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Abstract
Given three players with some shared function over F2, the BLR test certifies that their

shared function is linear in constant time. More specifically, if the test succeeds with proba-
bility 1 − ϵ, then the players’ functions differ from a linear function in at most O(ϵ) inputs.

It has been shown that this three-player version of the BLR test is quantum-sound: it
similarly certifies the presence of a linear function over F2 within their strategies even when
the players are allowed to share nontrivial correlations through entanglement. The existence
of quantum-sound protocols allows us to quantize existing classical interactive protocols and
prove containment between quantum multi-prover interactive proof systems, acting as the
basis of foundational results in quantum complexity theory, such as MIP ⊆ MIP* and
MIP* = RE.

In this paper, we generalize this property testing result and show that a variation of the
linearity test over Fp is also quantum-sound. Additionally, we show that even without the
consistency test, the presence of linear functions can be certified.

1 Introduction
The BLR linearity test [BLR93] gives an efficient procedure to test the linearity of an arbitrary
boolean function. The linearity test works as follows: given a boolean function f : Fn

2 → F2,
uniformly sample two points x, y ∈ Fn

2 at random and check the linearity condition f(x)+f(y) =
f(x + y). An analysis of this test shows that

Pr
x,y∈Fn

2
[f(x) + f(y) = f(x + y)] ≥ 1 − ϵ

if and only if f is ϵ-close to a linear function, in Hamming distance. One can also consider this
test in the distributed setting. Let Alice, Bob, and Charlie (who cannot communicate during
testing) be three adversaries who claim to have some shared linear function f : Fn

2 → F2 in
mind. We can test if this is true by randomly choosing x, y ∈ Fn

2 and sending x to Alice, y
to Bob, and x + y to Charlie and demanding them to reply with f(x), f(y), and f(x + y) for
which we test if f(x) + f(y) = f(x + y). Again, an analysis of this test shows that if Alice,
Bob, and Charlie pass this test with high probability, then their strategy must depend on a
shared close-to-linear function. These tests naturally arise due to one of the most celebrated
results in the field of computational complexity theory, the PCP theorem. A formulation of this
theorem is that the class of problems decidable by one-round, two-prover MIP proof systems
with O(log n)-length questions and O(1)-length answers is equal to the complexity class NP.
This general context of a multi-prover one-round interactive protocol is called a nonlocal game
and is studied in both classical and quantum complexity theory.

In quantum theories, the provers can share a quantum resource called entanglement, which
allows them to use a broader class of strategies to interact with the verifier. The class of problems
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decidable by such one-round interactive protocols is MIP*. Despite the provers having more
power, it is actually not immediately obvious that MIP should be included in MIP*. This is
because although the entangled provers could certainly convince the verifier of anything that the
classical provers could, it is important that they don’t convince the verifier of anything more.
Ito and Vidick [IV12] showed that one can design protocols which constrain the entangled
provers and thus showed that MIP is contained in MIP*. Furthermore, in 2020, Ji, Natarajan,
Vidick, Wright, and Yuen [JNV+21] completely characterized the power of these multi-prover
interactive protocols sharing entanglement, showing that MIP* = RE building off of a long
line of work [NV18, FJVY19, NW19, JNV+20, JNV+22]. The results of Ito and Vidick and
Ji et al. both rely on showing that certain classical property tests still certify the presence of
certain shared functions between the provers, even against quantum provers. We say that a
classical property test is quantum-sound if it has this property.

One of the main results of [IV12] was to show that the BLR linearity test is quantum-sound.
This analysis was heavily inspired by the Fourier analytic proof [BCH+96] of the classical BLR
result. In this paper, we extend the soundness of the BLR linearity test to Fp. We also prove a
soundness result for a variant of the BLR linearity test which tests for affine linear functions.

1.1 Results

Our main result is extending the quantum-soundness analysis of Ito and Vidick from F2 to Fp.
We give an informal statement of the result below.

Theorem 1.1 (Informal). Suppose three entangled provers succeed in the linearity test with
probability 1 − ϵ using a symmetric strategy (σ, {Aa

x}). Then there exists a measurement {Mu}
independent of x, indexed by u ∈ Fn

p , such that if we let

Ba
x :=

∑
u:u·x=a

Mu

then the correlations produced by {Aa
x} and {Ba

x} are Op(ϵ1/4)-close.

The precise statement is given in Theorem 3.6. We additionally show quantum soundness
for an affine linearity test in F2.

Theorem 1.2 (Informal). Suppose three entangled provers succeed in the affine linearity test
over F2 with probability 1 − ϵ using a symmetric strategy (σ, {Aa

x}). Then there exists a mea-
surement {Mu,b,b′} independent of x, indexed by (u, b, b′) ∈ Fn

2 × F2 × F2, such that if we let

Ba
x :=

∑
u : u·x−b+b′=a

Mu,b,b′

then the correlations produced by {Aa
x} and {Ba

x} are O(ϵ1/4)-close.

The precise statement is given in Theorem 4.5.

1.2 Future Directions

In the classical analysis of the linearity tests, succeeding with probability 1 − ϵ means that
the strategy is O(ϵ1/2) close to a linear function. The most natural question is whether our
bound of O(ϵ1/4) is a limitation of our proof technique or whether this is an artifact of quantum
correlations.

Furthermore, there is a more combinatorial proof of the BLR linearity test [Mos]. It is
natural to ask whether we can “quantize” this combinatorial proof of the BLR test, just as we
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did for the Fourier-analytic proof of Bellare et al. [BCH+96]. This is motivated by the fact
that the proofs of the quantum soundness of the low individual degree test and tensor code test
[JNV+20, JNV+22] are combinatorial in nature.

2 Preliminaries

2.1 Fourier Analysis over Finite Fields

Let G be a finite abelian group G of order n, written additively. We define the following:

Definition 2.1 (Characters). A character of G is a homomorphism χ : G → C× such that for
a, b ∈ G

χ(a + b) = χ(a)χ(b).

In particular, χ(−a) = χ(a)−1 = χ(a) and each χ(a) is an nth root of unity. Let Ĝ be the set
of all characters.

Since we will be working in Fp we define the characters as powers of some arbitrary pth root
of unity ω.

Definition 2.2 (Inner product of functions). Let CG denote the space of functions f : G → C
equipped with the inner product ⟨·, ·⟩ defined as:

⟨f, g⟩ = E
a∈G

[f(a)g(a)] f, g ∈ CG

where Ex∈S [f(x)] denotes the expected value of f(x) where x is chosen uniformly from S.

Theorem 2.3 (Lemma 3, [Kop]). Any function f ∈ CG can be written as a linear combination
of characters

f =
∑
χ∈Ĝ

f̂(χ)χ

where the set of f̂(χ) is called the Fourier coefficients and are given by ⟨χ, f⟩.

Theorem 2.4 (Lemma 5, [Kop]). For any functions f, g ∈ CG,

⟨f, g⟩ = E
a∈G

[f(a)g(a)] =
∑
χ∈Ĝ

f̂(χ)ĝ(χ).

This is called Plancherel’s theorem. The case where f = g is called Parseval’s theorem.

2.2 Classical linearity testing

We introduce the following variant of the BLR linearity test:

Definition 2.5 (Linearity test). Suppose we have 3 provers P1, P2, P3 with outputs Pi(x) ∈ Fp

for each i. Perform either of the following with probabiltiy 1/2 each:

1. (Consistency) Select x ∈ Fn
p , α ∈ Fp \ {0} uniformly and at random. Query x to P1 and

P2. Accept if and only if P1(αx) = αP2(x), P2(αx) = αP3(x), and P3(αx) = αP1(x).
2. (Linearity) Select x, y ∈ Fn

p , α ∈ Fp \ {0} uniformly and at random. Let z = x − y. Query
x to P1, y to P2, and z to P3. Accept if and only if P3(αz) = α(P1(x) − P2(y)), or
equivalently P3(αz) + αP2(y) = αP1(x)
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We now define a classical strategy:
Definition 2.6 (Classical strategies). A classical strategy in the linearity test S is a fam-
ily of probability distributions {px,y,z}x,y,z∈Fn

p
such that px,y,z(a, b, c) is the probability that

(P1(x), P2(y), P3(z)) = (a, b, c). Denote the probability of success of a strategy ω(S). More
explicitly, we have

ω(S) = 1
2 E

x

[∑
a

px,x,x(a, a, a)
]

+ 1
2 E

x

[∑
a

px,y,x+y(a, b, a + b)
]

.

We now focus on a few relevant classical strategies: Call a classical strategy deterministic if
each px,y,z is a point distribution, or that there exist functions f, g, and h such that

px,y,z(a, b, c) = δf(x)=aδg(y)=aδh(z)=a

where δx=y is equal to 1 if x = y and 0 otherwise.
Furthermore, a classical probabilistic strategy is a classical strategy such that there exist

families of probability distributions {qx}, {ry}, {sz} such that

px,y,z(a, b, c) = qx(a)ry(b)sz(c).

Finally, a classical strategy with shared randomness is a family of probability distributions
{px,y,z}x,y,z∈Fn

p
such that

px,y,z(a, b, c) =
∑

i

λi · pi
x,y,z(a, b, c)

where {pi
x,y,z} is a classical probabilistic strategies. More explicitly, pi

x,y,z(a, b, c) = qi
x(a)ri

y(b)si
z(c)

for probability distributions {qi
x}, {ri

y}, {si
z} and λi ≥ 0 for each i, with ∑i λi = 1.

2.3 Nonlocal Games and Correlations

In this paper, there will be two relevant types of measurements. Let H be a Hilbert space. We
then have the following:
Definition 2.7 (PVM measurement). A Projective-Valued Measure or PVM is a collection of
Hermitian operators {Πa}a∈A on H such that ΠiΠj = δi=jΠi and ∑a Πa = I. Each Πi is called
a projector.
Definition 2.8 (POVM measurement). A Positive Operator-Valued Measure or POVM is a
collection of positive semi-definite (A is positive semi-definite if there exists some B such that
A = B∗B) operators {Pa}a∈A on H such that ∑a Pa = I.

We now introduce the idea of an entangled strategy.
Definition 2.9 (Entangled strategies). An entangled strategy in the r-prover linearity test
(ρ, {(Ai)a

x}i∈[r]) is given by the following:
• Finite dimensional Hilbert spaces P1, . . . , Pr

• density operator ρ ∈ L(P1 ⊗ · · · ⊗ Pr)
• measurements {(Ai)a

x}a∈F on Pi for each x ∈ Fn and i ∈ [r]
An entangled strategy induces a family of probability distributions {px1,...,xr }x1,...,xr∈Fn

px1,...,xr (a1, . . . , ar) = Tr
((⊗

i

(Ai)ai
xi

)
ρ

)
.

We say a strategy is symmetric if P1 ≃ · · · ≃ Pr and (A1)a
x = · · · = (Ar)a

x for each x and a, and
ρ is invariant with respect to arbitrary permutation of the registers P1, . . . , Pr. Furthermore, we
call a strategy projective if each measurement is a PVM (i.e. each operator (Ai)a

x is a projector).
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We will be working with the case in which r = 3 and F ∼= Fp for some prime p in the
following sections. We extend the ideas of discrete Fourier analysis. Let {Aa

x}a∈Fp be a PVM.
Define

Ax :=
p−1∑
i=0

Ai
xωi

where ω is some pth root of unity. Note that Ax is unitary (i.e. (Ax)∗ = (Ax)−1), and that
(Ax)k = ∑

i Ai
xωki. For u ∈ Fn

p ,

Âk
u := E

x
[ωku·x(Ax)k] = E

x
[ω−ku·x(Ax)k]

Notice that a variant of Parseval still holds:∑
u∈Fn

p

(Âk
u)∗(Âk

u) =
∑

u∈Fn
p

(Âk
u)(Âk

u)∗ =
∑

u∈Fn
p

E
x,y

[
ω−ku·(x−y)(Ax)k(Ay)−k

]
= E

x
[(Ax)k(Ax)−k] = I

as x, y are sampled independently over the same distribution. A few notes about notation: For
any density operator σ ∈ L(P1 ⊗ · · · ⊗ Pr), we let ρ be the reduced density operator on the first
register. We also let

∥A∥2
σ := Tr (AA∗σ)

This semi-norm satisfies the Cauchy-Schwarz inequality: for any sequences of matrices Mi, Ni,∑
i

Tr (MiN
∗
i σ) ≤

√∑
i

∥Mi∥σ

√∑
i

∥Ni∥σ.

2.4 Distance Measures

We consider two notions of distance between strategies:

Definition 2.10 (Total variational distance). The total variational distance between two strate-
gies p = {px,y,z}x,y,z∈Fn

p
and q = {qx,y,z}x,y,z∈Fn

p
is defined as

∥p − q∥TV = 1
2 E

x,y,z∼Fn
p

∑
a,b,c

|px,y,z(a, b, c) − qx,y,z(a, b, c)|

 .

Lemma 2.11. Given two strategies p = {px,y,z}x,y,z∈Fn
p

and q = {qx,y,z}x,y,z∈Fn
p
,

∥p − q∥TV = E
x,y,z

max
S⊆F3

p


∣∣∣∣∣∣
∑

(a,b,c)∈S

px,y,z(a, b, c) − qx,y,z(a, b, c)

∣∣∣∣∣∣

 .

Definition 2.12 (δ-closeness). Given entangled strategies (σ, {Aa
x}) and (σ, {Ãa

x}), we say that
they are δ-close if

dσ(A, Ã) :=
(
E
x

[∑
a

Tr
(
(Aa

x − Ãa
x)2σ

)])1/2

≤ δ

with appropriate padding of the registers.

We may relate the two measures of distance with the following lemma:
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Lemma 2.13. Given a projective, symmetric entangled strategy (σ, {Aa
x}) and a symmetric

entangled strategy (σ, {Ba
x}) where each Ba

x is a POVM, with corresponding probability distri-
butions {px,y,z}x,y,z∈Fn

p
and {ℓx,y,z}x,y,z∈Fn

p
respectively,

∥p − ℓ∥TV ≤ 3dρ(A, B).

Proof. By definition and Lemma 2.11,

∥p − ℓ∥TV = 1
2 E

x,y,z

∑
a,b,c

∣∣∣Tr
(
(Aa

x ⊗ Ab
y ⊗ Ac

z)σ
)

− Tr
(
(Ba

x ⊗ Bb
y ⊗ Bc

z)σ
)∣∣∣


= E
x,y,z

max
S


∣∣∣∣∣∣
∑

(a,b,c)∈S

Tr
(
(Aa

x ⊗ Ab
y ⊗ Ac

z)σ
)

− Tr
(
(Ba

x ⊗ Bb
y ⊗ Bc

z)σ
)∣∣∣∣∣∣

 .

Notice that we may decompose our differences of traces on each register, yielding

Tr
(
(Aa

x ⊗ Ab
y ⊗ Ac

z)σ
)

− Tr
(
(Ba

x ⊗ Bb
y ⊗ Bc

z)σ
)

= Tr
([

((Aa
x − Ba

x) ⊗ Ab
y ⊗ Ac

z) + (Ba
x ⊗ (Ab

y − Bb
y) ⊗ Ac

z) + (Ba
x ⊗ Bb

y ⊗ (Ac
z − Bc

z))
]

σ
)

.

Thus by triangle inequality, we have

∥p − ℓ∥TV ≤ E
x,y,z

max
S

∣∣∣∣∣∣
∑

(a,b,c)∈S

Tr
(
((Aa

x − Ba
x) ⊗ Ab

y ⊗ Ac
z)σ
)∣∣∣∣∣∣+

∣∣∣∣∣∣
∑

(a,b,c)∈S

Tr
(
(Ba

x ⊗ (Ab
y − Bb

y) ⊗ Ac
z)σ
)∣∣∣∣∣∣

+

∣∣∣∣∣∣
∑

(a,b,c)∈S

Tr
(
(Ba

x ⊗ Bb
y ⊗ (Ac

z − Bc
z))σ

)∣∣∣∣∣∣ .
Since the strategy is symmetric, we may permute the registers such that the difference is in the
first register and apply Cauchy Schwarz to get

∥p − ℓ∥TV ≤ E
x,y,z

[
max

S

√ ∑
(a,b,c)∈S

Tr ((Aa
x − Ba

x)2ρ)
√ ∑

(a,b,c)∈S

Tr
(
(I ⊗ Ab

y ⊗ Ac
z)σ
)

+
√ ∑

(a,b,c)∈S

Tr ((Aa
x − Ba

x)2ρ)
√ ∑

(a,b,c)∈S

Tr
(
(I ⊗ (Bb

y)2 ⊗ Ac
z)σ
)

+
√ ∑

(a,b,c)∈S

Tr ((Aa
x − Ba

x)2ρ)
√ ∑

(a,b,c)∈S

Tr
(
(I ⊗ (Bb

y)2 ⊗ (Bc
z)2)σ

)]

≤ 3 E
x,y,z

√∑
a

Tr ((Aa
x − Ba

x)2ρ)

 .

The secpnd inequality comes from the fact that ∑a Aa
x = I and that each Bb

y is positive semidef-
inite, which implies that

∑
b

(Bb
y)2 ≤

∑
b,b′

Bb
yBb′

y =
(∑

b

Bb
y

)2

= I.
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We finish with Cauchy Schwarz to get

∥p − ℓ∥TV ≤ 3

√√√√E
x

[∑
a

Tr ((Aa
x − Ba

x)2ρ)
]

(2.1)

= 3dρ(A, B), (2.2)

as desired.

3 Linearity testing over Fp

In [IV12], Ito and Vidick prove that for symmetric strategies between the three provers, if
the provers pass the linearity test with high probability, then they must be using a strategy
which is close to a classical mixture of true linear functions, or a classical strategy with shared
randomness. More precisely,

Theorem 3.1 ([Vid], Theorem 4). Suppose three entangled provers succeed in the linearity test
with probability 1 − ϵ using a symmetric strategy (σ, {Aa

x}). Then there exists a measurement
{Mk

u } independent of x, where Mk
u corresponds to outcome u ∈ Fn

2 , such that if we let

Ba
x :=

∑
u:u·x=a

Mk
u

then

(dρ(A, B))2 = E
x

 ∑
a∈{0,1}

Tr
(
(Aa

x − Ba
x)2ρ

) ≤ 12
√

ϵ.

For them, it suffices to consider symmetric strategies as a result of the following reduction.

Lemma 3.2 ([IV12], Lemma 7). Given a nonlocal game and an r-player strategy (ρ, {Aa
x}r)

that succeeds in it with probability p, there exists a symmetric strategy (ρ′, {A′a
x }r) with success

probability at least p.

This is a reduction we shall use in this section as well. The results of this section generalizes
the above by considering the linearity test in Fn

p , using a Fourier analytic technique similar to
the one used in Vidick’s proof.

We begin by first showing that succeeding at the linearity test implies a lower bound on
some function of the Fourier transform of the operators.

Lemma 3.3. If the three entangled provers succeed in the lineraity test with probability 1 − ϵ
using a symmetric strategy (σ, {Aa

x}), then

E
α∈Fp

p−1∑
k=1

∑
u∈Fn

p

Tr
(
((Âkα

u )∗ ⊗ Âk
u ⊗ I)σ

) ≥ p(1 − 2ϵ) − 1,

and

E
α∈Fp

p−1∑
k=1

∑
u∈Fn

p

Tr
(
((Âkα

u )∗ ⊗ Âkα
u ⊗ Âk

u)σ
) ≥ p(1 − 2ϵ) − 1.
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Proof. The probability that the provers succeed in the consistency and linearity parts of the
test must each be at least 1 − 2ϵ. Then,

Pr[consistent] = E
x∈Fn

p ,α∈Fp

∑
a∈Fp

Tr ((Aa
x ⊗ Aαa

αx ⊗ I)σ)

 ≥ 1 − 2ϵ

Pr[linear] = E
x,y∈Fn

p ,α∈Fp

 ∑
a,b∈Fp

Tr
(
(Aa

x ⊗ Ab
y ⊗ A

α(a−b)
α(x−y))σ

) ≥ 1 − 2ϵ

Furthermore, we must have that
p−1∑
k=1

Tr
(
((Ax)−αk ⊗ (Aαx)k ⊗ I)σ

)

= (p − 1)
∑

αa=b

Tr
(
(Aa

x ⊗ Ab
αx ⊗ I)σ

)
+

p−1∑
k=1

∑
a̸=b

ωk(αa−b)Tr
(
(Aa

x ⊗ Ab
αx ⊗ I)σ

)
= (p − 1)

∑
αa=b

Tr
(
(Aa

x ⊗ Ab
αx ⊗ I)σ

)
−
∑

αa̸=b

Tr
(
(Aa

x ⊗ Ab
αx ⊗ I)σ

)
.

as ∑p−1
k=1 ωki = −1 for i ̸= 0. Note that since ∑a,b Aa

x ⊗ Ab
y = ∑

a Aa
x ⊗

∑
b Ab

y = I, adding 1 to
both sides gives

p
∑

a∈Fp

Tr ((Aa
x ⊗ Aαa

αx ⊗ I)σ) = 1 +
p−1∑
k=1

Tr
(
((Ax)−αk ⊗ (Aαx)k ⊗ I)σ

)
.

Similarly,
p−1∑
k=1

Tr
(
((Ax)−αk ⊗ (Ay)αk ⊗ (Aα(x−y))k)σ

)

= (p − 1)
∑

a,b∈Fp

Tr
(
(Aa

x ⊗ Ab
y ⊗ A

α(a−b)
α(x−y))σ

)
+

p−1∑
k=1

∑
α(a−b) ̸=c

ωk(−αa+αb+c)Tr
(
(Aa

x ⊗ Ab
y ⊗ Ac

α(x−y))σ
)

= (p − 1)
∑

a,b∈Fp

Tr
(
(Aa

x ⊗ Ab
y ⊗ A

α(a−b)
α(x−y))σ

)
−

∑
c ̸=αa−αb

Tr
(
(Aa

x ⊗ Ab
y ⊗ Ac

α(x−y))σ
)

=⇒ p
∑

a,b∈Fp

Tr
(
(Aa

x ⊗ Ab
y ⊗ A

α(a−b)
α(x−y))σ

)
= 1 +

p−1∑
k=1

Tr
(
((Ax)−αk ⊗ (Ay)αk ⊗ (Aα(x−y))k)σ

)
.

Thus,

E
α

p−1∑
k=1

E
x

[
Tr
(
((Ax)−αk ⊗ (Aαx)k ⊗ I)σ

)] ≥ p(1 − 2ϵ) − 1

E
α

p−1∑
k=1

E
x,y

[
Tr
(
((Ax)−αk ⊗ (Ay)αk ⊗ (Aα(x−y))k)σ

)] ≥ p(1 − 2ϵ) − 1.

Now, by definition, we have

∑
u

Tr
(
((Âαk

u )∗ ⊗ Âk
u ⊗ I)σ

)
= E

x,y

[∑
u

ωku·(−αx+y)Tr
(
((Ax)−αk ⊗ (Ay)k ⊗ I)σ

)]
.
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For −αx + y ̸= 0, notice that u · (−αx + y) reaches each residue mod p the same number of
times summing across u. Thus,

E
x,y

[∑
u

ωku·(−αx+y)Tr
(
((Ax)−αk ⊗ (Ay)k ⊗ I)σ

)]
= E

x,y

[
pnδαx=yTr

(
((Ax)−αk ⊗ (Ay)k ⊗ I)σ

)]
= E

x

[
Tr
(
((Ax)−αk ⊗ (Aαx)k ⊗ I)σ

)]
.

Similarly, we have

∑
u

Tr
(
((Âαk

u )∗ ⊗ Âαk
u ⊗ Âk

u)σ
)

= E
x,y,z

[∑
u

ωku·(−αx+αy+z)Tr
(
((Ax)−αk ⊗ (Ay)−αk ⊗ (Az)k)σ

)]
= E

x,y,z

[
pnδz=α(x−y)Tr

(
((Ax)−αk ⊗ (Ay)−αk ⊗ (Az)k)σ

)]
= E

x,y

[
Tr
(
((Ax)−αk ⊗ (Ay)αk ⊗ (Aα(x−y))k)σ

)]
.

Substituting in to our bounds above give

E
α

p−1∑
k=1

∑
u∈Fn

p

Tr
(
((Âαk

u )∗ ⊗ Âk
u ⊗ I)σ

) ≥ p(1 − 2ϵ) − 1

E
α

p−1∑
k=1

∑
u∈Fn

p

Tr
(
((Âαk

u )∗ ⊗ Âαk
u ⊗ Âk

u)σ
) ≥ p(1 − 2ϵ) − 1,

as desired.

Lemma 3.4. If

E
α

p−1∑
k=1

∑
u∈Fn

p

Tr
(
((Âαk

u )∗ ⊗ Âk
u ⊗ I)σ

) ≥ β,

then

E
α

p−1∑
k=1

∑
u∈Fn

p

∥Âαk
u ⊗ I ⊗ I − I ⊗ Âk

u ⊗ I∥2
σ

 ≤ 2(p − 1) − 2β

Proof. Expanding the product gives

E
α

p−1∑
k=1

∑
u∈Fn

p

∥Âk
u ⊗ I ⊗ I − I ⊗ Âk

u ⊗ I∥2
σ

 = E
α

p−1∑
k=1

∑
u∈Fn

p

∥Âαk
u ∥2

ρ + ∥Âk
u∥2

ρ − 2Tr
(
((Âαk

u )∗ ⊗ Âk
u ⊗ I)σ

)
as Eα

[∑
k

∑
u Tr

(
((Âαk

u )∗ ⊗ Âk
u ⊗ I)σ

)]
= Eα

[∑
k

∑
u Tr

(
(Âαk

u ⊗ (Âk
u)∗ ⊗ I)σ

)]
since our trace

is real. By Parseval’s, ∑u ∥Âαk
u ∥2

ρ = 1 for α ̸= 0, giving us

E
α

p−1∑
k=1

∑
u∈Fn

p

2 − 2Tr
(
((Âαk

u )∗ ⊗ Âk
u ⊗ I)σ

) ≤ 2(p − 1) − 2β,

as desired.
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Lemma 3.5. Given that

E
α

p−1∑
k=1

∑
u∈Fn

p

∥Âαk
u ⊗ I ⊗ I − I ⊗ Âk

u ⊗ I∥2
σ

 ≤ β1

and

E
α

p−1∑
k=1

∑
u∈Fn

p

Tr
(
((Âαk

u )∗ ⊗ Âαk
u ⊗ Âk

u)σ
) ≥ β2,

we have

E
α

p−1∑
k=1

∑
u∈Fn

p

Tr
(
(Âαk

u )∗Âαk
u Âk

uρ
) ≥ β2 − 2

√
(p − 1)β1.

Proof. We consider the following difference of traces:

E
α

[∑
k

∑
u

Tr
((

(Âαk
u )∗Âαk

u Âk
u ⊗ I ⊗ I − (Âαk

u )∗ ⊗ Âαk
u ⊗ Âk

u

)
σ
)]

= E
α

[∑
k

∑
u

Tr
((

(Âαk
u )∗Âαk

u ⊗ I ⊗ I
) (

Âk
u ⊗ I ⊗ I − I ⊗ Âαk

u ⊗ I
)

σ
)]

+ E
α

[∑
k

∑
u

Tr
((

(Âαk
u )∗ ⊗ Âαk

u ⊗ I
) (

Âαk
u ⊗ I ⊗ I − I ⊗ I ⊗ Âk

u

)
σ
)]

.

Separating the product using Cauchy-Schwarz gives

E
α

[∑
k

∑
u

Tr
((

(Âαk
u )∗Âαk

u Âk
u ⊗ I ⊗ I − (Âαk

u )∗ ⊗ Âαk
u ⊗ Âk

u

)
σ
)]

≤ E
α

[∑
k

∑
u

∥∥∥(Âαk
u )∗Âαk

u ⊗ I ⊗ I
∥∥∥2

σ

]1/2

E
α

[∑
k

∑
u

∥∥∥Âk
u ⊗ I ⊗ I − I ⊗ Âαk

u ⊗ I
∥∥∥2

σ

]1/2

+ E
α

[∑
k

∑
u

∥∥∥(Âαk
u )∗ ⊗ Âαk

u ⊗ I
∥∥∥2

σ

]1/2

E
α

[∑
k

∑
u

∥∥∥Âαk
u ⊗ I ⊗ I − I ⊗ I ⊗ Âk

u

∥∥∥2

σ

]1/2

.

Since our strategy is symmetric, Âαk
u ⊗ I ⊗ I − I ⊗ I ⊗ Âk

u = I ⊗ Âαk
u ⊗ I − Âk

u ⊗ I ⊗ I, giving
us by our bounds

E
α

[∑
k

∑
u

∥∥∥(Âαk
u )∗Âαk

u ⊗ I ⊗ I
∥∥∥2

σ

]1/2

E
α

[∑
k

∑
u

∥∥∥Âk
u ⊗ I ⊗ I − I ⊗ Âαk

u ⊗ I
∥∥∥2

σ

]1/2

+ E
α

[∑
k

∑
u

∥∥∥(Âαk
u )∗ ⊗ Âαk

u ⊗ I
∥∥∥2

σ

]1/2

E
α

[∑
k

∑
u

∥∥∥Âαk
u ⊗ I ⊗ I − I ⊗ I ⊗ Âk

u

∥∥∥2

σ

]1/2

≤
√

β1

E
α

[∑
k

∑
u

Tr
(
((Âαk

u )∗Âαk
u )2ρ

)]1/2

+ E
α

[∑
k

∑
u

Tr
((

(Âαk
u )∗Âαk

u ⊗ Âαk
u (Âαk

u )∗ ⊗ I
)

σ
)]1/2

 .

Since Tr (MN) ≤ Tr (M) ∥N∥op (where ∥ · ∥op denotes the operator norm) for positive semi-
definite M , we have

E
α

[∑
k

∑
u

Tr
(
((Âαk

u )∗Âαk
u )2ρ

)]1/2

+ E
α

[∑
k

∑
u

Tr
((

(Âαk
u )∗Âαk

u ⊗ Âαk
u (Âαk

u )∗ ⊗ I
)

σ
)]1/2
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≤ E
α

[∑
k

∑
u

Tr
(
(Âαk

u )∗Âαk
u ρ

)
∥(Âαk

u )∗Âαk
u ∥op

]1/2

+ E
α

[∑
k

∑
u

Tr
(
Âαk

u (Âαk
u )∗ρ

)
∥(Âαk

u )∗Âαk
u ∥op

]1/2

≤ 2
√

(p − 1),

where the final inequality results because ∥(Âαk
u )∗Âαk

u ∥op ≤ 1 and Parseval’s. To conclude,
notice our bound holds regardless of a sign in front of the first expression. Hence,

p−1∑
k=1

∑
u∈Fn

p

Tr
(
(Âαk

u )∗Âαk
u Âk

uρ
)

≥
∑

k

∑
u

Tr
((

Âαk
u )∗ ⊗ Âαk

u ⊗ Âk
u

)
σ
)

− 2
√

(p − 1)β1

≥ β2 − 2
√

(p − 1)β1,

as desired.

We now prove our main result.

Theorem 3.6. Suppose three entangled provers succeed in the linearity test with probability 1-ϵ
using a symmetric strategy (σ, {Aa

x}). Then there exists a measurement {Mu} for u ∈ Fn
p such

that if we let
Ba

x :=
∑

u:u·x=a

Mu

then

(dρ(A, B))2 ≤ 4
(

1 + 2
√

p − 1
p

)
√

ϵ.

Proof. Define a measurement {Mu} :=
{
Eα

[
(Âα

u)∗Âα
u

]}
This is a POVM measurement: Mu

is positive semi-definite and Hermitian, and Parseval’s identity shows that ∑u Mu = I. Let
Ck

x = (Ax)k −
∑

u ωku·xMu. Taking the Fourier transform gives

Ĉk
u = Âk

u − E
x

[
ω−ku·x∑

v

ωkv·xMv

]

= Âk
u − E

x

[∑
v

ωk(v−u)·xMv

]
= Âk

u − Mu.

Summing over ∥Ck
x∥2

ρ gives

E
x

p−1∑
k=1

∥∥∥∥∥(Ax)k −
∑

u

ωku·xMu

∥∥∥∥∥
2

ρ

 = E
x

p−1∑
k=1

∥Ck
x∥2

ρ

 =
p−1∑
k=1

∑
u

∥Ĉk
u∥2

ρ

=
p−1∑
k=1

∑
u

∥Âk
u − Mu∥2

ρ

=
p−1∑
k=1

∑
u

Tr
(
((Âk

u)∗Âk
u − MuÂk

u − (Âk
u)∗Mu + M2

u)ρ
)

.

Extracting an Mu using the operator norm and noting that ∥Mu∥ ≤ 1 gives
p−1∑
k=1

∑
u

Tr
(
((Âk

u)∗Âk
u − MuÂk

u − (Âk
u)∗Mu + M2

u)ρ
)

11



≤
p−1∑
k=1

1 − 2
∑

u

Tr
(
MuÂk

uρ
)

+
∑

u

∥Mu∥opTr (Muρ)

≤
p−1∑
k=1

2 − 2
∑

u

Tr
(
E
α

[
(Âα

u)∗Âα
u

]
Âk

uρ
)

≤ 2(p − 1) − 2
p−1∑
k=1

∑
u

Tr
(
E
α

[
(Âα

u)∗Âα
u

]
Âk

uρ
)

.

Since α 7→ αk is a bijection in Fp \ {0}, we may write Eα

[
(Âα

u)∗Âα
u

]
= Eα

[
(Âαk

u )∗Âαk
u

]
for

arbitrary k, giving us

2(p − 1) − 2
p−1∑
k=1

∑
u

Tr
(
E
α

[
(Âα

u)∗Âα
u

]
Âk

uρ
)

= 2(p − 1) − 2E
α

p−1∑
k=1

∑
u

Tr
(
(Âαk

u )∗Âαk
u Âk

uρ
)

≤ 4(pϵ +
√

p − 1√
pϵ)

≤ 4
(

p + 2
√

p(p − 1)
)√

ϵ.

by Lemma 3.5 where β1 = 4pϵ by Lemma 3.4 and β2 = (p − 1) − 2pϵ by Lemma 3.3. Notice
that when k = 0, we have that (Ax)k −

∑
u ωku·xMu = I − I = 0. By definition of Ax,

p−1∑
k=0

∣∣∣∣∣(Ax)k −
∑

u

ωku·xMu

∣∣∣∣∣
2

=
p−1∑
k=0

∣∣∣∣∣∑
i

ωkiAi
x −

∑
u

ωku·xMu

∣∣∣∣∣
2

.

Separating the sum over Mu with respect to i and expanding gives

p−1∑
k=0

∣∣∣∣∣(Ax)k −
∑

u

ωku·xMu

∣∣∣∣∣
2

=
p−1∑
k=0

∣∣∣∣∣∑
i

(
ωkiAi

x −
∑

u·x=i

ωku·xMu

)∣∣∣∣∣
2

=
p−1∑
k=0

∑
i,j

(
ωkiAi

x −
∑

u·x=i

ωku·xMu

)ω−kjAj
x −

∑
u·x=j

ω−ku·xMu

 .

Factoring out each ωku·x gives

p−1∑
k=0

∑
i,j

(
ωkiAi

x −
∑

u·x=i

ωku·xMu

)ω−kjAj
x −

∑
u·x=j

ω−ku·xMu


=

p−1∑
k=0

∑
i,j

ωk(i−j)
(

Ai
x −

∑
u·x=i

Mu

)Aj
x −

∑
u·x=j

Mu


=p

∑
i

(
Ai

x −
∑

u·x=i

Mu

)2

.

Dividing by p implies the claim.

Corollary 3.7. Suppose three entangled provers succeed in the linearity test with probability
1-ϵ using a symmetric strategy (σ, {Aa

x}), and let its corresponding probability distributions be

12



{px,y,z}x,y,z∈Fn
p
. Then there exists a measurement {Mu} such that if we let Ba

x := ∑
u:u·x=a Mu

with corresponding probability distributions {ℓx,y,z}x,y,z∈Fn
p
,

∥p − ℓ∥TV ≤ 6ϵ1/4

√
1 + 2

(
1 − 1

p

)1/2
.

Proof. The result immediately follows from Lemma 2.13.

4 The Affine Linearity Test
Classically, if one drops the consistency test in BLR, we can still make conclusions regarding the
player’s strategy (i.e. bound the total variational distance with respect to some deterministic
strategy). A very natural question is whether this extends to the quantum case. We first
introduce the affine linearty test:

Definition 4.1 (Affine linearity test). Suppose we have 3 provers P1, P2, P3 with outputs
Pi(x) ∈ F2 for each i. We perform the following test:

1. Select x, y ∈ Fn
2 uniformly and at random. Let z = x + y. Query x to P1, y to P2, and z

to P3. Accept if and only if P3(z) = P1(x) + P2(y).

Notice that because we are working in F2, α completely disappears. Furthermore, we have
that Ax is both Hermitian and unitary for all x, and Âu is Hermitian for all u by definition.
Setting α = 1 using an argument similar to Lemma 3.3 and noticing that in F2 we must have
x − y = x + y, we have that

E
x,y

[Tr ((Ax ⊗ Ay ⊗ Ax+y)σ)] ≥ 1 − 2ϵ.

This implies some form of consistency, as there exists some fixed z ∈ Fn
2 such that

E
x

[Tr ((Ax ⊗ Ax+z ⊗ Az)σ)] ≥ 1 − 2ϵ.

We now show the following lemmas.

Lemma 4.2. If the three entangled provers succeed in the affine lineraity test with probability
1 − ϵ using a symmetric strategy (σ, {Aa

x}), then∑
u

Tr
((

Âu ⊗ Âu ⊗ Âu

)
σ
)

≥ 1 − 2ϵ

and ∑
u

Tr
((

Âu ⊗ Âu ⊗ (−1)u·zAz

)
σ
)

≥ 1 − 2ϵ.

Proof. Using a similar argument with that in Lemma 3.3, notice that

∑
u

Tr
((

Âu ⊗ Âu ⊗ Âu

)
σ
)

= E
x,y,w

[∑
u

(−1)u·(x+y+w)Tr ((Ax ⊗ Ay ⊗ Aw)σ)
]

= E
x,y,w

[2nδw=x+yTr ((Ax ⊗ Ay ⊗ Aw)σ)]

= E
x,y

[Tr ((Ax ⊗ Ay ⊗ Ax+y)σ)] .
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Similarly, we have

∑
u

Tr
((

Âu ⊗ Âu ⊗ (−1)u·zAz

)
σ
)

= E
x,y

[∑
u

(−1)u·(x+y+z)Tr ((Ax ⊗ Ay ⊗ Az)σ)
]

= E
x,y

[2nδy=x+zTr ((Ax ⊗ Ay ⊗ Az)σ)]

= E
x

[Tr ((Ax ⊗ Ax+z ⊗ Az)σ)] .

By the above, we have∑
u

Tr
((

Âu ⊗ Âu ⊗ (−1)u·zAz

)
σ
)

= E
x

[Tr ((Ax ⊗ Ax+z ⊗ Az)σ)] ≥ 1 − 2ϵ

and ∑
u

Tr
((

Âu ⊗ Âu ⊗ Âu

)
σ
)

= E
x,y

[Tr ((Ax ⊗ Ay ⊗ Ax+y)σ)] ≥ 1 − 2ϵ,

as desired.

Lemma 4.3. If ∑
u

Tr
((

Âu ⊗ Âu ⊗ (−1)u·zAz

)
σ
)

≥ β

then ∑
u∈Fn

2

∥Âu ⊗ (−1)u·zAz ⊗ I − I ⊗ I ⊗ Âu∥2
σ ≤ 2(1 − β).

Proof. Expanding the product gives us∑
u∈Fn

2

∥Âu ⊗ (−1)u·zAz ⊗ I − I ⊗ I ⊗ Âu∥2
σ

= 2
∑

u∈Fn
2

Tr
(
(Âu)2ρ

)
− Tr

((
Âu ⊗ Âu ⊗ (−1)u·zAz

)
σ
)

,

where the second line arises due to the strategy being symmetric. By Parseval’s, ∑u(Âu)2 = I,
which implies by the given bounds that

2
∑

u∈Fn
2

Tr
(
(Âu)2ρ

)
− Tr

((
Âu ⊗ Âu ⊗ (−1)u·zAz

)
σ
)

≤ 2(1 − β),

as desired.

Lemma 4.4. Given that∑
u∈Fn

2

∥Âu ⊗ (−1)u·zAz ⊗ I − I ⊗ I ⊗ Âu∥2
σ ≤ β1

and ∑
u

Tr
((

Âu ⊗ Âu ⊗ Âu

)
σ
)

≥ β2,

then ∑
u∈Fn

p

Tr
((

(Âu)3 ⊗ Az ⊗ Az

)
σ
)

≥ β2 − 2
√

β1.
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Proof. We expand the following difference of traces:∑
u

Tr
((

(Âu)3 ⊗ Az ⊗ Az − Âu ⊗ Âu ⊗ Âu

)
σ
)

=
∑

u

Tr
((

(Âu)3 ⊗ (−1)u·zAz ⊗ (−1)u·zAz − Âu ⊗ Âu ⊗ Âu

)
σ
)

=
∑

u

Tr
((

(Âu)2 ⊗ (−1)u·zAz ⊗ I
) (

Âu ⊗ I ⊗ (−1)u·zAz − I ⊗ Âu ⊗ I
)

σ
)

+
∑

u

Tr
((

Âu ⊗ (−1)u·zAz ⊗ I − I ⊗ I ⊗ Âu

) (
Âu ⊗ Âu ⊗ I

)
σ
)

.

By Cauchy-Schwarz, we have∑
u

Tr
((

(Âu)2 ⊗ (−1)u·zAz ⊗ I
)(

Âu ⊗ I ⊗ (−1)u·zAz − I ⊗ Âu ⊗ I
)

σ
)

+
∑

u

Tr
((

Âu ⊗ (−1)u·zAz ⊗ I − I ⊗ I ⊗ Âu

)(
Âu ⊗ Âu ⊗ I

)
σ
)

≤
√

β1

(∑
u

∥∥∥(Âu ⊗ Âu ⊗ I
)∥∥∥2

σ

)1/2

+
(∑

u

∥∥∥((Âu)2 ⊗ (−1)u·zAz ⊗ I
)∥∥∥2

σ

)1/2


by our bounds above. We may expand the expression multiplied by the constant and use the
operator norm bound (i.e. Tr (NM) ≤ ∥N∥opTr (M) for positive semi-definite M) along with
Parseval’s to get(∑

u

∥∥∥(Âu ⊗ Âu ⊗ I
)∥∥∥2

σ

)1/2

+
(∑

u

∥∥∥((Âu)2 ⊗ (−1)u·zAz ⊗ I
)∥∥∥2

σ

)1/2

≤
∑

u

Tr
(
(Âu)2ρ

)
∥(Âu)2∥op +

∑
u

Tr
(
Âu)2ρ

)
∥(Âu)2∥op

≤ 2.

where the (−1)u·zAz vanishes as it is unitary. To conclude, notice our bound holds regardless
of a sign in front of the first expression. Hence,∑

u∈Fn
p

Tr
((

(Âu)3 ⊗ Az ⊗ Az

)
σ
)

≥
∑

u

Tr
((

Âu ⊗ Âu ⊗ Âu

)
σ
)

− 2
√

β1 ≥ β2 − 2
√

β1,

obtaining the desired inequality.

This leads us to the following theorem:

Theorem 4.5. Suppose three entangled provers succeed in the affine linearity test (i.e. linearity
test without consistency) with probability 1-ϵ using a symmetric strategy (σ, {Aa

x}). Then there
exists a measurement {Mu,b,b′} for (u, b, b′) ∈ Fn

2 × F2 × F2 such that if we let

Ba
x :=

∑
u,b,b′:u·x+b+b′=a

Mu,b,b′

then
(dσ(A, B))2 ≤ 6

√
ϵ.
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Proof. Define a measurement {Mu,b,b′} :=
{

(Âu)2 ⊗ Ab
z ⊗ Ab′

z

}
u,b,b′

.
This is a POVM measurement, as Mu,b,b′ is positive semi-definite and Hermitian, and Par-

seval’s identity shows that ∑u,b,b′ Mu,b,b′ = I. Let Cx = Ax −
∑

u,b,b′(−1)u·x+b+b′
Mu,b,b′ . Notice

that

Ĉu = Âu − E
x

∑
v,b,b′

(−1)(v−u)·x+b+b′
Mv,b,b′


= Âu − E

x

∑
b,b′

(−1)−b+b′
Mu,b,b′

 .

Separating (−1)b+b′ across the two registers with the projectors gives

Âu − E
x

∑
b,b′

(−1)−b+b′
Mu,b,b′


Âu − E

x

[
(Âu)2 ⊗

∑
b

(−1)bAb
z ⊗

∑
b′

(−1)b′
Ab′

z

]
= Âu ⊗ I ⊗ I − (Âu)2 ⊗ Az ⊗ Az.

Summing over ∥Cx∥2
σ gives

E
x


∥∥∥∥∥∥Ax −

∑
u,b,b′

(−1)u·x+b+b′
Mu,b,b′

∥∥∥∥∥∥
2

σ

 =
∑

u

∥Ĉu∥2
σ

≤
∑

u

Tr
(
(Âu)2ρ

)
+ Tr

(
(Âu)4ρ

)
− 2 Tr

(
(Âu)3 ⊗ Az ⊗ Azσ

)
.

By Parseval’s and the operator norm bound, we have∑
u

Tr
(
(Âu)2ρ

)
+ Tr

(
(Âu)4ρ

)
− 2 Tr

(
(Âu)3 ⊗ Az ⊗ Azσ

)
≤ 2 − 2

∑
u

Tr
(
(Âu)3 ⊗ Az ⊗ Azσ

)
≤ 4ϵ + 8

√
ϵ ≤ 12

√
ϵ

by Lemma 4.4 with β1 = 4ϵ by Lemma 4.3 and β2 = 1 − 2ϵ by Lemma 4.2. To finish, note thatAx −
∑

u,b,b′

(−1)u·x+b+b′
Mu,b,b′

2

=
(
(A0

x − B0
x) − (A1

x − B1
x)
)2

=
(
(A0

x − B0
x) − (A1

x − B1
x)
)2

+
(
(A0

x − B0
x) + (A1

x − B1
x)
)2

= 2
(
A0

x − B0
x

)2
+ 2

(
A1

x − B1
x

)2
,

as (A0
x − B0

x) + (A1
x − B1

x) = I − I = 0. Dividing by 2 implies the claim.
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