in S1 + · · · + Sℓ. Hence the
claim is established.

Now let the summand be S′ and take any s ∈ S′. Then the established claim guarantees the
existence of t ∈ S′ such that for any sufficiently large i ∈ N one of the inequalities in (5.3) holds.
Assume, without loss of generality, that for any factorization, caj,ipj,i

(s) > caj,ipj,i
(t) holds for any

large enough i ∈ N. This, together with Lemma 4.4, implies that the set of atoms from Aj in any
factorization of s and t is the empty set or a set of pj,i copies of the atom aj,i for some index i.

Thus, if d is a common divisor of {s, t} in M , then the set of atoms from Aj in any factorization
of d is the empty set; this means that, for each index i ∈ N, there exist pj,i copies of the atom aj,i
in any factorization of s − d, whence

nj

dj
+ 1

2i |M s or 1
2i+1 |M s. Therefore, for any {d} |P S′, there

exists k ∈ N large enough such that { 1
2k
} |P S′ − {d}. As a consequence, it follows from Lemma 5.2

that S + T is not an atomic element of P. Hence we can conclude that the power monoid P is not
nearly atomic. □
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5.2. Almost Atomicity and Quasi-Atomicity. Finally, we explore the property of almost atom-
icity and quasi-atomicity, and we construct a rank-2 linearly orderable monoid that is almost atomic
but its power monoid is not even quasi-atomic. With this construction, we provide a negative answer
to the ascent of both almost and quasi-atomicity to power monoids.

For any q ∈ gp(Q), define v1/p(q) = c
p , where c is the unique element in J0, p − 1K such that

vp
(
q − c

p

)
≥ 0. Now, define k(x) = 2 − x +

∑
p∈P v1/p(x) ∈ Z. Then consider the Puiseux monoid

Q :=
〈
1
p : p ∈ P \ {2}

〉
, and set N := gp(Q) ∩ (2, 3). The most important object for the rest of this

section is the following additive submonoid of Q2:

(5.4) M :=
〈
A ∪B ∪ T

〉
,

where

A =
{(1

5
, x+

1

2k(x)

)
: x ∈ N

}
, B =

{(1
7
, x+

1

2k(x)

)
: x ∈ N

}
, and T =

{(
0,

1

2i

)
: i ∈ N

}
.

Note that A (M) = A ∪B and k(x) ≥ 0 for x ∈ N .

Lemma 5.4. The monoid M is almost atomic and any non-atom is divisible by some element of T .

Proof. We first show M is almost atomic. It suffices to show for any element (0, 1
2n ) ∈ T , there is an

atomic element a where a+(0, 1
2n ) is also atomic. Take x, y ∈ N such that k(x) = n−1, and p ∈ P\{2}

such that v1/p(x) = v1/p(y) = 0 and x− 1
p , y+

1
p ∈ gp(Q)∩ [2, 3). Then k

(
x− 1

p

)
= k(x) + 1 = n and

k
(
y + 1

p

)
= k(y). Thus, b+ (0, 1

2n ) = a, where

a =

(
1

5
, x+

1

2k(x)

)
+

(
1

5
, y +

1

2k(y)

)
and b =

(
1

5
, x− 1

p
+

1

2k(x−
1
p )

)
+

(
1

5
, y +

1

p
+

1

2k(y+
1
p )

)
However, both a and b are atomic, so M is almost atomic. We now show any non-atom of M is
divisible by an element T . It suffices to show that any element which is the sum of two atoms satisfies
this, as every non-atom must be divisible by an element of T or the sum of two elements of A ∪ B.
Let the element be the sum of a =

(
k1, x+

1
2k(x)

)
and b = (k2, y+

1
2k(y) ) for some x, y ∈ N . Then from

the argument before, 1
2k(x)+1 |M a+ b, as desired. □

Lemma 5.4 shows that every atom of Pfin(M) contains an atom or 0, as otherwise it is divisible
by {(0, 1

2k
)} for some k. Call a set that satisfies this property a semi-atom. An element of Pfin(M) is

atomic only if it can be expressed as the sum of atoms, and therefore it must be expressed as a sum
of semi-atoms. We are now at a position to prove that Pfin(M) is not quasi-atomic.

Theorem 5.5. There exists an almost atomic submonoid of Q2 such that its power monoid is not
quasi-atomic.

Proof. We define M as above. We first note that ( 15 ,
10
3 ) = (15 , 2 + 1/3 + 1

2k(2+1/3) ) ∈ A, and similarly

( 17 ,
10
3 ) ∈ B. It suffices to show that no S exists so that S + {( 25 ,

20
3 ), ( 37 , 10)} is atomic. For each

x ∈ M , let π(x) be the first coordinate of x.

By way of contradiction, suppose {( 25 ,
20
3 ), ( 37 , 10)} |M

∑n
i=1 Fi for some atoms Fi. For each Fi,

let fi ∈ Fi so that π(fi) is minimum. Then because each Fi is an atom and therefore a semi-atom,
we see π(fi) ∈ {0, 1

5 ,
1
7}. This means that for any x ∈ Fi, either π(x) = π(fi) or π(x) − π(fi) ≥

2
35 . Thus, for any x ∈

∑n
i=1 Fi, either π(x) = π

(∑n
i=1 fi

)
or π(x) − π

(∑n
i=1 fi

)
≥ 2

35 . In other

words,
∣∣π(x) − π

(∑n
i=1 fi

)∣∣ ̸= 1
35 = 3

7 − 2
5 . However,

∑n
i=1 fi ∈

∑n
i=1 Fi, contradicts the fact that

{( 25 ,
20
3 ), ( 37 , 10)} |M

∑n
i=1 Fi. Therefore, we conclude that M is not quasi-atomic. □
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Unlike the cases of atomicity and near atomicity, we could not find a rank-one torsion-free almost
atomic (resp., quasi-atomic) monoid whose power monoid is not almost atomic (resp., quasi-atomic).
Aiming to motivate the search for such rank-one torsion-free monoid, we conclude this section with
the following open question.

Question 5.6. Can we construct a rank-one torsion-free almost atomic (resp., quasi-atomic) monoid
whose power monoid is not almost atomic (resp., quasi-atomic)?

6. The Furstenberg Property

In this final section we turn our attention to the Furstenberg property, which is a property defined
in terms of divisibility by atoms and it is also a notion weaker than atomicity.

6.1. Furstenberg and Weaker Notions. Similar to atomicity, there are notions of almost and
quasi-Furstenberg, which were introduced and studied in [20] in the setting of integral domains and
were then investigated in [22] in the setting of Puiseux monoids. Let M be a monoid. We say that
M is quasi-Furstenberg if for each non-invertible b ∈ M , there exists c ∈ M and a ∈ A (M) such
that a |M b + c but a ∤M c. On the other hand, we say that M is almost Furstenberg if for each
non-invertible b ∈ M there exists an atomic element c ∈ M and a ∈ A (M) such that a |M b + c
but a ∤M c. Finally, we say that M is nearly Furstenberg if there exists c ∈ M such that for each
non-invertible b ∈ M , there exists a ∈ A (M) such that a |M b+ c but a ∤M c. It turns out that each
of the nearly, almost, and the quasi-Furstenberg properties ascends from linearly orderable monoids
to their corresponding power monoids. Before proving this, we need the following lemma.

Lemma 6.1. Let M be a linearly orderable monoid. Then for each non-invertible S ∈ Pfin(M) there
exists either an atom A of Pfin(M) with |A| ≥ 2 such that A divides S in Pfin(M) or a non-invertible
d ∈ M such that {d} divides S in Pfin(M).

Proof. Suppose that M is a linearly ordered monoid under the total order relation ≤, and let S be a
nonempty finite subset of M . Assume that {d} does not divide S in Pfin(M) for any non-invertible
d ∈ M . If S is an atom of Pfin(M), then S cannot be a singleton and so we can take A := S. Assume,
otherwise, that S is not an atom, and write S = A+B for some non-invertible A and B in Pfin(M).
Among all such sum decompositions, assume that we have chosen one minimizing |A|. Since |A| ≥ 2
and |B| ≥ 2, it follows from Lemma 3.1 that |A| < |S| and |B| < |S|. In this case, A must be an
atom of Pfin(M) as otherwise we could write A = A′ + B′ for some non-invertible elements A′ and
B′ in Pfin(M) and the fact that |B′| ≥ 2 would imply that |A′| < |A|, contradicting the minimality
of |A|. □

We are in a position to establish the ascent of all the Furstenberg-like properties introduced earlier
from linearly orderable monoids to their corresponding power monoids.

Theorem 6.2. Let M be a linearly ordereable monoid. Then the following statements hold.

(1) If M is a Furstenberg monoid, then Pfin(P ) is a Furstenberg monoid.

(2) If M is quasi-Furstenberg, then Pfin(P ) is also quasi-Furstenberg.

(3) If M is almost Furstenberg, then Pfin(P ) is also almost Furstenberg.

(4) If M is nearly Furstenberg, then Pfin(P ) is also nearly Furstenberg.
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Proof. Set P := Pfin(M).

(1) For each S ∈ P, either there exists an atom A ∈ P with |A| > 1 such that A |P S or {d} |P S
for some non-invertible d ∈ M . In the first case, we are done because A is an atom of P such that
A |P S. In the second case, since M is a Furstenberg monoid, we can take a ∈ A (M) such that
a |M d and, therefore, we obtain that {a} is an atom of P such that {a} |P S.

(2) This follows similar to part (1).

(3) This follows similar to part (1).

(4) This follows similar to part (1). □

6.2. The TIDF Property. In this last section, we consider TIDF-monoids, which are a special type
of Furstenberg monoids. Recall that a monoid is a TIDF-monoid provided that the set of divisors
of each non-invertible element is nonempty and finite (up to associate). We first prove that the
TIDF property ascends to power monoids in the class of positive Archimedean monoids. This is a
consequence of the fact that for positive Archimedean monoids the TIDF property implies atomicity.
We proceed to prove this last statement.

Proposition 6.3. Let M be an positive Archimedean monoid. If M is a TIDF-monoid, then M is
atomic.

Proof. Since M is positive Archimedean monoid, we can assume that its Grothendieck group gp(M) is
a linearly ordered group under the total order ⪯, and also that M is a submonoid of the nonnegative
cone gp(M)+ (we can also use Hölder’s theorem, and assume that M ⊆ R≥0).

Suppose, by way of contradiction, that M is not atomic. Then there exists q0 ∈ M that is not
atomic. Now set A1 := {a ∈ A (M) : a |M q0}. Note that A1 is nonempty and finite because M is
a reduced TIDF-monoid and q0 ̸= 0. Thus, A1 has a minimum element. Now set q1 := q0 −minA1.
Now suppose we have produced, for some n ∈ N, a finite descending chain (Ai)

n
i=1 of nonempty finite

subsets of A (M) and a finite sequence (qi)
n
i=1 with terms in M• such that qi = qi−1 − minAi for

every i ∈ J1, nK. The equality

q0 = qn +

n∑
i=1

minAi,

along with the fact that q0 is not atomic, guarantees that qn is not atomic. Now set An+1 := {a ∈
A (M) : a |M qn}. Because qn |M qn−1, the inclusion An+1 ⊆ An must hold. In addition, observe
that An+1 is a nonempty and finite set because M is a reduced TIDF-monoid and qn ̸= 0. Then
we can set qn+1 := qn −minAn+1. After repeating this process indefinitely, we obtain a descending
chain (An)n≥1 of nonempty finite subsets of A (M) and a sequence (qn)n≥0 with terms in M such
that qn − qn+1 = minAn+1 for every n ∈ N0. For each n ∈ N, we can now write

q0 = qn +

n−1∑
j=0

(qj − qj+1) = qn +

n−1∑
j=0

minAj+1 ⪰ nminA1.

Since minA1 ≻ 0, the fact that q0 ⪰ nminA1 for every n ∈ N contradicts that M is a positive
Archimedean monoid. □

We obtain the following corollary on the ascent of both the FFM and the TIDF property.

Corollary 6.4. Let M be a positive Archimedean monoid. Then the following statements hold.

(1) If M is an FFM, then its power monoid is also an FFM.

(2) If M is a TIDF-monoid, then its power monoid is also a TIDF-monoid.
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Proof. Set P := Pfin(M).

(1) Assume first that M is an FFM. Since M is a positive Archimedean monoid, we can take a
linearly ordered abelian group G such that M is a submonoid of the nonnegative cone of G. According
to Hölder’s theorem, G is order-isomorphic to a subgroup of the additive group R. Therefore M is
order-isomorphic to some additive submonoid of R≥0. Since the power monoids of isomorphic monoids
are isomorphic, we can assume that M is a submonoid of R≥0. In order to prove now that the power
monoid P is also an FFM, it suffices to follow, mutatis mutandis, the argument given in the proof of
[13, Theorem 4.2].

(2) Assume now that M is a TIDF-monoid. Since M is a positive Archimedean monoid, it follows
from Proposition 6.3 that M is atomic. As M is atomic and every element of M is only divisible by
finitely many atoms (up to associate), [19, Theorem 2] ensures that M is an FFM. Thus, it follows
from the previous part that P is also an FFM and, as a consequence, a TIDF-monoid. □

We now show that, in general, the TIDF property does not ascend to power monoids in the more
general class of linearly orderable monoids.

Theorem 6.5. There exists a linearly orderable monoid satisfying the TIDF property whose finite
power monoid does not satisfy the IDF property.

Proof. Consider the monoid

M = (Z · a)⊕ (Z · b)⊕ (Z · y)⊕ (Z · z)⊕
∞⊕
i=1

(Z · xi).

Let A = N0a, B = N0b, Xi = Nx+gp(A), Yi = N(xi−y)+gp(B), and Z = Nz+gp(⟨
⋃

i∈N Xi∪Yi⟩).
Then let M be the submonoid of M generated by A ∪B ∪ (∪i∈NXi ∪ Yi) ∪Z. We have M is linearly
orderable because M is cancellative and torsion-free, hence M is cancellative and torsion-free, which
implies M is linearly orderable. The only atoms in M are a and b, and each element of M is divisible
by at least one of these. Therefore, M is a TIDF monoid and is Furstenberg.

Now we claim that {z, z− y} ∈ Pfin(M) has infinitely many atom divisors, hence Pfin(M) is not a
TIDF monoid. Note that {xi, xi − y} |Pfin(M) {z, z− y} for all i. Thus, it suffices to show {xi, xi − y}
is an atom for each i. However, if {xi, xi − y} = S + T , then by Lemma 3.1, at least one of S and T
is a singleton. Assume S = {s} is the singleton. Then s is a common divisor of xi and xi − y. But xi

is not divisible by b, and xi − y is not divisible by a. Therefore, s does not have any atom divisors,
so because M is Furstenberg, we see s is a unit. As a result, {xi, xi − y} is an atom for all i, which
means Pfin(M) is not IDF. □
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