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Abstract. In 2023, Defant and Li introduced an Ungar move, which sends an element v of
a meet-semilattice L to the meet of some subset of the elements covered by v. More recently,
Defant, Kravitz, and Williams introduced the Ungar game on L, in which two players take
turns making nontrivial Ungar moves starting from an element of L until the player who
cannot make a nontrivial Ungar move loses. In this note, we settle two conjectures by
Defant, Kravitz, and Williams on the Ungar games on the Young-Fibonacci lattice and the
lattices of the order ideals of shifted staircases.

1. Introduction

Let L be a finite meet-semilattice. In 2023, Defant and Li [2] introduced an Ungar move,
which sends an element v of L to the meet of {v} ∪ T for some subset T of the elements
that v covers. If T = ∅, then the Ungar move is trivial. For example, in Figure 1, the
element a covers the elements {b, c, e}, and so the set of elements that can be obtained by
applying a nontrivial Ungar move is {b, c, e, f, g, h}. In 2024, Defant, Kravitz, and Williams
[1] introduced the Ungar game on a finite meet-semilattice L. In the Ungar game on L,
Atniss and Eeta alternate turns, starting from an element of L. On each turn, the current
player chooses a nonempty subset T of the elements covered by the current element and
performs the corresponding Ungar move. The player unable to make a nontrivial Ungar
move loses.

An element v of L is an Atniss win if Atniss has a winning strategy in the Ungar game on
the sublattice [0̂, v] starting from v; otherwise, v is an Eeta win (see for example, Figure 1).
Let A(L) and E(L) be the set of Atniss and Eeta wins in L, respectively. For a graded
lattice, let Ar(L) and Er(L) be the set of Atniss and Eeta wins of rank r, respectively.

g
d

h

c

f

e

b

a

Figure 1. A lattice with Atniss wins unshaded and colored red and Eeta
wins shaded and colored blue.

In [1], Defant, Kravitz, and Williams studied the Ungar games on the weak order on
Sn, the intervals in Young’s lattice, and the Tamari lattices. In this note, we settle two
conjectures in [1] on the Ungar games on the Young-Fibonacci lattice and the lattices of the
order ideals of shifted staircases.
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First, we characterize the Eeta wins in the Young-Fibonacci lattice YF. Let YFr be the
set of elements in YF of rank r. In what follows, let |v| be the length of a string v, and for
v = v1v2 . . . v|v| and 1 ≤ i ≤ j ≤ |v|, let vi:j = vivi+1 · · · vj. If i > j, then vi:j = ∅.

Theorem 1.1. For r ≥ 0, an element v ∈ YFr is an Eeta win if and only if

• v1:|v|−1 = 11 · · · 1 and the number of 1s in v is even, or
• v1:|v|−1 ̸= 11 · · · 1 and the number of 1s to the left of the leftmost 2 in v is odd.

Note that v1:|v|−1 = 11 · · · 1 is vacuously true when |v| ≤ 1. Defant, Kravitz, and Williams’
conjecture [1, Conjecture 6.1] follows.

Corollary 1.2. For r ≥ 2, it holds that |Er(YF)| = fr−2 + (−1)r.

Next, let J(SSn) be the lattice of the order ideals of the n
th shifted staircase SSn, ordered

by containment. We characterize the Eeta wins in J(SSn), which corrects and settles [1,
Conjecture 6.2]. Refer to Section 4 for the natural bijection between an order ideal v ∈ J(SSn)
and a binary string s ∈ {0, 1}n.

Theorem 1.3. An order ideal v ∈ J(SSn) with binary representation s ∈ {0, 1}n is an Eeta
win if and only if

• s|s| = 0, and
• there are no odd-length sequences of 1s followed by an odd-length sequence of 0s in
s1:|s|−1.

The sequence |E(J(SSn))| follows directly.

Corollary 1.4. The sequence |E(J(SSn))| is OEIS A061279 [4].

The rest of this note is as follows. Section 2 is preliminaries. In Sections 3 and 4, we prove
Theorems 1.1 and 1.3, respectively.

2. Preliminaries

A meet-semilattice L is a poset in which every pair of elements has a greatest lower bound
(called their meet and notated by ∧). Due to the commutative and associative properties of
the meet operation, each subset X of finite meet-semilattice L has a greatest lower bound,
or meet. We call L a lattice if it is a meet-semilattice in which any two elements also have
a least upper bound (called their join and notated by ∨). For {u, v} ⊆ L such that u ≤ v,
the interval [u, v] is the set of all w ∈ L such that u ≤ w ≤ v. If |[u, v]| = 2, then say that
v covers u and write that u⋖ v. An order ideal of L is a subposet I ⊆ L such that for any
element u ∈ L and any element v ∈ I, if u ≤ v, then u ∈ I. For the rest of this note, all
order ideals of all posets are finite. Let 0̂ be the minimal element of a lattice L. A graded
lattice L has a rank function ρ such that ρ(0̂) = 0 and ρ(u) + 1 = ρ(v) if u⋖ v.
Given an element v in meet-semilattice L, an Ungar move sends v to the meet of {v}∪T ,

where T is a subset of the elements that v covers, chosen by the player making the move.
In the Ungar game on L, Atniss starts on a given element of L and alternates with Eeta
in making nontrivial Ungar moves. The game continues until a player reaches the minimal
element 0̂ and cannot make a nontrivial Ungar move, and that player loses. Let Ung(v) be
the set of elements in L that can be obtained by applying an Ungar move to v. The sets of
Atniss and Eeta wins in L can be determined recursively, as stated in Defant, Kravitz, and
Williams’ paper [1].
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Lemma 2.1 (Defant, Kravitz, and Williams [1, Section 1]). An element v in meet-semilattice
L is an Eeta win if and only if every element of Ung(v) \ {v} is an Atniss win. Otherwise,
v ∈ A(L).

3. The Young-Fibonacci Lattice

3.1. Definitions. The Young-Fibonacci lattice YF was introduced by Fomin [3] and Stanley
[5]. The elements of YF are the words of the alphabet {1, 2}. Note that any substring of an

element in YF is also an element of YF. The rank of v ∈ YF is defined by ρ(v) :=
∑|v|

i=1 vi.
Let YFr be the set of all elements in YF of rank r. Let u ∈ YF. The lattice YF is defined
such that u⋖ v if and only if

• v = u1:i1ui+1:|u| such that u1:i contains no 1s, or
• v = u1:i−12ui+1:|u| such that ui is the leftmost 1 in u.

(see for example, Figure 2 for YF up to rank 5).

∅

1

11 2

111 12 21

1111 112 121 211 22

11111 1112 1121 1211 122 2111 212 221

Figure 2. The lattice YF up to rank 5 with Atniss wins unshaded and colored
red and Eeta wins shaded and colored blue.

3.2. Proof of Theorem 1.1. Now, we prove Theorem 1.1.

Proof of Theorem 1.1. We induct on the rank r. The statement holds when r ∈ {2, 3}. Now,
suppose that r ≥ 4 and that the statement holds for r − 1 and r − 2. First, suppose that
v ∈ YFr and that v1 = 1. Then Ung(v) \ {v} = {v2:|v|}, because the only element that v
covers is v2:|v|. Thus, by Lemma 2.1, v ∈ Er(YF) if and only if v2:|v| ∈ Ar−1(YF) and does
not satisfy the theorem statement. Therefore, by the induction hypothesis, v ∈ Er(YF) if
and only if v1:|v|−1 = 11 · · · 1 and the number of 1s in v is even, or v1:|v|−1 ̸= 11 · · · 1 and the
number of 1s to the left of the leftmost 2 in v is odd.

Next, suppose that v ∈ YFr and that v1 = 2. Then {1v2:|v|} ⊆ Ung(v), because 1v2:|v| ⋖ v.
Next, {v2:|v|} ⊆ Ung(v), because if v2 = 1, then v2:|v| = v1v3:|v| ∧ 1v2:|v|, and if v2 = 2, then
v2:|v| = v11v3:|v| ∧ 1v2:|v|. By the induction hypothesis, either v2:|v| or 1v2:|v| is an Eeta win.
Thus, v ∈ Ar(YF) by Lemma 2.1. □

Corollary 1.2 now follows.
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Proof of Corollary 1.2. We induct on the rank r. The statement holds for r = 2. Now,
suppose that r ≥ 3 and that the statement holds for r − 1. By Theorem 1.1, v ∈ Er(YF) if
and only if v1 = 1 and v2:|v| ∈ Ar−1(YF). Thus, |Er(YF)| = fr−1−|Er−1(YF)| = fr−2+(−1)r

by the induction hypothesis. □

4. The Lattices of the Order Ideals of Shifted Staircases

4.1. Definitions. The nth shifted staircase SSn consists of all pairs (i, j) ∈ N2 such that
1 ≤ i ≤ j ≤ n (see for example, Figure 3 for SS5). There is a natural bijection between the
order ideals of SSn and the length n binary strings {0, 1}n defined by taking the path lying
directly above an order ideal of SSn and sending the up steps (i.e., (1, 0)) to 1 and the down
steps (i.e., (0,−1)) to 0. The binary representation s ∈ {0, 1}n of an order ideal v of SSn

is the binary string that the order ideal corresponds to under the natural bijection (see for
example, Figure 3 for an order ideal of SS5 represented by 10100). For a path in SSn with

binary representation s ∈ {0, 1}n such that si = 1, say that (
∑i

j=1 sj, |s| − i +
∑i

j=1 sj) is

directly below the ith step of the path. For example, (2, 4) is directly below the third step of
the path in Figure 3.

(1, 1)

(2, 2)

(3, 3)

(4, 4)

(5, 5)

(1, 2)

(2, 3)

(3, 4)

(4, 5)

(1, 3)

(2, 4)

(3, 5)

(1, 4)

(2, 5)

(1, 5)

Figure 3. The path above the order ideal of SS5 with binary representation
10100.

For s ∈ {0, 1}n, let F (s) be the set of i that satisfies

• sisi+1 = 10 if i ≤ |s| − 1, or
• si = 1 if i = |s|.

For example, F (110101) = {2, 4, 6}. For A ⊆ F (s), let G(s, A) ∈ {0, 1}n be obtained from
s ∈ {0, 1}n by replacing si with 0 and si+1 (if it exists) with 1 for all i ∈ A. For example,
G(110101, {2, 6}) = 101100. If |A| = 1, then we omit the brackets around A.

Now, let J(SSn) be the lattice of the order ideals of SSn ordered by containment. The rank
of v ∈ J(SSn) with binary representation s ∈ {0, 1}n is ρ(s) := 1 · s|s|+2 · s|s|−1+ · · ·+ |s| · s1.
For example, the rank of an order ideal of SSn with binary representation 1010 is 6. Let
v ∈ J(SSn) have binary representation t ∈ {0, 1}n. The lattice J(SSn) (see for example,
Figure 4 for J(SS4)) is defined such that u⋖ v if and only if G(t, i) = s for some i ∈ F (t).
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Figure 4. The lattice J(SS4) with Atniss wins unshaded and colored red and
Eeta wins shaded and colored blue.

Next, a 0-block (respectively, 1-block) in a binary string is a maximal substring of consec-
utive 0s (respectively, 1s). For example, in 110001, there are two 1-blocks and one 0-block.
Let H(s) be the largest i ∈ F (s) such that si is the rightmost 1 of an odd-length 1-block
that is followed by an odd-length 0-block in s, provided such an si exists. If such si does not
exist, then let H(s) = ∞, and we call s odd avoiding. Otherwise, s is odd containing. For
example, H(110100) = ∞, and 110100 is odd avoiding. However, H(11010) = 4, and 11010
is odd containing.

4.2. Proof of Theorem 1.3. We now prove auxiliary lemmas towards Theorem 1.3.

Lemma 4.1. For any s ∈ {0, 1}n and T ⊆ F (s), the meet of all order ideals of SSn with
binary representations G(s, i) for all i ∈ T is the order ideal with the binary representation
G(s, T ).

Proof. Let s ∈ {0, 1}n be the binary representation of an order ideal v ∈ J(SSn). For
i ∈ F (s), let (xi, yi) ∈ v be the lattice point directly below the ith step of the path in J(SSn)
with binary representation s. In the bijection between the order ideals of SSn and binary
strings, G(s, i) is the binary representation of v \ {(xi, yi)}. For T ⊆ F (s), it holds that

∧{v \ {(xi, yi)} | i ∈ T} = ∩{v \ {(xi, yi)} | i ∈ T},
which has binary representation G(s, T ). □

Now, we prove that for any s ∈ {0, 1}n, there is a subset of indices I(s) in s such that
G(s, I(s)) is odd avoiding.

Lemma 4.2. For any s ∈ {0, 1}n, there exists some I(s) ⊆ F (s) such that G(s, I(s)) is odd
avoiding.

Proof. We recursively construct I(s) such that

• |s| ̸∈ I(s),
• |s| − 1 ̸∈ I(s) if s|s|−1:|s| = 00, and
• I(s) = I(s1:|s|−1) if s|s| = 1.
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When |s| ≤ 2, let I(s) = {1} if s = 10; otherwise, let I(s) := ∅. Now, assume |s| ≥ 3.
First, suppose that s|s| = 1. By construction, |s| − 1 ̸∈ I(s1:|s|−1). By the definition of odd
avoiding, G(s1:|s|−1, I(s1:|s|−1))1 is odd avoiding. Thus, I(s) := I(s1:|s|−1) suffices.
Next, suppose that s|s|−1:|s| = 00. By construction, |s|−2 ̸∈ I(s1:|s|−2). By the definition of

odd avoiding, G(s1:|s|−2, I(s1:|s|−2))00 is also odd avoiding. Thus, I(s) := I(s1:|s|−2) suffices.
Now, suppose that s|s|−1:|s| = 10 and that G(s1:|s|−1, I(s1:|s|−1))0 is odd avoiding. By

construction, |s| − 1 ̸∈ I(s1:|s|−1). Thus, I(s) := I(s1:|s|−1) suffices.
Next, suppose that s|s|−2:|s| = 010 and that G(s1:|s|−1, I(s1:|s|−1))0 is odd containing. By

construction, |s| − 2 ̸∈ I(s1:|s|−20). By construction and the definition of odd avoiding,
G(s1:|s|−20, I(s1:|s|−20))1 is odd avoiding. Thus, I(s) := I(s1:|s|−20) ∪ {|s| − 1} suffices.

Lastly, suppose that s|s|−2:|s| = 110 and that G(s1:|s|−1, I(s1:|s|−1))0 is odd containing. By
construction, I(s1:|s|−1) = I(s1:|s|−2). Then

G(s1:|s|−1, I(s1:|s|−1))1:|s|−2 = G(s1:|s|−2, I(s1:|s|−2)).

Therefore, the rightmost 1-block of G(s1:|s|−2, I(s1:|s|−2)) has even length. By the definition
of odd avoiding, G(s1:|s|−20, I(s1:|s|−2))1 is odd avoiding. Thus, I(s) := I(s1:|s|−2) ∪ {|s| − 1}
suffices. □

We now prove Theorem 1.3 using Lemmas 4.1 and 4.2. That is, we prove that v ∈
E(J(SSn)) if and only if the binary representation s ∈ {0, 1}n of v satisfies s|s| = 0 and
s1:|s|−1 is odd avoiding.

Proof of Theorem 1.3. Fix n. We induct on the rank r. The statement holds when r = 0.
Now, suppose that r ≥ 1 and that the statement holds for ≤ r−1. Let v ∈ J(SSn) be of rank
r and binary representation s ∈ {0, 1}n. First, suppose that s1:|s|−1 is odd avoiding and that
s|s| = 1. Let u ∈ J(SSn) have binary representation s1:|s|−10. Since u⋖ v and u ∈ E(J(SSn))
by the induction hypothesis and Lemma 2.1, v ∈ A(J(SSn)) by Lemma 2.1.
Next, suppose that s1:|s|−1 is odd avoiding and that s|s| = 0. Let u ∈ Ung(v) \ {v} have

binary representation t ∈ {0, 1}n. Then t = G(s, T ) for some nonempty T ⊆ F (s) by
Lemma 4.1. Now, if |s| − 1 ∈ T , then t|s| = 1. Thus, u ∈ A(J(SSn)) by the induction
hypothesis. Now, suppose that |s| − 1 ̸∈ T . If the 0−block containing tmax(T )+1 has even
length, then H(t1:|s|−1) = max(T ) + 1. If not, then the 1−block containing tmax(T ) in t has
even length, because t1:|s|−1 is odd avoiding, and so, H(t1:|s|−1) = max(T )−1. Thus, t1:|s|−1 is
odd containing, and u ∈ A(J(SSn)) by the induction hypothesis. Therefore, Ung(v) \ {v} ⊆
A(J(SSn)), and v ∈ E(J(SSn)) by Lemma 2.1.

Finally, suppose that s1:|s|−1 is odd containing. Then, G(s1:|s|−1, I(s1:|s|−1)) is odd avoiding
for some I(s1:|s|−1) by Lemma 4.2. By Lemma 4.1, the meet of the order ideals of SSn with
binary representations s1:|s|−10 and G(s, i) for all i ∈ I(s1:|s|−1) has binary representation
t ∈ {0, 1}n such that t|s| = 0 and t1:|s|−1 is odd avoiding. The order ideal with binary
representation t is in E(J(SSn)) by the induction hypothesis. Thus, v ∈ A(J(SSn)) by
Lemma 2.1. □

Corollary 1.4 immediately follows from Theorem 1.3.
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