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Abstract. Graph neural networks (GNNs) have been widely used in graph-related contexts.
It is known that the separation power of GNNs is equivalent to that of the Weisfeiler-Lehman
(WL) test; hence, GNNs are imperfect at identifying all non-isomorphic graphs, which se-
verely limits their expressive power. This work investigates k-hop subgraph GNNs that
aggregate information from neighbors with distances up to k and incorporate the subgraph
structure. We prove that under appropriate assumptions, the k-hop subgraph GNNs can ap-
proximate any permutation-invariant/equivariant continuous function over graphs without
cycles of length greater than 2k`1 within any error tolerance. We also provide an extension
to k-hop GNNs without incorporating the subgraph structure.

1. Introduction

Graph neural networks (GNNs) [14,20,22,25,32] have demonstrated remarkable effectiveness
in modeling and analyzing graph-structured data. Their versatility has enabled impactful
applications in diverse areas, including physics [21], bioinformatics [29], finance [23], electronic
engineering [13, 15, 16], and operations research [8], just to name a few. From a theoretical
perspective, GNNs are employed to learn or approximate functions on graphs, it is of essential
importance to analyze and understand the expressiveness of GNNs, i.e., identify the function
class on graphs that GNNs can well approximate, providing valuable insights to guide the design
of more effective GNN architectures.

One of the cornerstone architectures in graph neural networks (GNNs) is the message-passing
framework [12], which updates the features of each node layer-by-layer via incorporating infor-
mation from its neighbors. Formally, consider a graph G “ pV,Eq, where V “ tv1, v2, . . . , vnu

is the set of nodes and E Ď V ˆ V denotes the edges. Each node is initially assigned features
h

p0q

1 , h
p0q

2 , . . . , h
p0q
n . Let AGGREGATE be a permutation-invariant operation (such as summa-

tion, averaging, or maximization), let N pviq represent the neighbors of vi, and let tt¨uu denote
a multiset to handle duplicate elements. At the l-th layer, the feature of node vi, namely h

plq
i

is updated as follows, for learnable functions f plq and gplq:

(1.1) h
plq
i “ f plq

´

h
pl´1q

i ,AGGREGATE
´!!

gplqph
pl´1q

j q : vj P N pviq
))¯¯

,

where h
pl´1q

j is the vertex feature at the pl ´ 1q-th layer.
Despite their empirical success, unfortunately, message-passing GNNs suffer from insufficient

expressive power. Specifically, some non-isomorphic graphs cannot be distinguished by MP-
GNNs. For example, Figure 1 shows two non-isomorphic graphs in which vertices of the same
color have identical initial features and all edges have uniform weights. Although the graphs
are non-isomorphic, vertices of the same color will always share identical features, regardless
of the number of message-passing layers or the choice of functions f plq, gplq,AGGREGATE.
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This occurs because each vertex receives the same aggregated information from its neighbors,
rendering these graphs indistinguishable to MP-GNNs.
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Figure 1. Two non-isomorphic graphs that cannot be distinguished by MP-GNNs
or the WL test.

In general, the separation and expressive power of MP-GNNs are closely related to the
Weisfeiler-Lehman (WL) test [24], a classical algorithm for addressing the graph isomorphism
problem. The WL test is fundamentally a color refinement algorithm, where each vertex vi is
initially assigned a color Cp0qpviq based on its initial features. The algorithm then iterates by
applying the update:

(1.2) Cplqpviq “ HASH
´

Cpl´1qpviq,
!!

Cpl´1qpwq : w P N pviq
))¯

,

which follows a similar structure to the update in (1.1). If the hash function is collision-free,
two vertices share the same color at the l-th iteration if and only if they had the same color and
identical multisets of neighbors’ colors at the pl´1q-th iteration. The WL test terminates when
the color partition stabilizes, typically within at most n iterations, and identifies two graphs as
isomorphic if their final color multisets match.

It has been shown that MP-GNNs have the same separation power as the WL test [26],
meaning two graphs are distinguished as non-isomorphic by the WL test if and only if they yield
different outputs in some MP-GNN. It is further proven in [1, 11] that GNNs can universally
approximate any continuous functions whose separation powers are upper bounded by the
associated WL test. However, no polynomial-time algorithms are known to perfectly solve the
graph isomorphism problem, so the WL test cannot distinguish certain pairs of non-isomorphic
graphs, such as the example in Figure 1. Consequently, it is impossible for MP-GNNs to
represent or approximate all permutation-invariant/equivariant functions.

In response, researchers have proposed alternative GNN architectures designed with en-
hanced separation capabilities. This project specifically focuses on unweighted graphs. One
well-known approach in the literature is to employ higher-order GNNs [1, 9–11, 17–19, 31] that
correspond to higher-order WL tests [4]. Roughly speaking, a k-th order GNN assigns a fea-
ture to each k-tuple of vertices and updates each tuple’s feature based on information from its
adjacent tuples.

In this work, we investigate another common technique in recent literature [3, 7, 28, 30] to
enhance the expressive power of message-passing GNNs, that involves incorporating subgraph
structures, rather than relying solely on vertex features from neighboring nodes. Such GNN
architecture is termed subgraph GNNs and this paper rigorously characterizes their separation
power by demonstrating that they can perfectly distinguish a large family of graphs with
bounded cycles.

The rest of this paper will be organized as follows. We define subgraph GNNs and the
associated WL test and introduce the motivation in Section 2. Our theory for the expressive
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power of subgraph GNNs are presented in Section 3 and Section 4, where we prove that any
permutation-invariant/equivariant continuous function on graphs with bounded cycles can be
approximated universally by subgraph GNNs. Our theory is extended in Section 5, and the
whole paper is concluded in Section 6.

2. Subgraph graph neural networks and Weisfeiler-Lehman test

2.1. Motivation. One idea to enhance the expressive power of message-passing GNNs is to
incorporate more information from neighboring vertices:

‚ The aggregation in (1.1) uses N pviq, the set of neighbors of vi. To incorporate additional
information, one can define dpu, vq as the distance between u and v in the graph G and

Nkpviq :“ tv P G : dpv, viq ď ku , k ě 1.

‚ Beyond the features of vertices in Nkpviq, one can also capture edge information, i.e.,
whether two vertices are connected. This means that the topology of G|Nkpviq, the
subgraph of G restricted to Nkpviq (known as the k-hop subgraph rooted at vi), can be
used to update the feature of vi.

Let pG, hpl´1qqvi,k denote the subgraph G|Nkpviq rooted at vi, with each vertex having a feature
from hpl´1q. Accordingly, the vertex feature update rule is given by

(2.1) h
plq
i “ f plq

´

h
pl´1q

i , gplq
´

pG, hpl´1qqvi,k

¯¯

.

The functions f plq and gplq are learnable, with gplq taking constant value on isomorphic graphs.
This scheme, termed the k-hop subgraph GNN, has various applications and adaptations in
the existing literature [3, 7, 28, 30]. Notably, the permutation-invariant function gplq is often
parameterized as another GNN applied to the smaller subgraph pG, hl´1qvi,k.

Recall that the message-passing GNN (1.1) has limited separation power and fails to distin-
guish the graphs in Figure 1. However, the 2-hop subgraph GNN can successfully distinguish
them. Specifically, the 2-hop subgraphs rooted at v1 are shown in Figure 2 and are clearly
non-isomorphic, indicating that v1 in the two graphs in Figure 1 will have different feature
after one layer of the 2-hop subgraph GNN.
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Figure 2. 2-hop subgraphs rooted at v1 for graphs in Figure 1

Another observation is that the 2-hop subgraph GNN fails if we increase the cycle sizes
in Figure 1—for instance, by changing one graph to have two 6-cycles and the other a single
12-cycle. In general, the k-hop subgraph GNN fails to distinguish between a graph with two
p2k ` 2q-cycles and one with a single p4k ` 4q-cycle, though it succeeds when the cycle sizes
are smaller. This suggests that larger cycles limit the separation power of the k-hop subgraph
GNN.

This observation aligns with empirical findings in the literature. The ZINC dataset [6]
consists of molecular graphs with no large cycles, and variants of subgraph GNNs have shown
notable improvement over message-passing GNNs on this dataset [3, 7, 27,28,30].
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2.2. k-hop subgraph GNNs. We rigorously define the k-hop subgraph GNNs in this subsec-
tion, for which we define the graph space first.

Definition 2.1 (Space of graphs with vertex features). We use Gn,m to denote the space of all
undirected unweighted graphs of n vertices with each vertex equipped with a feature in Rm.
The space Gn,m is equipped with the product topology of discrete topology (of graphs without
vertex features) and Euclidean topology (of vertex features).

We use pG,Hq to denote an element in Gn,m where G “ pE, V q is an undirected unweighted
graph, and H “ ph1, h2, . . . , hnq is the collection of all vertex features. Given pG,Hq P Gn,m

and k ě 1, the k-hop subgraph GNN is defined as follows.
‚ The embedding layer maps each vertex feature hi P Rm as an embedding vector

h
p0q

i “ f p0qphiq,

where f p0q is learnable.
‚ For l “ 1, 2, . . . , L, the information aggregation layer computes h

plq
i for i “ 1, 2, . . . , n.

‚ There are two types of outputs. The graph-level output computes a real number for
the whole graph, namely

y “ r
´

AGGREGATE
´!!

h
pLq

i : i P t1, 2, . . . , nu

))¯¯

,

where r is learnable. The vertex-level output assigns a real number for each vertex:

yi “ rph
pLq

i q, i “ 1, 2, . . . , n.

In general, the intermediate vertex features h
plq
i can be defined in any topological space, while

one usually uses Euclidean spaces in practice.

Definition 2.2 (Spaces of subgraph GNNs). We use Fk to denote the collection of all k-hop
subgraph GNNs with graph-level output, and use Fk,v to denote the collection of all k-hop
subgraph GNNs with vertex-level output.

It is clear that a k-hop subgraph GNN with graph-level output is permutation-invariant,
and a k-hop subgraph GNN with vertex-level output is permutation-equivariant, with respect
to the following definition.

Definition 2.3 (Permutation-invariant and permutation-equivariant functions). We say that
a function Φ : Gn,m Ñ R is permutation-invariant if

Φpσ ˚ pG,Hqq “ ΦpG,Hq, @ σ P Sn,

where σ ˚ pG,Hq is the graph obtained by relabeling vertices in pG,Hq according to the per-
mutation σ, and that a function Φ : Gn,m Ñ Rn is permutation-equivariant if

Φpσ ˚ pG,Hqq “ σpΦpG,Hqq, @ σ P Sn.

2.3. Equivalent separation power of the k-hop subgraph WL test. The WL test asso-
ciated with the k-hop subgraph GNN is stated in Algorithm 1. The separation powers of k-hop
subgraph GNN and the k-hop subgraph WL test are equivalent.

Definition 2.4. For pG,Hq, pĜ, Ĥq P Gn,m, denote ttC
pLq

i : i P t1, 2, . . . , nuuu and ttĈ
pLq

i : i P

t1, 2, . . . , nuuu as their final color multisets output by the k-hop subgraph WL test.

(i) We say pG,Hq
k
„ pĜ, Ĥq if ttC

pLq

i : i P t1, 2, . . . , nuuu “ ttĈ
pLq

i : i P t1, 2, . . . , nuuu for
any L ą 0 and any hash functions.

(ii) We say pG,Hq
k,v
„ pĜ, Ĥq if CpLq

i “ Ĉ
pLq

i , i “ 1, 2, . . . , n, for any L ą 0 and any hash
functions.
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Algorithm 1 k-hop Subgraph Weisfeiler-Lehman test

Require: A graph pG,Hq P Gn,m and iteration limit L ą 0.
Initialize the vertex color

C
p0q

i “ HASHphiq, i “ 1, 2, . . . , n

while l “ 1, 2, . . . , L do
Refine the color

(2.2) C
plq
i “ HASH

´

C
pl´1q

i , pG,C
pl´1q

vi,k
q

¯

.

end while
Output: Color multiset ttC

pLq

i : i P t1, 2, . . . , nuuu.

We remark that two multisets are identical if for any element, its multiplicities in two mul-
tisets are the same.

Theorem 2.5. For any pG,Hq, pĜ, Ĥq P Gn,m and any k ą 0, the following are equivalent:

(i) pG,Hq
k
„ pĜ, Ĥq.

(ii) F pG,Hq “ F pĜ, Ĥq for any F P Fk.
(iii) For any Fv P Fk,v, there exists σ P Sn such that FvpG,Hq “ σpFvpĜ, Ĥqq.

Moreover, pG,Hq
k,v
„ pĜ, Ĥq if and only if FvpG,Hq “ FvpĜ, Ĥq for any Fv P Fk,v.

Proof. The proof follows similar lines as in the proof of [5, Theorem 4.2] that is inspired by [26].
□

Corollary 2.6. For any pG,Hq P Gn,m and any k ą 0. Let ttC
pLq

i : i P t1, 2, . . . , nuuu be the
color multiset output by the 1-hop subgraph WL test. For any i, i1 P t1, 2, . . . , nu, the following
are equivalent:

(i) C
pLq

i “ C
pLq

i1 for any L ą 0 and any hash function.
(ii) FvpG,Hqi “ FvpG,Hqi1 for any Fv P Fk,v.

Proof. Apply Theorem 2.5 to pG,Hq and σ ˚ pG,Hq where σ is the permutation that switches
i, i1 and keep all other indices unchanged. □

3. Expressive power of 1-hop subgraph GNNs

This section characterizes the expressive power of 1-hop subgraph GNNs. The main theorem
is stated as follows, which proves that 1-hop subgraph GNNs can approximate any permutation-
invariant/equivariant continuous functions on graphs without cycles of length greater than 3.

Theorem 3.1. Let P be a Borel probability measure on Gn,m. Suppose that for P-almost surely
pG,Hq, the graph G is connected and has no cycles of length greater than 3. Then, the following
hold.

(i) For any ϵ, δ ą 0 and any permutation-invariant continuous function Φ : Gn,m Ñ R,
there exists F P F1 such that

P r|F pG,Hq ´ ΦpG,Hq| ą δs ă ϵ.

(ii) For any ϵ, δ ą 0 and any permutation-equivariant continuous function Φv : Gn,m Ñ Rn,
there exists Fv P F1,v such that

P r}FvpG,Hq ´ ΦvpG,Hq} ą δs ă ϵ.
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Throughout this paper, we always denote } ¨ } as the standard ℓ2-norm on Rn. We present
the proof of Theorem 3.1 in the rest of this section, which is based on the following theorem
and corollary.

Theorem 3.2. Consider pG,Hq, pĜ, Ĥq P Gn,m. Suppose that G and Ĝ are both connected and
have no cycles of length greater than 3. If pG,Hq

1
„ pĜ, Ĥq, then pG,Hq and pĜ, Ĥq must be

isomorphic.

Corollary 3.3. Consider any pG,Hq P Gn,m where G is connected and has no cycles of length
greater than 3. Let ttC

pLq

i : i P t1, 2, . . . , nuuu be the color multiset output by the 1-hop sub-
graph WL test. For any i, i1 P t1, 2, . . . , nu, if C

pLq

i “ C
pLq

i1 holds for any L ą 0 and any
hash function, then we have for any permutation-equivariant function Φ : Gn,m Ñ Rn that
ΦpG,Hqi “ ΦpG,Hqi1 .

In the acyclic graph setting, it is proven in [2] that two trees indistinguishable by the classic
WL test (1.2) must be isomorphic. Theorem 3.2 can be viewed as a generalization of this
result from [2]. We will postpone the proofs of Theorem 3.2 and Corollary 3.3 and first prove
Theorem 3.1 (i) using Theorem 3.2 and the Stone-Weierstrass theorem.

Proof of Theorem 3.1 (i). There exists a compact and permutation-invariant subset X Ď Gn,m

such that PrXs ą 1 ´ ϵ and that for any pG,Hq P X, G is connected and has no cycles
of length greater than 3. Due to Theorem 3.2 and the permutation-invariant property of Φ,
Φ|X : X Ñ R induces a continuous map on the quotient space ĄΦ|X : X{

1
„Ñ R By the same

reason, for F P F1, F |X : X Ñ R also induces a continuous map ĄF |X : X{
1
„Ñ R. Consider

any pG,Hq, pĜ, Ĥq P X that represent different elements in X{
1
„, Theorem 2.5 guarantees that

there exists F P F1 such that F pG,Hq ‰ F pĜ, Ĥq, suggesting that tĄF |X : F P F1u separates
points on X{

1
„. Therefore, by the Stone-Weierstrass theorem, one can conclude that there

exists F P F1 such that
›

›

›

ĄF |X ´ ĄΦ|X

›

›

›

L8pX{
1
„q

ă δ,

which implies that
|F pG,Hq ´ ΦpG,Hq| ă δ, @ pG,Hq P X.

Thus, it holds that
P r|F pG,Hq ´ ΦpG,Hq| ą δs ď PrGn,mzXs ă ϵ,

which completes the proof. □

The proof of Theorem 3.1 (ii) requires a generalized Stone-Weierstrass theorem for equivari-
ant functions.

Theorem 3.4 (Generalized Stone-Weierstrass theorem [1, Theorem 22]). Let X be a compact
topological space and let G be a finite group that acts continuously on X and Rn. Define the
collection of all equivariant continuous functions from X to Rn as follows:

CepX,Rnq “ tF P CpX,Rnq : F pg ˚ xq “ g ˚ F pxq, @ x P X, g P Gu.

Consider any F Ă CepX,Rnq and any Φ P CepX,Rnq. Suppose the following conditions hold:
(i) F is a subalgebra of CpX,Rnq and 1 P F .
(ii) For any x, x1 P X, if fpxq “ fpx1q holds for any f P CpX,Rq with f1 P F , then for any

F P F , there exists g P G such that F pxq “ g ˚ F px1q.
(iii) For any x, x1 P X, if F pxq “ F px1q holds for any F P F , then Φpxq “ Φpx1q.
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(iv) For any x P X, it holds that Φpxqi “ Φpxqi1 , @ pi, i1q P Ipxq, where

Ipxq “
␣

pi, i1q P t1, 2, . . . , nu2 : F pxqi “ F pxqi1 , @ F P F
(

.

Then for any ϵ ą 0, there exists F P F such that

sup
xPX

}Φpxq ´ F pxq} ă ϵ.

Proof of Theorem 3.1 (ii). There exists a compact and permutation-invariant subset X Ď Gn,m

such that PrXs ą 1´ ϵ and that for any pG,Hq P X, G is connected and has no cycles of length
greater than 3. The rest is to apply Theorem 3.4 on X and F “ F1,v, for which one needs to
verify the four condition in Theorem 3.4.

‚ Verification of Condition (i). By its construction, F1,v is a subalgebra of CpX,Rq. In
addition, 1 P F1,v if the output function r always takes the constant value 1.

‚ Verification of Condition (ii). Notice that F11 Ă F1,v. If F pG,Hq “ F pĜ, Ĥq, @ F P

F1, then Theorem 2.5 implies that for any Fv P F1,v, one has FvpG,Hq “ σpFvpĜ, Ĥqq

for some permutation σ P Sn.
‚ Verification of Condition (iii). Suppose that FvpG,Hq “ FvpĜ, Ĥq, @ Fv P F1,v. By

Theorem 2.5, it holds that pG,Hq
1,v
„ pĜ, Ĥq. Then apply Theorem 3.2 and Corol-

lary 3.3, and one can conclude that ΦpG,Hq “ ΦpĜ, Ĥq.
‚ Verification of Condition (iv). Condition (iv) is a direct corollary of Corollary 2.6 and

Corollary 3.3.
□

Finally, we present the proof of Theorem 3.2 and Corollary 3.3.

Proof of Theorem 3.2. Let A “ pA1, A2, . . . , Amq be an m-tuple of subgraphs of a graph A,
and let B “ pB1, B2, . . . , Bmq be an m-tuple of subgraphs of a graph B. Let YA be the union
of the vertices in A1, A2, . . . , Am, and let YB be the union of the vertices in B1, B2, . . . , Bm.
We say that A and B are isomorphic if there exists a bijective map of vertices of YA to vertices
of YB such that for any i P t1, 2, . . . ,mu,

‚ all vertices of Ai are mapped to vertices of Bi with the same label and vice versa
‚ all edges of Ai are mapped to edges of Bi and vice versa.

Assume for the sake of contradiction that pG,Hq and pĜ, Ĥq cannot be distinguished by the
WL test, which means the multisets of labels of vertices in G and Ĝ are the same and any
v1 P G and v2 P Ĝ with the same label must have isomorphic 1-degree neighborhoods.

We abbreviate an induced subgraph of G or Ĝ as its set of vertices. For any set S of vertices,
let N pSq be the set of all vertices in S or neighboring some vertex of S. We prove the following
statement by induction: for any m P t1, 2, . . . , |G|u, there exist connected isomorphic subsets
S1 Ď G and S2 Ď Ĝ of size m such that pS1,N pS1qq and pS2,N pS2qq are isomorphic. For the
base case, choose any two vertices in G and Ĝ with the same label. For the inductive step,
suppose that S1 and S2 are sets of size m ă |G|, and we want to find two sets S1

1 and S1
2

with size m ` 1 that satisfy the inductive statement. Let v1 be a vertex not in S1 adjacent
to a vertex in S1, and let v2 be the image of v1 under any isomorphism from pS1,N pS1qq to
pS2,N pS2qq. Let N pv1q and N pv2q be the sets of vertices with distance at most 1 from v1 and
v2, respectively. We claim that pS1 Y tv1u,N pS1q Y N pv1qq and pS2 Y tv2u,N pS2q Y N pv2qq

are isomorphic. We know that there is an isomorphism from N pS1q to N pS2q taking v1 to
v2. Consider T1 “ N pv1qzN pS1q and T2 “ N pv2qzN pS2q. Notice that pN pS1q, v1 Y T1q and
pN pS2q, v2 Y T2q are isomorphic. We claim that we cannot connect any vertex u1 of T1 to a
vertex of N pS1q other than v1. If u1 is connected to some vertex u2 ‰ v1 in N pS1q, then both
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v1 and u2 must have some neighbor in S1: call these u3 and u4. If u3 “ u4, then we have
the cycle u1 Ñ v1 Ñ u3 Ñ u2 Ñ u1. If u3 ‰ u4, then there must be a path through edges
of S1 from u3 to u4, so we create a cycle containing u1 Ñ v1 Ñ u3 Ñ ¨ ¨ ¨ Ñ u4 Ñ u2 Ñ u1.
Both of these cycles have length greater than 3, contradiction. Thus, u1 is not connected to
any vertex of N pS1q other than v1. Thus, we have proven the inductive step and the proof is
completed. □

Proof of Corollary 3.3. By the proof of Theorem 3.2, there exists a permutation σ P Sn such
that σpiq “ i1 and σ ˚ pG,Hq “ pG,Hq. Then the result holds immediately. □

4. Expressive power of k-hop subgraph GNNs

For the expressive power of k-hop subgraph GNNs, the theory is an extension of Theorem 3.1,
in the sense that k-hop subgraph GNNs can approximate any permutation-invariant/equivariant
continuous functions on graphs without cycles of length greater than 2k ` 1, but an additional
assumption is required.

Definition 4.1. A graph pG,Hq P Gn,m is said to be k-separable if the following condition
holds when the k-hop subgraph WL test terminates without hash collisions: For any three
vertices u, v1, v2 with dpu, v1q “ dpu, v2q “ k and v1 ‰ v2, the final colors of v1 and v2 output
by the k-hop subgraph WL test are different.

Theorem 4.2. Let P be a Borel probability measure on Gn,m. Suppose that P-almost surely,
pG,Hq is k-separated and G is connected with no cycles of length greater than 2k ` 1. Then,
the following hold.

(i) For any ϵ, δ ą 0 and any permutation-invariant continuous function Φ : Gn,m Ñ R,
there exists F P Fk such that

P r|F pG,Hq ´ ΦpG,Hq| ą δs ă ϵ.

(ii) For any ϵ, δ ą 0 and any permutation-equivariant continuous function Φv : Gn,m Ñ R,
there exists Fv P Fk,v such that

P r}FvpG,Hq ´ ΦvpG,Hq} ą δs ă ϵ.

We need the following theorem to prove Theorem 4.2.

Theorem 4.3. Consider k ě 2 and pG,Hq, pĜ, Ĥq P Gn,m that are both k-separable. Suppose
that G and Ĝ are both connected and have no cycles of length greater than 2k ` 1. If pG,Hq

k
„

pĜ, Ĥq, then pG,Hq and pĜ, Ĥq must be isomorphic.

Proof of Theorem 4.2. Based on Theorem 4.3, the proof of Theorem 4.2 follows the same lines
as the proof of Theorem 3.1. □

Next, we present the proof of Theorem 4.3. Let S be a subset of vertices of a graph. Define
NkpSq as the set of all vertices with distance at most k from any vertex in S and Nkpvq as
the set of all vertices with distance at most k from v. If S is nonempty, define dSpvq as the
minimum distance from v to any vertex in S.

To prove our Theorem 4.3, we need a lemma, which rules out the existence of undetected
edges when we do our induction.

Lemma 4.4. Let k ě 2 and let S be a connected subset of vertices of a connected graph G with
no cycles of length greater than 2k ` 1. Let u1 be a vertex not in S adjacent to a vertex in S.
Then, no vertex in T “ Nkpu1qzNkpSq can be connected to a vertex in NkpSqzNkpu1q.



SUBGRAPH GNNS FOR GRAPHS WITH BOUNDED CYCLES 9

Proof. Assume for the sake of contradiction that there exists a vertex uk`1 P T connected
to vk P NkpSqzNkpu1q. Notice that dSpvkq ď k because vk P NkpSq. If dSpvkq ă k, then
dSpuk`1q ď k, which contradicts uk`1 R NkpSq. Thus, dSpvkq “ k.

Therefore, there must exist vertices u2, u3, . . . , uk and v0, v1, . . . , vk´1 such that ui and ui`1

are connected for i P t1, 2, . . . , ku, vi and vi`1 are connected for i P t0, 1, . . . , k´1u, and v0 P S.
We claim that u1, u2, . . . , uk`1, v0, . . . , vk are pairwise distinct. For any two connected ver-

tices a and b, notice that |dSpaq ´ dSpbq| ď 1 because any path of length n from a to a vertex
of S can be extended to a path of length n ` 1 from b to a vertex of S and vice versa. Since
dSpu1q “ 1, dSpuk`1q “ k ` 1, dSpv0q “ 0, and dSpvkq “ k, we must have dSpuiq “ i and
dSpviq “ i for all valid i. Thus, the only possible pairs of vertices of u1, u2, . . . , uk`1, v0, . . . , vk
that can be equal are pui, viq for i P t1, 2, . . . , ku. Assume for the sake of contradiction that
ui “ vi for some i. Then, there exists a path u1 Ñ u2 Ñ ¨ ¨ ¨ Ñ ui Ñ vi`1 Ñ ¨ ¨ ¨ Ñ vk
of length k ´ 1 from u1 to vk, contradicting the fact that vk R Nkpu1q. Thus, the vertices
u1, u2, . . . , uk`1, v0, . . . , vk are pairwise distinct.

Since S is connected, there exists a path with edges in S from v0 to a vertex in S adjacent
to u1. We can combine this path with u1 Ñ u2 Ñ ¨ ¨ ¨ Ñ uk`1 Ñ vk Ñ vk´1 Ñ ¨ ¨ ¨ Ñ v0 to
create a cycle containing vertices u1, u2, . . . , uk`1, v0, . . . , vk. This cycle contains at least 2k`2
vertices, a contradiction. □

Proof of Theorem 4.3. Let A “ pA1, A2, . . . , Amq be an m-tuple of subgraphs of a graph A,
and let B “ pB1, B2, . . . , Bmq be an m-tuple of subgraphs of a graph B. Let YA be the union
of the vertices in A1, A2, . . . , Am, and let YB be the union of the vertices in B1, B2, . . . , Bm.
We say that A and B are isomorphic if there exists a bijective map of vertices of YA to vertices
of YB such that for any i P t1, 2, . . . ,mu,

‚ all vertices of Ai are mapped to vertices of Bi with the same label and vice versa
‚ all edges of Ai are mapped to edges of Bi and vice versa.

Assume for the sake of contradiction that G and Ĝ cannot be distinguished by the WL test,
which means the multisets of labels of vertices in G and Ĝ are the same and any v1 P G and
v2 P Ĝ with the same label must have isomorphic k-degree neighborhoods.

For any set S of vertices, let S be the set of all vertices with distance at most k from
some vertex of S. We will use the following definition of graph isomorphism: two graphs are
isomorphic if and only if there exists a bijective map between the vertices that preserves edges
and labels.

We prove the following statement by induction: for any k P t1, 2, . . . , |G|u, there exist con-
nected isomorphic subsets S1 Ď G and S2 Ď Ĝ of size k such that pS1, S1q and pS2, S2q are
isomorphic. For the base case, choose any two vertices in G and Ĝ with the same label. For
the inductive step, suppose that S1 and S2 are valid sets of size m ă |G|, and we want to find
two sets S1

1 and S1
2 with size m ` 1. Let v1 be a vertex not in S1 adjacent to a vertex in S1,

and let v2 be the image of v1 under an isomorphism f from pS1, S1q to pS2, S2q. Let N1 be the
set of vertices with distance at most k from v1, and let N2 be the set of vertices with distance
at most k from v2. Notice that f takes S1 X N1 to S2 X N2.

Notice that any vertex in N1zS1 has distance k from v1, so we know which vertices of N1 it
is connected to, since we can distinguish the vertices of N1zS1 by label. We also know by the
above lemma that no vertex in N1zS1 is connected to any vertex in S1zN1, so we know whether
any two vertices of S1 YN1 are connected. These edges must be the same edges as in S2 YN2,
so S1 Y N1 and S2 Y N2 are isomorphic and the inductive step is complete.

If the graphs are infinite, the proof shows that the same isomorphism that sends S1 to S2

for one value of m also sends S1 to S2 for all values of m. Thus, by continuing this process to
arbitrarily large m, we can construct an isomorphism between the two graphs. □
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Figure 3

At the end of this section, we present two non-isomorphic k-separable graphs that can be
distinguished by the k-hop subgraph WL test, but are, however, treated the same by the original
WL test. Let k “ 3, and consider the graphs in Figure 3 with initial node features as labeled.
Notice that neither graph has a cycle with length more than 2k ` 1 “ 7 vertices. Furthermore,
for any vertex v in either graph, any distinct vertices v1 and v2 with distance exactly 3 from
v are of different labels. Thus, our results imply that these two graphs can be distinguished
by the 3-hop subgraph WL test. However, we can see that both graphs immediately stabilize
when the regular WL test is applied, so the regular WL test cannot distinguish between the
graphs.

5. An extension to k-hop GNNs

This section extends our theory to k-hop GNNs without incorporating the subgraph struc-
ture, for which the vertex feature is updated via

h
plq
i “ f plq

´

h
pl´1q

i ,AGGREGATE
´!!

gplqph
pl´1q

j , dpvi, vjqq : vj P Nkpviq
))¯¯

.

We will use F 1
k and F 1

k,v to denote the collections of k-hop GNNs with graph-level and vertex-
level outputs, respectively. The associated k-hop WL test implements the color refinement as
follows:

Cplqpviq “ HASH
´

Cpl´1qpviq,
!!

pCpl´1qpvjq, dpvi, vjqq : vj P Nkpviq
))¯

.

The next theorem is our main result in this section.

Definition 5.1. A graph pG,Hq P Gn,m is said to be k-strongly separable if the following
condition holds when the k-hop WL test terminates without hash collisions: For any two
vertices v1, v2 with dpv1, v2q ď 2k, the final colors of v1 and v2 output by the k-hop WL test
are different.

Theorem 5.2. Let P be a Borel probability measure on Gn,m. Suppose that P-almost surely,
pG,Hq is k-strongly separated and G is connected with no cycles of length greater than 2k ´ 1.
Then, the following hold.
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(i) For any ϵ, δ ą 0 and any permutation-invariant continuous function Φ : Gn,m Ñ R,
there exists F P F 1

k such that

P r|F pG,Hq ´ ΦpG,Hq| ą δs ă ϵ.

(ii) For any ϵ, δ ą 0 and any permutation-equivariant continuous function Φv : Gn,m Ñ R,
there exists Fv P F 1

k,v such that

P r}FvpG,Hq ´ ΦvpG,Hq} ą δs ă ϵ.

Proof. Based on the following theorem, one can prove Theorem 5.2 following the same lines in
the proof of Theorem 3.1. □

Theorem 5.3. Consider k ě 2 and pG,Hq, pĜ, Ĥq P Gn,m that are both k-stronly separable.
Suppose that G and Ĝ are both connected and have no cycles of length greater than 2k ´ 1. If
pG,Hq and pĜ, Ĥq are indistinguishable by the k-hop WL test, then they must be isomorphic.

Proof. We claim that using the k-hop WL test and the condition that any two vertices such that
the distance between them is at most 2k are of different labels, we can obtain all the information
we would otherwise obtain using the pk ´ 1q-hop subgraph WL test and the same condition.
For any vertex v, notice that any pair of vertices in Nkpvq have a distance at most 2k from each
other, so they are of different colors. Suppose u1 and u2 are vertices in Nk´1pvq. If the label of
u1 implies it has a neighbor with the same label as u2, then this neighbor must be u2, as the
only neighbors of u1 are in Nkpvq and all vertices in Nkpvq are of different colors. Otherwise,
u1 and u2 cannot be connected by edges. Thus, for any u1 and u2 in Nk´1pvq, we can find
whether there is an edge between u1 and u2. Therefore, we can find the induced subgraph of
vertices in Nk´1pvq for any vertex v. Then the result is a direct corollary of Theorem 4.3. □

Lastly, we show that Theorem 5.2 does not hold true if the k-strong separability is removed.
Consider the two graphs in Figure 4, in which all vertices have the same initial feature. Each

v1

v2

v3 v4

v5

v6 v1

v2

v3 v4

v5

v6

Figure 4. The k-strong separability assumption is necessary in Theorem 5.2

vertex has three neighbors of distance 1, two neighbors of distance 2, and no neighbors of higher
distance, so all vertices would have the same feature in any k-hop GNN for any positive integer
k. Thus, these two graphs satisfy everything in Theorem 5.2 except the condition. However,
the leftmost graph has no triangles but the rightmost one does, so the two graphs are not
isomorphic.

6. Conclusion

This paper rigorously evaluates the efficiency of GNNs that leverage subgraph structures,
particularly on graphs with bounded cycles, which represent many real-world datasets. In par-
ticular, we prove that k-hop subgraph GNNs can reliably predict properties of graphs without



12 ZIANG CHEN AND QIAO ZHANG

cycles of length greater than 2k`1, which is unconditionally if k “ 1 and requires an additional
assumption for k ě 2. The theory is extended to k-hop GNNs without considering the subgraph
structure for graphs without cycles of length greater than 2k ´ 1.

Let us also comment on the limitations of the current work. Firstly, it is unclear whether the
k-separability in Theorem 4.2 can be removed or not. Secondly, though examples in Figure 4
illustrate that Theorem 5.2 cannot hold unconditionally, it remains unknown whether the k-
strong separability can be weakened or what the weakest assumption is. Those directions
deserve future research.
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