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ABSTRACT

Background: Thyroid cancer is one of the most common endocrine malignancies, with
Differentiated Thyroid Cancer (DTC) accounting for the majority of cases. Accurate prediction
of cancer recurrence is essential for improving personalized treatment and patient outcomes. This
study compares six machine learning algorithms—Artificial Neural Network (ANN), K-Nearest
Neighbors (KNN), Support Vector Machine (SVM), Logistic Regression (LR), Random Forest
(RF), and Extreme Gradient Boosting (XGBoost)—to identify the best model for predicting
DTC recurrence.

Methods: We conducted a comparative analysis using a dataset from the UCI Machine
Learning Repository, which includes demographic, clinical, and pathological data for thyroid
cancer patients. Each algorithm was evaluated on key performance metrics, including accuracy,
precision, recall, and specificity. Feature selection techniques, such as Principal Component
Analysis (PCA) and Feature Importance Analysis (FIA), were applied to identify the most
significant features influencing recurrence.

Results: Among the models tested, Random Forest achieved the highest overall accuracy and
specificity, while SVM with the polynomial kernel excelled in recall, ensuring all positive cases
were captured. Feature selection highlighted “Response”, “N”, “T”, “Risk”, and “Age” as the
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most impactful variables, contributing to model improvement and enhanced interpretability.

Conclusions: The Random Forest model demonstrates robust predictive power and is a strong
candidate for clinical applications in DTC recurrence prediction, with potential to support more
tailored treatment strategies. The study underscores the role of machine learning in advancing
cancer care through improved predictive accuracy and personalized risk assessment.

1. INTRODUCTION

Thyroid cancer is among the most prevalent endocrine malignancies worldwide, with differentiated
thyroid cancer (DTC) representing the majority of cases [15]. Effective management and prognosis of
thyroid cancer rely heavily on timely and accurate prediction of recurrence. Traditional approaches,
primarily based on clinical and pathological parameters, often lack the precision required for
personalized treatment planning [3]. With advancements in machine learning (ML) techniques,
there’s a burgeoning interest in leveraging these analytical tools to enhance the predictive accuracy
regarding cancer recurrence, thereby improving the efficacy of therapeutic interventions and follow-up
strategies [13].

This paper examines the effectiveness of six distinct machine learning algorithms—Artificial Neural
Network (ANN), Support Vector Machine (SVM), K-Nearest Neighbors (KNN), Logistic Regression
(LR), and the ensemble learning methods – Random Forest (RF) and Extreme Gradient Boosting
(XGBoost) — to predict cancer recurrence in patients with differentiated thyroid cancer. Utilizing
the differentiated thyroid cancer recurrence dataset from the UCI Machine Learning Repository
[4], this study aims to compare the predictive performance of these algorithms in a clinical setting.
The dataset comprises patient demographic information, clinical features, and pathological details,
providing a solid foundation for predictive modeling.

ANNs stand out for their capacity to model intricate nonlinear relationships, making them highly
effective in tackling complex medical prediction tasks [1]. In contrast, SVMs are particularly valued
for their robustness in high-dimensional spaces, where they adeptly handle both linear and nonlinear
data, proving highly suitable for classification challenges [5]. KNN provides a more intuitive approach
by classifying cases based on feature-space proximity, efficiently leveraging the similarity between
data points [17].

When it comes to simplicity and efficiency, LR remains a go-to choice, especially for determining
decision boundaries in linearly separable data, with the added advantage of directly outputting
class probabilities [12]. For high-dimensional, non-linear data, RF offers a powerful solution; by
employing bagging across multiple classification trees, it achieves both accuracy and resilience [7].
Finally, XGBoost builds on previous models through sequential boosting, resulting in a fast, robust
algorithm that’s adaptable to a wide range of predictive tasks [2].

This study identifies the most effective model among six machine learning algorithms for predicting
recurrence in DTC patients, contributing to improved outcomes in thyroid cancer management.

Through a rigorous evaluation of model performance based on accuracy, precision, recall, and
specificity, this paper aims to shed light on the strengths and limitations of each algorithm in the
context of thyroid cancer recurrence prediction. We further improve our six models by conducting
feature selection via principal component analysis (PCA) and feature importance analysis (FIA).
Furthermore, the study discusses the implications of these findings for clinical practice, emphasizing
the potential of machine learning to revolutionize cancer care by enabling more accurate and
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personalized risk assessments [11].

2. NOTATION

Suppose we have a quantitative response Y and p different predictors X1, X2, . . . , Xp. We assume
that there is some relationship between Y and X = (X1, X2, . . . , Xp), which can be written in the
general form

Y = f(X) + ϵ.

Here f is some fixed but unknown function of X1, X2, . . . , Xp and ϵ is a random error term, which
is independent of X and has mean zero.

Our models do not focus on the exact form of f ; instead, they estimate f̂ that in turn produces an
estimate Ŷ of Y . The formulation of interest becomes

Ŷ = f̂(X),

where f̂ is treated as a black box and the mean-zero error ϵ is dropped.

Suppose the outcome is the set with classes 1, 2, . . . , n. The Bayes Classifier assigns each observation
to the most likely class, given its predictor values. In other words, we assign class j ∈ {1, 2, . . . , n}
to the test observation x0 if

Pr(Y = j|X = x0) = max
i

Pr(Y = i|X = x0).

3. DATA ANALYSIS

Our study focuses on the “Differentiated Thyroid Cancer Recurrence” dataset [4] hosted by the
UCI Machine Learning Repository. The UCI Machine Learning Repository offers a wide array
of datasets used for empirical analysis in machine learning and data mining [10]. Established by
the University of California, Irvine, this repository facilitates academic and educational pursuits
by providing free access to datasets that cover various domains. As of March, 2024, it hosts and
maintains over 600 datasets.

The “Differentiated Thyroid Cancer Recurrence” dataset includes 383 observations and 17 variables
pertinent to thyroid cancer, including patient demographics, clinical features, and pathological
details, all aimed at elucidating patterns associated with cancer recurrence.

We will employ six distinct modeling methods to analyze our dataset: Artificial Neural Network
(ANN), K-Nearest Neighbors (KNN), Support Vector Machine (SVM), Logistic Regression (LR),
Random Forest (RF), and Extreme Gradient Boosting (XGBoost). Each of these methods brings
unique strengths to the analysis, with ANN providing deep learning capabilities, KNN offering
simplicity and ease of interpretation, SVM delivering powerful discriminative classification, LR
providing an intuitive and easily trainable implementation, and the ensemble methods RF and
XGBoost offering highly robust and accurate tree algorithms – thereby encompassing a comprehensive
approach to predicting cancer recurrence in the studied dataset.

To prepare our data for modeling, we fix a typographical error in a feature name, remove duplicate
observations, and transform categorical variables into factors.
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#' Load raw data.
cleaned data <-

readr::read csv(here::here('data/raw-data.csv')) |>
dplyr::distinct() |>
dplyr::rename(`Hx Radiotherapy` = 'Hx Radiothreapy') |>
dplyr::mutate(Gender = ifelse(Gender == 'F', 'Female', 'Male')) |>
dplyr::mutate(

Gender = factor(Gender, levels = c('Female', 'Male')),
Smoking = factor(Smoking, levels = c('Yes', 'No')),
`Hx Smoking` = factor(`Hx Smoking`, levels = c('Yes', 'No')),
`Hx Radiotherapy` = factor(`Hx Radiotherapy`, levels = c('Yes', 'No')),
`Thyroid Function` = factor(

`Thyroid Function`,
levels = c('Euthyroid', 'Clinical Hyperthyroidism',

'Subclinical Hyperthyroidism', 'Clinical Hypothyroidism',
'Subclinical Hypothyroidism')),

`Physical Examination` = factor(`Physical Examination`,
levels = c('Normal', 'Diffuse goiter',

'Single nodular goiter-right',
'Single nodular goiter-left',
'Multinodular goiter')),

Adenopathy = factor(Adenopathy,
levels = c('No', 'Right', 'Left', 'Bilateral',

'Posterior', 'Extensive')),
Pathology = factor(

Pathology,
levels = c('Papillary', 'Micropapillary', 'Follicular',

'Hurthel cell')),
Focality = factor(Focality, levels = c('Uni-Focal', 'Multi-Focal')),
`T` = factor(`T`, levels = c('T1a', 'T1b', 'T2', 'T3a', 'T3b', 'T4a',

'T4b')),
N = factor(N, levels = c('N0', 'N1b', 'N1a')),
M = factor(M, levels = c('M0', 'M1')),
Stage = factor(Stage, levels = c('I', 'II', 'III', 'IVA', 'IVB')),
Response = factor(

Response,
levels = c('Excellent', 'Biochemical Incomplete',

'Structural Incomplete', 'Indeterminate')),
Risk = factor(Risk, levels = c('Low', 'Intermediate', 'High')),
Recurred = factor(Recurred, levels = c('Yes', 'No'))

)

After removing duplicates, our data has 364 observations. Out of the 17 variables, 16 will be used
as features, leaving Recurred as the target variable to be predicted. Among the patients, there is a
significant disparity between males and females: 293(80.5%) are females and 71(19.5%) are males.
Males are about evenly distributed in terms of cancer recurrence with 59.2% total recurred cases.
On the other hand, females are not evenly distributed in terms of cancer recurrence with 22.5%
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total recurred cases (see Figure 1).

Figure 1: Gender distribution by
cancer recurrence.

Figure 2: Age distribution by
cancer recurrence.

The distribution of Age by cancer recurrence is shown in Figure 2. Note that, in general, older
patients are more likely to recur.

Besides Age, the rest of the features are categorical. One interesting categorical feature is Adenopathy.
It represents the presence of swollen lymph nodes during physical examination. The different
adenopathy types observed are no adenopathy, anterior right, anterior left, bilateral (i.e., both sides
of the body), posterior, and extensive (i.e., involves all the locations). Note the high correlation
between swollen lymph nodes and DTC recurrence rate (see Figure 3).

Figure 3: Adenopathy distribution by cancer recurrence.

A summary of all the features and their categories are shown in Table 1.
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Table 1: Feature names and their distinct values

Feature Values
Gender Female, Male
Smoking Yes, No
Hx Smoking Yes, No
Hx Radiotherapy Yes, No
Thyroid Function Euthyroid, Clinical Hyperthyroidism, Subclinical Hy-

perthyroidism, Clinical Hypothyroidism, Subclinical
Hypothyroidism

Physical Examination Normal, Diffuse goiter, Single nodular goiter-right, Sin-
gle nodular goiter-left, Multinodular goiter

Adenopathy No, Right, Left, Bilateral, Posterior, Extensive
Pathology Papillary, Micropapillary, Follicular, Hurthel cell
Focality Uni-Focal, Multi-Focal
Risk Low, Intermediate, High
T T1a, T1b, T2, T3a, T3b, T4a, T4b
N N0, N1b, N1a
M M0, M1
Stage I, II, III, IVA, IVB
Response Excellent, Biochemical Incomplete, Structural Incom-

plete, Indeterminate

4. MODEL TRAINING

Let us split the cleaned dataset into a training (75%) set and a test (25%) set using a random
generator. The training data will be further separated into 10 folds for cross-validation.
# Split data into training and test sets.
set.seed(314)
data split <- rsample::initial split(cleaned data)
train data <- rsample::training(data split)
test data <- rsample::testing(data split)

# Split the training data into 10-folds for cross-validation.
set.seed(3145)
data cross val <- rsample::vfold cv(train data)

# Set aside the outcome column of the sample test data.
test outcome <- factor(test data$Recurred)

The recipes package is useful to create a blueprint of the pre-processing steps that will be applied
to our data during model training. We use this package to specify that

• the minimum number of features with absolute correlations less than 0.6 should be removed,
• the numeric features should be normalized, and
• the categorical variables should be transformed into numerical variables.
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# Create recipe for the data prep.
data rec <-

recipes::recipe(Recurred ˜ ., data = train data) |>
recipes::step dummy(recipes::all nominal predictors()) |>
recipes::step normalize(recipes::all numeric predictors()) |>
recipes::step corr(threshold = 0.6)

4.1. K-Nearest Neighbors

4.1.1. Model Description

The K-Nearest Neighbors (KNN) algorithm is a nonparametric method used for classification. It
classifies a given sample based on the proximity to the training data. The algorithm determines the
class of a point X by identifying the most common class label among its k nearest neighbors, where
k is a predetermined hyperparameter. Unlike other algorithms, the KNN classifier does not involve
training a model; instead, it memorizes the training data, making it a “lazy” algorithm.

The primary hyperparameters of the KNN algorithm are k, the distance measure, and the weight func-
tion. Common distance measures include Euclidean distance, Manhattan distance, and Minkowski
distance.

Choosing the optimal value for k is crucial and involves balancing the bias-variance tradeoff. A
small k results in low bias and high variance. Low bias means the model captures the complexity of
the training data very well, but high variance means the model is highly sensitive to the specifics
of the training data, often leading to overfitting and higher test errors. As k increases, the model
averages over more neighbors, which smooths out the predictions and reduces the model’s sensitivity
to individual data points, thus reducing variance. Therefore, a large k results in high bias and low
variance. The model may become too simplistic, leading to higher bias, but it becomes less sensitive
to the training data, making it more robust to noise and better at generalizing to new data.

To avoid classification ties, it is advisable to select k appropriately. For binary classification, this
typically means choosing an odd k. Additionally, to enhance model flexibility, a weighted version of
KNN can be employed, where the influence of each of the k nearest neighbors is weighted inversely
by its distance to the test point. We will tune these three parameters below.

4.1.2. Model Workflow

Below we create a KNN model specification and workflow indicating the model hyperparameters: a
number of neighbors (i.e., k), a weight function, and a distance function. To optimize our model,
we will use the tune::tune() function to find optimal values of these parameters based on model
accuracy.
# Create model specification.
knn model spec <-

parsnip::nearest neighbor(
neighbors = tune::tune(),
dist power = tune::tune(),
weight func = tune::tune()

) |>
parsnip::set mode('classification') |>
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parsnip::set engine('kknn')

# Create model workflow.
knn workflow <- workflows::workflow() |>

workflows::add model(knn model spec) |>
workflows::add recipe(data rec)

4.1.3. Model Tuning and Fitting

Next, we run our prepared workflow. To speed up the computation, we utilize parallel computing to
distribute the tasks across multiple cores.

We fine-tune the model hyperparameters (namely k, the distance function, and the weight function)
using the 10-fold cross-validation setup. We then select the best model based on accuracy.
#' Check number of available cores.
cores no <- parallel::detectCores() - 1

#' Start timer.
tictoc::tic()

# Create and register clusters.
clusters <- parallel::makeCluster(cores no)
doParallel::registerDoParallel(clusters)

# Fine-tune the model params.
knn res <- tune::tune grid(

object = knn workflow,
resamples = data cross val,
control = tune::control resamples(save pred = TRUE)

)

# Select the best fit based on accuracy.
knn best fit <-

knn res |>
tune::select best(metric = 'accuracy')

# Finalize the workflow with the best parameters.
knn final workflow <-

knn workflow |>
tune::finalize workflow(knn best fit)

# Fit the final model using the best parameters.
knn final fit <-

knn final workflow |>
tune::last fit(data split)

# Stop clusters.
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parallel::stopCluster(clusters)

# Stop timer.
tictoc::toc()

10.017 sec elapsed

4.1.4. Model Performance

We then apply our selected model to the test set. The final metrics are given in Table 2.
# Use the best fit to make predictions on the test data.
knn pred <-

knn final fit |>
tune::collect predictions() |>
dplyr::mutate(truth = factor(.pred class))

Table 2: KNN performance metrics: Accuracy, Precision, Recall, and Specificity

Metric Value
Accuracy 90.1%
Precision 76.9%
Recall 87.0%
Specificity 91.2%

4.2. Support Vector Machine

4.2.1. Model Description

Support Vector Machines (SVMs) are powerful supervised learning algorithms used for both
classification and regression tasks. In the context of classification, SVMs aim to find the optimal
hyperplane that best separates data points of different classes in a high-dimensional space. This
optimal hyperplane is determined by maximizing the margin, or the distance, between the closest
points of the opposing classes. These closest points are referred to as support vectors.

SVMs are particularly effective in high-dimensional spaces and are useful when the number of
dimensions exceeds the number of samples. They are capable of handling non-linear classification
tasks by employing various kernel functions—such as linear, polynomial, and radial basis function—to
map input features into higher-dimensional spaces where they may become linearly separable.

The most commonly used kernel in SVMs is the Radial Basis Function (RBF) kernel, also known
as the Gaussian kernel. The RBF kernel maps input features into an infinite-dimensional space,
allowing SVMs to create complex decision boundaries. The RBF kernel function is defined as

K(Xi, Xj) = e−
||Xi−Xj ||2

2σ2 ,

where Xi and Xj are the input feature vectors and σ is a parameter that determines the spread of
the kernel and controls the influence of individual training samples.
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Another widely used kernel is the polynomial kernel, which maps input features into a higher-
dimensional space with polynomials of degree d. The polynomial kernel function is defined as

K(Xi, Xj) = (Xi · Xj)d,

where Xi and Xj are the input feature vectors and d is the degree of the polynomial.

4.2.2. Model Workflow

In this section, we will construct two SVM models to explore different kernel functions: one utilizing
a Radial Basis Function (RBF) kernel and the other employing a polynomial kernel.

We’ll begin by focusing on the RBF kernel SVM. The accompanying code outlines the model
specification and workflow. The critical hyperparameters for this model are rbf sigma (or σ)
and cost. The rbf sigma parameter governs the extent to which individual training examples
influence the decision boundary, while the cost parameter manages the trade-off between fitting the
training data well (low training error) and avoiding overfitting, which impacts the model’s ability to
generalize to new, unseen data.

To fine-tune our RBF kernel SVM, we’ll leverage the tune::tune() function. This will systematically
search for the optimal combination of rbf sigma and cost values that yields the highest accuracy
on our validation set.
# Create model specification.
svm rbf model spec <-

parsnip::svm rbf(
cost = tune::tune(),
rbf sigma = tune::tune()

) |>
parsnip::set engine('kernlab') |>
parsnip::set mode('classification')

# Create model workflow.
svm rbf workflow <-

workflows::workflow() |>
workflows::add model(svm rbf model spec) |>
workflows::add recipe(data rec)

Subsequently, we will shift our attention to the polynomial kernel SVM. Similar to the RBF kernel
model, we’ll define the model specification and establish a workflow tailored to this kernel function.
The polynomial kernel introduces its own set of hyperparameters, notably the degree which controls
the complexity of the decision boundary. We’ll again employ hyperparameter tuning to identify the
optimal configuration that maximizes the model’s performance.
# Create model specification.
svm poly model spec <-

parsnip::svm poly(
cost = tune::tune(),
degree = tune::tune()

) |>
parsnip::set engine('kernlab') |>
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parsnip::set mode('classification')

# Create model workflow.
svm poly workflow <-

workflows::workflow() |>
workflows::add model(svm poly model spec) |>
workflows::add recipe(data rec)

4.2.3. Model Tuning and Fitting

As we did for KNN, we use parallel computing to fine-tuning our models using the 10-fold cross-
validation we set up earlier. We end this section by selecting the best model based on accuracy.
#' Check number of available cores.
cores no <- parallel::detectCores() - 1

#' Start timer.
tictoc::tic()

# Create and register clusters.
clusters <- parallel::makeCluster(cores no)
doParallel::registerDoParallel(clusters)

# Fine-tune each model's parameters.
svm rbf res <-

tune::tune grid(
object = svm rbf workflow,
resamples = data cross val,
control = tune::control resamples(save pred = TRUE)

)
svm poly res <-

tune::tune grid(
object = svm poly workflow,
resamples = data cross val,
control = tune::control resamples(save pred = TRUE)

)

# Select the best fit based on accuracy for each model.
svm rbf best fit <-

svm rbf res |>
tune::select best(metric = 'accuracy')

svm poly best fit <-
svm poly res |>
tune::select best(metric = 'accuracy')

# Finalize each model's workflow by selecting the corresponding best fit
svm rbf final workflow <-

svm rbf workflow |>

12



tune::finalize workflow(svm rbf best fit)
svm poly final workflow <-

svm poly workflow |>
tune::finalize workflow(svm poly best fit)

# Find the last fit for each model.
svm rbf final fit <-

svm rbf final workflow |>
tune::last fit(data split)

svm poly final fit <-
svm poly final workflow |>
tune::last fit(data split)

# Stop clusters.
parallel::stopCluster(clusters)

# Stop timer.
tictoc::toc()

12.846 sec elapsed

4.2.4. Model Performance

We then apply our selected model to the test set. The final metrics are given in Table 3.
# Use the best fit to make predictions on the test data.
svm rbf pred <-

svm rbf final fit |>
tune::collect predictions() |>
dplyr::mutate(truth = factor(.pred class))

Table 3: RBF SVM performance metrics: Accuracy, Precision, Recall, and Specificity

Metric Value
Accuracy 78.0%
Precision 23.1%
Recall 100.0%
Specificity 76.5%

We also apply our selected SVM with polynomial kernel to the test set. The final metrics are given
in Table 4.
# Use the best fit to make predictions on the test data.
svm poly pred <-

svm poly final fit |>
tune::collect predictions() |>
dplyr::mutate(truth = factor(.pred class))

The SVM based on the RBF kernel has a perfect recall of 100%, so it excels at capturing all actual
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Table 4: Polynomial SVM performance metrics: Accuracy, Precision, Recall, and Specificity

Metric Value
Accuracy 94.5%
Precision 84.6%
Recall 95.7%
Specificity 94.1%

positive cases, even though its precision metric is relatively low. On the other hand, when it is more
important to have high percentages for all four metrics, the SVM based on the polynomial kernel
would be better.

4.3. Artificial Neural Network

4.3.1. Model Description

Artificial Neural Networks (ANNs) are a class of machine learning algorithms inspired by the
structure and function of the human brain. They consist of interconnected layers of nodes, or
neurons, which process input data to perform tasks such as classification, regression, and pattern
recognition. ANNs are particularly effective for complex tasks like image and speech recognition,
natural language processing, financial forecasting, and medical diagnosis.

An ANN is composed of multiple layers, including an input layer, one or more hidden layers, and an
output layer. The input layer receives the raw data, the hidden layers process the data through
various transformations, and the output layer produces the final prediction or classification. Each
connection between neurons has an associated weight, and each neuron has a bias term. These
parameters are adjusted during the training process to minimize the error in predictions.

The training process of an ANN involves forward propagation, where input data is passed through
the network layer by layer. Each neuron applies an activation function to compute its output,
introducing non-linearity to help the network learn complex patterns. The loss, or error, between
the network’s output and the true target values is calculated using a loss function. Through
backpropagation, the loss is propagated backward through the network, and the weights and biases
are adjusted using an optimization algorithm like gradient descent.

ANNs offer significant advantages, including flexibility in modeling complex relationships and the
ability to scale for large datasets and intricate tasks. Their ability to learn and generalize from data
makes them powerful tools in various applications, driving advancements in fields ranging from
technology and finance to healthcare and beyond.

4.3.2. Model Workflow

Let us start by specifying the ANN model and creating the model workflow. Specifically, we will
define a multilayer perceptron model (i.e., a single-layer, feed-forward neural network). The key
parameters we will set include the number of epochs (or training iterations), the number of hidden
units, the penalty (or weight decay), and the learning rate.
# Create model specification.
ann model spec <-

parsnip::mlp(
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epochs = tune::tune(),
hidden units = tune::tune(),
penalty = tune::tune(),
learn rate = 0.1

) |>
parsnip::set engine('nnet') |>
parsnip::set mode('classification')

# Create model workflow.
ann workflow <- workflows::workflow() |>

workflows::add model(ann model spec) |>
workflows::add recipe(data rec)

4.3.3. Model Tuning and Fitting

We will proceed to tune all the parameters except for the learning rate. This is because the nnet
package does not support tuning the learning rate.
#' Check number of available cores.
cores no <- parallel::detectCores() - 1

#' Start timer.
tictoc::tic()

# Create and register clusters.
clusters <- parallel::makeCluster(cores no)
doParallel::registerDoParallel(clusters)

# Fine-tune the model params.
ann res <- tune::tune grid(

object = ann workflow,
resamples = data cross val,
control = tune::control resamples(save pred = TRUE)

)

# Select the best fit based on accuracy.
ann best fit <-

ann res |>
tune::select best(metric = 'accuracy')

# Finalize the workflow with the best parameters.
ann final workflow <-

ann workflow |>
tune::finalize workflow(ann best fit)

# Fit the final model using the best parameters.
ann final fit <-

ann final workflow |>

15



tune::last fit(data split)

# Stop clusters.
parallel::stopCluster(clusters)

# Stop timer.
tictoc::toc()

11.658 sec elapsed

4.3.4. Model Performance

We then apply our selected model to the test set. The final metrics are given in Table 5.
# Use the best fit to make predictions on the test data.
ann pred <-

ann final fit |>
tune::collect predictions() |>
dplyr::mutate(truth = factor(.pred class))

Table 5: ANN performance metrics: Accuracy, Precision, Recall, and Specificity

Metric Value
Accuracy 92.3%
Precision 84.6%
Recall 88.0%
Specificity 93.9%

4.4. Logistic Regression

4.4.1. Model Description

Logistic Regression (LR) is a supervised learning algorithm widely used for classification problems.
It is particularly effective for binary classification tasks, where the outcome variable can take one of
two possible values. The model predicts the probability that a given input belongs to a specific
class by applying the logistic (sigmoid) function, which transforms a linear combination of input
features into a probability value between 0 and 1.

For binary classification, the logistic function is defined as σ(Ŷi) = 1/(1 + e−Ŷi) where Ŷ is a
linear combination of the input features. The probability of the outcome i being the positive class
(represented as 1) is given by:

σ(Ŷi) = σ(β0 + β1X1,i + β2X2,i + · · · + βpXp,i),

where β0 is the intercept, and β1, β2, . . . , βp are the coefficients corresponding to the input features
X1, X2, . . . , Xp. These coefficients are estimated using the method of maximum likelihood estimation
(MLE), which maximizes the likelihood of the observed data.
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LR can also be extended to handle multi-class classification problems through multinomial logistic
regression. In this case, the model uses the softmax function to generalize to multiple classes. The
softmax function is an extension of the logistic function for multiple classes and is defined as,

Pr(Y = j|X = x0) = eβjx0∑n
i=1 eβi·x0

where x0 is an observation, n is the number of classes, and βj is the coefficient vector for class j.

The primary advantage of LR is its interpretability. Each coefficient indicates the change in the
log-odds of the outcome for a one-unit change in the corresponding predictor variable. This provides
clear insights into the influence of each predictor on the probability of the outcome. Despite its
simplicity, LR is a powerful tool for both binary and multi-class classification, making it suitable
for a wide range of applications where the relationship between the predictors and the log-odds is
approximately linear.

4.4.2. Model Workflow

In this section, we will train our LR model and find the optimal values for the model parameters.
The key parameter we will optimize is the penalty parameter, which refers to the regularization
term added to the loss function to prevent overfitting. We will find the optimal penalty value to
improve model performance. Additionally, we will set mixture = 1 to apply Lasso regularization,
which helps in potentially removing irrelevant predictors and choosing a simpler model.
# Create model specification.
lr model spec <-

parsnip::logistic reg(
penalty = tune::tune(),
mixture = 1) |>

parsnip::set mode('classification') |>
parsnip::set engine('glmnet')

# Create model workflow.
lr workflow <- workflows::workflow() |>

workflows::add model(lr model spec) |>
workflows::add recipe(data rec)

4.4.3. Model Tuning and Fitting

#' Check number of available cores.
cores no <- parallel::detectCores() - 1

#' Start timer.
tictoc::tic()

# Create and register clusters.
clusters <- parallel::makeCluster(cores no)
doParallel::registerDoParallel(clusters)
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# Fine-tune the model params.
lr res <- tune::tune grid(

object = lr workflow,
resamples = data cross val,
control = tune::control resamples(save pred = TRUE)

)

# Select the best fit based on accuracy.
lr best fit <-

lr res |>
tune::select best(metric = 'accuracy')

# Finalize the workflow with the best parameters.
lr final workflow <-

lr workflow |>
tune::finalize workflow(lr best fit)

# Fit the final model using the best parameters.
lr final fit <-

lr final workflow |>
tune::last fit(data split)

# Stop clusters.
parallel::stopCluster(clusters)

# Stop timer.
tictoc::toc()

9.044 sec elapsed

4.4.4. Model Performance

We then apply our selected model to the test set. The final metrics are given in Table 6.
# Use the best fit to make predictions on the test data.
lr pred <-

lr final fit |>
tune::collect predictions() |>
dplyr::mutate(truth = factor(.pred class))

Table 6: LR performance metrics: Accuracy, Precision, Recall, and Specificity

Metric Value
Accuracy 93.4
Precision 84.6
Recall 91.7
Specificity 94.0
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4.5. Extreme Gradient Boosting

4.5.1. Model Description

Extreme Gradient Boosting (XGBoost) is an advanced implementation of gradient boosting designed
to enhance performance and speed. It builds upon the principles of gradient boosting to provide
a highly efficient, flexible, and portable library that supports both regression and classification
tasks. XGBoost has become one of the most popular machine learning algorithms due to its high
performance and scalability.

XGBoost operates by sequentially adding decision trees to an ensemble. Each tree is built to correct
the errors of the previous trees in the ensemble. The process begins with an initial model, typically
a simple model such as the mean of the target variable. At each subsequent step, a new decision
tree is added to the model to predict the residuals (errors) of the previous trees. Each tree is built
by optimizing an objective function that combines a loss function and a regularization term. The
regularization term helps prevent overfitting by penalizing the complexity of the model. After each
tree is added, the residuals are updated. The new tree aims to minimize these residuals, improving
the overall model’s performance.

The node splitting in each tree is guided by an objective function, which typically involves minimizing
a loss function (such as mean squared error for regression or log loss for classification) while including
a regularization term. The final prediction is the sum of the predictions from all the trees in the
ensemble, effectively reducing variance. This process is depicted in the attached flowchart, showing
how each tree contributes to the final model.

XGBoost has several key advantages. It incorporates both L1 (Lasso) and L2 (Ridge) regularization
to prevent overfitting and manage model complexity. The algorithm supports parallel processing,
significantly speeding up the training process. XGBoost can handle missing values internally, making
it robust to incomplete datasets. Additionally, users can define custom objective functions and
evaluation metrics, allowing for flexibility in optimization.

4.5.2. Model Workflow

To effectively train our XGBoost model and find the optimal hyperparameters, we will set up a
workflow that includes model specification and data preprocessing. The hyperparameters to be
tuned include:

• tree depth: Controls the maximum depth of each tree, impacting the model’s complexity.
• min n: Specifies the minimum number of observations that must exist in a node for a split to

be attempted, preventing overly specific branches and encouraging generalization.
• loss reduction: Sets the minimum reduction in the loss function required to make a fur-

ther partition on a leaf node, helping to control overfitting by making the algorithm more
conservative.

• sample size: Determines the fraction of the training data used for fitting each individual
tree, introducing randomness and preventing overfitting.

• mtry: Sets the number of features considered when looking for the best split, adding variability
to enhance generalization.

• learn rate: Also known as the shrinkage parameter, controls the rate at which the model
learns. Smaller learning rates can lead to better performance by allowing the model to learn
more slowly and avoid overfitting.
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# Create model specification.
xgboost model spec <-

boost tree(
trees = 1000,
tree depth = tune(),
min n = tune(),
loss reduction = tune(),
sample size = tune(),
mtry = tune(),
learn rate = tune()

) |>
set engine('xgboost') |>
set mode('classification')

# Create model workflow.
xgboost workflow <- workflows::workflow() |>

workflows::add model(xgboost model spec) |>
workflows::add recipe(data rec)

4.5.3. Model Tuning and Fitting

#' Check number of available cores.
cores no <- parallel::detectCores() - 1

#' Start timer.
tictoc::tic()

# Create and register clusters.
clusters <- parallel::makeCluster(cores no)
doParallel::registerDoParallel(clusters)

# Fine-tune the model params.
xgboost res <- tune::tune grid(

object = xgboost workflow,
resamples = data cross val,
control = tune::control resamples(save pred = TRUE)

)

# Select the best fit based on accuracy.
xgboost best fit <-

xgboost res |>
tune::select best(metric = 'accuracy')

# Finalize the workflow with the best parameters.
xgboost final workflow <-

xgboost workflow |>
tune::finalize workflow(xgboost best fit)
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# Fit the final model using the best parameters.
xgboost final fit <-

xgboost final workflow |>
tune::last fit(data split)

# Stop clusters.
parallel::stopCluster(clusters)

# Stop timer.
tictoc::toc()

13.955 sec elapsed

4.5.4. Model Performance

We then apply our selected model to the test set. The final metrics are given in Table 7.
# Use the best fit to make predictions on the test data.
xgboost pred <-

xgboost final fit |>
tune::collect predictions() |>
dplyr::mutate(truth = factor(.pred class))

Table 7: XGBoost performance metrics: Accuracy, Precision, Recall, and Specificity

Metric Value
Accuracy 91.2%
Precision 73.1%
Recall 95.0%
Specificity 90.1%

4.6. Random Forest

4.6.1. Model Description

Random forest is an ensemble learning method that constructs multiple decision trees during training
and outputs the mode of the classes (classification) or mean prediction (regression) of the individual
trees. This method is particularly effective for classification problems, such as the one we are
dealing with in the Thyroid dataset where the target variable is categorical. Each decision tree in
a random forest splits the predictor space into distinct regions using recursive binary splits. For
instance, a tree might first split based on whether Age < 35 and then further split based on whether
Gender = Female to predict cancer recurrence. These splits are chosen to minimize a specific error
criterion, such as the Gini index or entropy [8].

A significant limitation of individual decision trees is their high variance; small changes in the
training data can lead to very different tree structures. Random forest addresses this by using
bagging, where multiple trees are trained on different bootstrap samples of the data. The final
prediction is made by aggregating the predictions of all the trees, typically through majority voting
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in classification problems. This process reduces variance because the average of many uncorrelated
trees’ predictions is less variable than the prediction of a single tree.

Random forest further reduces correlation between trees by selecting a random subset of predictors
to consider for each split, rather than considering all predictors. Typically, for classification problems,
this subset size is approximately √

p, where p is the total number of predictors. This random selection
of features ensures that the trees are less similar to each other, which reduces the correlation between
their predictions and leads to a greater reduction in variance. By combining bagging with feature
randomness, random forests create robust models that are less prone to overfitting and provide
better generalization to new data.

4.6.2. Model Workflow

In this section, we will set up a workflow to train our Random Forest model. The goal is to optimize
the following hyperparameters to achieve the best performance on our classification task:

• trees: This parameter specifies the total number of trees to be grown in the forest. Tuning
the number of trees can help ensure that the model is robust and neither overfitting nor
underfitting the data.

• min n: This parameter sets the minimum number of observations required in a terminal node.
Tuning min n helps control the size of the trees, affecting the model’s ability to generalize to
new data.

# Create model specification.
rf model spec <-

parsnip::rand forest(
trees = 500,
min n = tune::tune()

) |>
parsnip::set engine('ranger') |>
parsnip::set mode('classification')

# Create model workflow.
rf workflow <- workflows::workflow() |>

workflows::add model(rf model spec) |>
workflows::add recipe(data rec)

4.6.3. Model Tuning and Fitting

#' Check number of available cores.
cores no <- parallel::detectCores() - 1

#' Start timer.
tictoc::tic()

# Create and register clusters.
clusters <- parallel::makeCluster(cores no)
doParallel::registerDoParallel(clusters)
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# Fine-tune the model params.
rf res <- tune::tune grid(

object = rf workflow,
resamples = data cross val,
control = tune::control resamples(save pred = TRUE)

)

# Select the best fit based on accuracy.
rf best fit <-

rf res |>
tune::select best(metric = 'accuracy')

# Finalize the workflow with the best parameters.
rf final workflow <-

rf workflow |>
tune::finalize workflow(rf best fit)

# Fit the final model using the best parameters.
rf final fit <-

rf final workflow |>
tune::last fit(data split)

# Stop clusters.
parallel::stopCluster(clusters)

# Stop timer.
tictoc::toc()

10.637 sec elapsed

4.6.4. Model Performance

We then apply our selected model to the test set. The final metrics are given in Table 8.
# Use the best fit to make predictions on the test data.
rf pred <-

rf final fit |>
tune::collect predictions() |>
dplyr::mutate(truth = factor(.pred class))

Table 8: RF performance metrics: Accuracy, Precision, Recall, and Specificity

Metric Value
Accuracy 94.5%
Precision 84.6%
Recall 95.7%
Specificity 94.1%
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5. FEATURE SELECTION

We apply two feature selection techniques to identify the critical predictors of DTC. In this way, we
can improve our six machine learning models by running them on the selected features only and
also reduce overfitting. This is especially important for models such as KNN that are sensitive to
high-dimensional data. Further, since the models rely on fewer features, they can be more easily
applied on real-world data in which some patients can have incomplete clinical or pathological
information.

5.1. Principal Components Analysis

Our first main feature selection technique is Principal Components Analysis (PCA), which is an
approach to encode most of the variability in a dataset with a smaller number of dimensions. PCA
was first introduced by K. Pearson in 1901 [14] and finds many applications in machine learning
and statistics [9]. Suppose that there are originally p features. The first principal component is
the linear combination of the original features that has the largest variance. The second principal
component is the linear combination that has the largest variance among all linear combinations
that are not correlated with the first principal component; thus, it encodes most of the variance that
is not explained by the first principal component. The third through the pth principal components
are calculated similarly.

Since PCA can only be applied to numerical variables, we first use one-hot encoding to transform
all categorical variables into numerical variables.
# Create PCA recipe.
pca recipe <- cleaned data |>

recipes::recipe(Recurred ˜ .) |>
recipes::step dummy(recipes::all nominal predictors()) |>
recipes::step normalize(recipes::all numeric predictors()) |>
recipes::step corr(threshold = 0.6) |>
recipes::step pca(recipes::all numeric predictors())

# Estimate parameters from the `recipes` package.
pca prep <- recipes::prep(pca recipe)

# Extract the PCs.
extract pcs <- parsnip::tidy(pca prep, 4)

Figure 4 displays the top five features contributing to each of the first four principal components.
The PCA results indicate that features such as Risk (Low, Intermediate), Response (Structural
Incomplete), Adenopathy (No), History of Radiotherapy (Yes), Stage (IVB), Pathology (Papillary),
and T Stage (T2, T3a) are significant for the first three principal components.

In the next step, we visualize the first two dimensions of the PCA analysis. Figure 5 shows partial
separation between recurrence statuses along the first two principal components, with some clustering
patterns observed. However, there is some overlap between ‘Yes’ and ‘No’ groups, suggesting that
these two components alone may not fully differentiate recurrence status.
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Figure 4: Top features for the first three principal components.

Figure 5: First two principal components.
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5.2. Factor Analysis of Mixed Data

Another feature selection technique is Factor Analysis of Mixed Data (FAMD), a hybrid of Principal
Component Analysis (PCA) and Multiple Correspondence Analysis (MCA) [6]. While PCA is
directly applicable only to datasets with numerical features, and MCA is suitable for datasets with
categorical features, FAMD can be applied to datasets containing both numerical and categorical
features.

Suppose that the dataset includes K numerical features (k1, . . . , kK) and Q categorical features
(q1, . . . , qQ). For any linear combination z of features, we use r2(z, ki) to denote the squared
correlation coefficient between z and ki, and η2(z, qi) to denote the squared correlation ratio between
z and qi.

PCA on the K quantitative features seeks for the linear combination of features that yields the
maximal ∑K

i=1 r2(z, ki); MCA on the Q qualitative features seeks for the linear combination of
features that yields the maximal ∑Q

i=1 η2(z, qi); thus, FAMD on all K + Q features seeks for the
linear combination of features that yields the maximal ∑K

i=1 r2(z, ki) + ∑Q
i=1 η2(z, qi).

We start by separating the data into categorical and numerical variables, then apply FAMD using
the PCAmix function from the PCAmixdata R package.
split data <-

cleaned data |>
dplyr::select(-Recurred) |> # Remove targeting feature.
PCAmixdata::splitmix()

PCA mix result <- PCAmixdata::PCAmix(
X.quanti = split data$X.quanti, # Categorical variables.
X.quali = split data$X.quali, # Numerical variables.
rename.level = TRUE,
graph = FALSE

)

The PCAmix output shows that the first three FAMD dimensions contribute 26.17% of the total
variance (see Table 9).

Table 9: Proportion of variance explained by the first three dimensions of FAMD

Dimension Proportion Cumulative
Dimension 1 13.85% 13.85%
Dimension 2 7.41% 21.26%
Dimension 3 4.91% 26.17%

Figure 6 shows the distribution of data points along the first two principal components (i.e.,
Dimension 1 and Dimension 2), color-coded by the recurrence status. It indicates that the first two
dimensions capture some of the variance associated with recurrence status, though there is also
a fair overlap. Similar results can be observed in Figure 7, which shows the distribution of data
points along the first three principal components (i.e., Dimension 1, Dimension 2, and Dimension
3), color-coded by the recurrence status. In addition, Figure 8 shows the top contributors to each of
the first four dimensions of FAMD.
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Figure 6: First two dimensions of the PCAmix analysis.

Figure 7: First three dimensions of the PCAmix results by recurrence status.
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Figure 8: Top contributors to the first four dimensions of FAMD.

These plots suggest that, overall, Risk, T, Stage, and Adenopathy are significant features.

5.3. Feature Importance Analysis

The third feature selection technique we will apply is Feature Importance Analysis (FIA). We use
FIA because it helps us understand why a model makes its predictions. Unlike PCA and FAMD,
which reduce dimensionality by transforming features into uncorrelated components that capture
the most variance in the data, FIA assesses the contribution of individual features to a model’s
predictions. Moreover, FIA is useful for model improvement: by identifying the most impactful
features, it allows us to focus our efforts on the data that truly matters. Additionally, FIA aids
in detecting overfitting: features with surprisingly high importance might indicate that the model
is latching onto irrelevant details in the training data that do not generalize well to unseen data.
By identifying such features, we can potentially adjust the model to reduce overfitting [16]. We
use FIA to better understand the random forest model, one of the better-performing models on
the DTC dataset. Specifically, we employ two types of FIA methods: Impurity Importance and
Permutation Importance.

Impurity Importance

Impurity importance, also known as Mean Decrease in Impurity (MDI) or Gini importance, measures
the importance of a feature based on the total reduction of the criterion (impurity) brought by that
feature. It is not very computationally expensive and gives an importance score for each feature as
part of the tree-building process. However, it may be biased towards features with more categories
or continuous features. The idea is the following: let our random forest consist of T decision trees.
For each tree t, we consider every node j where a split is made on feature f . We need the impurity
function I, which measures the quality of a split at a node. It quantifies how mixed the classes
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are (for classification tasks) or the variance within the node (for regression tasks). Lower impurity
indicates purer nodes. We introduce the following variables:

• I(p(j)) is the impurity of the parent node
• I(l(j)) and I(r(j)) are the impurities of the left and right child nodes, respectively.
• wl(j) and wr(j) are the proportions of samples in the left and right child nodes, respectively.

We now calculate the decrease in impurity for the node j as

∆Ij = I(p(j)) − [wl(j)I(l(j)) + wr(j)I(r(j))].

For each feature f , we sum the impurity decreases for all nodes where f is used for splitting. Call
the set of such nodes inside a tree t as n(t, f). We then normalize the sum. The result is the
following:

MDI(f) = 1
T

T∑
t=1

∑
j∈n(t,f)

∆Ij .

This gives us our impurity importance.

Permutation Importance

Permutation importance, also known as Mean Decrease in Accuracy (MDA), measures the importance
of a feature by evaluating the decrease in the model’s performance when the feature’s values are
randomly shuffled. It provides a more unbiased estimate of feature importance by directly assessing
the impact of feature shuffling on model performance. It can be more computationally intensive
since it requires model evaluation on permuted datasets. The idea is as follows: We let M be the
baseline performance metric, i.e. the model’s performance on a validation set. Then, for each feature
f , we create a permuted version of the validation set by randomly shuffling the values of f while
fixing the other feature values. We then evaluate the model’s performance on this permuted set to
get a new metric Mf . The permutation importance of a feature f is then simply the decrease in
performance metric:

MDA(f) = M − Mf .

We will use accuracy for our performance metric. In this case, a higher MDA value indicates that
the feature is more important (because permuting it significantly reduces the model’s accuracy).

Analysis

Let us first compute the impurity importance. In order to do this, we need to redefine our model
workflow and tune our new model. The outptut of the analysis can be see in Figure 9.
# Create model specification.
rf model spec <-

parsnip::rand forest(
trees = 500,
min n = tune::tune()

) |>
parsnip::set engine('ranger', importance = 'impurity') |>
parsnip::set mode('classification')
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# Create model workflow.
rf workflow <- workflows::workflow() |>

workflows::add model(rf model spec) |>
workflows::add recipe(data rec)

#' Check number of available cores.
cores no <- parallel::detectCores() - 1

#' Start timer.
tictoc::tic()

# Create and register clusters.
clusters <- parallel::makeCluster(cores no)
doParallel::registerDoParallel(clusters)

# Fine-tune the model params.
rf res <- tune::tune grid(

object = rf workflow,
resamples = data cross val,
control = tune::control resamples(save pred = TRUE)

)

# Select the best fit based on accuracy.
rf best fit <-

rf res |>
tune::select best(metric = 'accuracy')

# Finalize the workflow with the best parameters.
rf final workflow <-

rf workflow |>
tune::finalize workflow(rf best fit)

# Fit the final model using the best parameters.
rf final fit <-

rf final workflow |>
tune::last fit(data split)

# Extract workflow from fitted model
ip plot <- extract workflow(rf final fit) |>

extract fit parsnip(final forest) |>
vip::vip(num features = 16)

# Stop clusters.
parallel::stopCluster(clusters)

# Stop timer.
tictoc::toc()
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10.874 sec elapsed

Figure 9: Feature analysis by impurity importance.

Now let us do the same for permutation importance. The output of the analysis can be seen in
Figure 10.
# Create model specification.
rf model spec <-

parsnip::rand forest(
trees = 500,
min n = tune::tune()

) |>
parsnip::set engine('ranger', importance = 'permutation') |>
parsnip::set mode('classification')

# Create model workflow.
rf workflow <- workflows::workflow() |>

workflows::add model(rf model spec) |>
workflows::add recipe(data rec)

#' Check number of available cores.
cores no <- parallel::detectCores() - 1

#' Start timer.
tictoc::tic()

# Create and register clusters.
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clusters <- parallel::makeCluster(cores no)
doParallel::registerDoParallel(clusters)

# Fine-tune the model params.
rf res <- tune::tune grid(

object = rf workflow,
resamples = data cross val,
control = tune::control resamples(save pred = TRUE)

)

# Select the best fit based on accuracy.
rf best fit <-

rf res |>
tune::select best(metric = 'accuracy')

# Finalize the workflow with the best parameters.
rf final workflow <-

rf workflow |>
tune::finalize workflow(rf best fit)

# Fit the final model using the best parameters.
rf final fit <-

rf final workflow |>
tune::last fit(data split)

# Extract workflow from fitted model
pi plot <- extract workflow(rf final fit) |>

extract fit parsnip(final forest) |>
vip::vip(num features = 16)

# Stop clusters.
parallel::stopCluster(clusters)

# Stop timer.
tictoc::toc()

11.814 sec elapsed

Results

We notice a very interesting phenomenon, confirmed by both of the plots: the Response -
Structural Incomplete feature plays a much bigger part in the role of the prediction of our
random forest model than any of the other features. Medically, this means that our model is eager
to predict DTC when there is evidence of cancer cells upon imaging, but no detectable thyroglobulin
(a protein produced by the thyroid gland). Intuitively, this should indeed correspond to high risk of
DTC. However, the nontrivial result that these plots uncover is that this feature is significantly
more important than other important features identified in our EDA (e.g. the risk assessment). The
next most important features seem to be the N - N1b feature and the risk assessment.
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Figure 10: Feature analysis by permutation importance.

5.4. Combined Results of PCA, FAMD, and FIA

Comparing the results of PCA/FAMD and FIA, the following features (out of the sixteen total
features) are the most important: Response, N, T, Risk, and Age. In the next section, we will
retrain our six machine learning models on this reduced feature space and compare the resulting
performance with the performance on the entire feature space.

6. MODEL COMPARISON

To assess model performance, we will compare the accuracy, precision, recall, and specificity metrics
of our models. These metrics are defined as follows.

• Accuracy: proportion of correct predictions for the test data or T N+T P
T N+T P +F N+F P .

• Precision: proportion of correctly classified positive observations among all observations that
are classified as positive by the model or T P

T P +F P .

• Recall: proportion of correctly classified positive observations among all actual positive
observations or T P

T P +F N .

• Specificity: proportion of correctly classified negative observations among all actual negative
observations or T N

T N+F P .

We first evaluate the performance of our six models that use the entire feature space via the metrics
shown in Table 10.

The Random Forest model emerged as the top performer on the test set in terms of overall accuracy
and specificity, achieving a 94% accuracy rate and a 94% specificity rate, indicating its robustness

33



Table 10: Performance Comparison: Accuracy, Precision, Recall, and Specificity

Metric Model Value
Accuracy SVM-poly, Random Forest 94%
Precision SVM-poly, ANN, Logistic Regression, Random

Forest
85%

Recall SVM-rbf 100%
Specificity SVM-poly, Random Forest 94%

in correctly identifying negative cases. The precision metric, though the lowest among the metrics,
was 85% across the Artificial Neural Network, Logistic Regression, and Random Forest models,
reflecting their ability to correctly classify positive cases. The Support Vector Machine model stood
out in terms of recall, achieving a perfect score of 100%, suggesting its effectiveness in capturing all
positive cases. These results highlight the Random Forest model as the most balanced and reliable
for this classification task, combining high accuracy and specificity with competitive precision, while
the SVM model excels in recall, making it particularly suitable for ensuring that all positive cases
are identified.

We next compare the performance of our six models when trained on the subset of features identified
by PCA, FAMD, and FIA: Response, N, T, Risk, and Age [see Table 11]. The training and testing
procedures remain the same, but the models are now trained on the reduced feature space.

Table 11: Performance Comparison (with PCA/FAMD/FIA): Accuracy, Precision, Recall, and
Specificity

Metric Model Value
Accuracy ANN, Logistic Regression 95%
Precision SVM RBF, SVM Poly, ANN, Logistic Regression 85%
Recall ANN, Logistic Regression 96%
Specificity ANN, Logistic Regression 94%

6.1. Model Performances

6.1.1. Correlation Matrix

We first examine how the predictions of our models vary across the test observations. We visualize
the correlation between the prediction vectors of each pair of models using a heatmap [11].

We observe that the correlation between the SVM predictions and the rest of the models is notably
lower. This indicates that SVMs approach to predicting DTC differs from the other models.

Notice that this is closely related to SVM having a recall of 100%, but an extremely low precision
of 23.1%. On the test set, the SVM model predicts all the true positives but also has a large false
positive rate of 23.5%. In comparison to the predictions of the other models, we notice that there is
not a single test case for which SVM predicts negative but another model predicts positive – all
disparities are where SVM predicts positive but other models predict negative. For each model,
there are between 14 and 20 test cases out of the 91 total test cases for which SVM predicts positive
but the other model predicts negative.
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Figure 11: Correlation heatmap of model predictions.

We will explore this further in the individual model analysis section.

6.1.2. Bayesian Model Comparison

We now delve deeper into the comparison of model performances to understand if the apparent
best-performing models (RF and SVM with the polynomial kernel) are truly superior. We leverage
the resampling results (cross-validation performance metrics) obtained during model tuning to
approximate their performance in a Bayesian framework. While not identical to test performance,
we expect these resampling metrics to provide a reasonable estimation.

Bayesian model comparison allows us to draw more intuitive and practical inferences than traditional
frequentist analysis. Let’s briefly outline the mathematical underpinnings.

We employ a Bayesian ANOVA model to generate distributions of the metric estimate for each
model. A standard ANOVA model (expressed as a linear regression) for model comparison would
be:

y = β0 + β1m1 + · · · + βkmk,

where y is the metric to be predicted, β0 denotes the metric estimate for the base model (any model
can be chosen), mi is an indicator variable for model i, and βi represents the difference in metric
estimate between model i and the base model. We aim to assess whether any of the βis is 0.

To account for potential dependencies between metric outputs and individual resamples (resample-
to-resample effect), we modify the model equation:
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y = βi0 + β1m1 + · · · + βkmk.

Note that only the intercept term βi0 varies across resamples, assuming that the differences in
metric estimates (compared to the base model) remain consistent across resamples.

In the Bayesian context, each βi has a prior distribution representing our initial beliefs. We use
default uninformative priors. As data is processed, these prior distributions are updated based on
likelihood estimates, resulting in posterior distributions for each parameter. The tidyposterior
library handles these calculations.

To formally compare posterior distributions, we examine the distribution of differences and calculate
the Region of Practical Equivalence (ROPE). ROPE estimates the probability that two models are
practically equivalent. We define a practical effect size, representing the difference in metrics we
consider negligible. We then calculate the percentage of the difference distribution falling within this
interval. A high percentage indicates that the models’ performance in that metric is not practically
different.

We compare our models using the following three metrics:

• ROC-AUC: Area under the Receiver Operating Characteristic curve, measuring the trade-off
between true positive rate and false positive rate.

• Accuracy: Proportion of correctly classified observations.

• Brier Score: A cost function assessing the calibration of probabilistic predictions. It quantifies
the mean squared difference between predicted probabilities and actual outcomes:

BS = 1
n

n∑
i=1

(p(xi) − yi)2,

where p(xi) denotes the model’s predicted probability of a positive class for observation xi, yi

is the true class label for observation xi, and n is the total number of observations. A lower
Brier score indicates better calibration.

We proceed to compare each of these metrics, one at a time. Let us start by analyzing the ROC-AUC
metric.

In Figure 12 we can see a comparison of the ROC-AUC metrics for each model per resampling fold.

Ideally, these lines should be parallel. While this is not the case here, the lines do appear to have a
similar trend.

Next, Figure 13 and Figure 14 show the actual posterior distributions for the ROC-AUC metric of
each model.

The Random Forest model appears to have the highest ROC-AUC metric, though ANN, SVM-rbf,
SVM-poly, and LR all appear close seconds.

Precisely, Table 12 illustrates the ROPE measures of each pairwise model comparison where we use
a practical effect size of 0.02 (ie. the probability that the difference in ROC-AUC of two models is
at most 0.02).
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Figure 12: ROC-AUC scores for each model per resampling fold.

Figure 13: Posterior distributions of ROC-AUC scores for each model.

37



Figure 14: Comparison of ROC-AUC score distributions across models.

Table 12: ROPE Measure for Each Pairwise Model (ROC-AUC)

Contrast Practical (-) Practical (=) Practical (+)
ANN vs RF 35.24% 41.06% 23.7%
KNN vs RF 58.6% 32.62% 8.78%
LR vs RF 39.82% 40.98% 19.2%
RF vs XGBoost 0% 0% 100%
SVM-poly vs RF 39.98% 40.74% 19.28%
SVM-rbf vs RF 38.16% 41.28% 20.56%

In the ROPE values frame, we see that the Random Forest appears much better than the XGB
model – though the results are less conclusive in comparison to the ANN, KNN, LR, SVM-rbf,
SVM-poly models.

As a secondary test, we also run the analysis using the accuracy metric. The process is identical,
and in Figure 15 we can see the posterior distributions of the accuracy of all models.

Similarly as before, in Table 13 we can see the ROPE measure of each pairwise model comparison
using a practical effect size of 0.02.

Table 13: ROPE Measure for Each Pairwise Model (Accuracy)

Contrast Practical (-) Practical (=) Practical (+)
ANN vs RF 36% 46.54% 17.46%
KNN vs RF 82.42% 16.28% 1.3%
LR vs RF 31.76% 47.88% 20.36%
RF vs XGBoost 0% 0% 100%
SVM-poly vs RF 54.28% 36.64% 9.08%
SVM-rbf vs RF 100% 0% 0%
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Figure 15: Posterior distributions of the models’ accuracy.

Figure 16: Comparison of the accuracy distributions across models.
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In the accuracy metric, we see that Random Forests largely surpasses the KNN, SVM-rbf, and
XGBoost models – but the results are again less conclusive for the ANN, LR, and SVM-poly models.

Lastly, we look at the Brier score posterior distributions of the models in [16].

Figure 17: Brier score posterior distributions for each model.

The Random Forest distribution is the one to the far left. RF appears largely better than ANN,
SVM, and XGBoost models in the Brier score – though the model appears comparable to LR and
SVM-poly. The ROPE probabilities are in Table 14.

Table 14: ROPE Measure for Each Pairwise Model (Brier)

Contrast Practical (-) Practical (=) Practical (+)
ANN vs RF 0% 4.02% 95.98%
KNN vs RF 0.68% 40.14% 59.18%
LR vs RF 7.76% 73.98% 18.26%
RF vs XGBoost 100% 0% 0%
SVM-poly vs RF 6.96% 74.24% 18.8%
SVM-rbf vs RF 0% 0% 100%

Indeed, we see that RF is practically equivalent to LR and SVM-poly with high probability in the
Brier Loss, and largely superior to the ANN, SVM-rbf, and XGBoost models – though the results
are less conclusive for KNN.

Hence, RF largely surpasses KNN, SVM-rbf, ANN, and XGBoost in at least one metric, but not
LR or SVM-poly. This suggests that RF, LR, SVM-poly are likely comparable in predicting DTC
recurrence (given the practical effect size) despite the slightly differing test metrics – though it is
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Figure 18: Posterior distributions of Brier losses for each model.

worth noting that RF did surpass all the other models in the posterior distribution itself for all
metrics.

7. CONCLUSION

This study aimed to evaluate and compare the effectiveness of various machine learning models
in predicting the recurrence of Differentiated Thyroid Cancer (DTC). By examining key metrics
such as accuracy, precision, recall, and specificity, we assessed the performance of models including
Artificial Neural Network (ANN), Logistic Regression (LR), K-Nearest Neighbors (KNN), Support
Vector Machine (SVM), Random Forest (RF), and Extreme Gradient Boosting (XGBoost).

Our findings indicate that the Random Forest model is the most robust and balanced classifier for
this task. It achieved the highest accuracy and specificity rates, both at 94%, demonstrating its
reliability in correctly identifying both positive and negative cases. This suggests that Random
Forest is highly effective in distinguishing between patients who will and will not experience a
recurrence of thyroid cancer.

In terms of precision, the ANN, Logistic Regression, and Random Forest models all achieved an
85% precision rate. This shows that these models are equally competent in accurately predicting
positive cases among those identified as positive, minimizing false positives.

The SVM model excelled in recall, achieving a perfect score of 100%. This indicates that SVM
is exceptionally effective at capturing all actual positive cases, making it a critical tool when the
primary goal is to ensure that no positive cases are missed. This is particularly important in medical
diagnostics where missing a positive case can have serious implications.

Overall, while the Random Forest model provides the best balance of performance across all metrics,
the SVM model’s outstanding recall rate highlights its utility in scenarios where it is crucial to
identify all positive cases. These results underscore the importance of selecting the appropriate
model based on the specific needs of the task. For balanced performance and overall robustness,
Random Forest is recommended. However, for applications where recall is paramount, SVM is the
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superior choice.

Future work can explore the integration of these models in a hybrid approach, leveraging the
strengths of each to further improve prediction accuracy and reliability. Additionally, investigating
the impact of different feature engineering techniques and more sophisticated hyperparameter tuning
methods may yield further enhancements in model performance.

These findings contribute valuable insights into the application of machine learning in medical
diagnostics, particularly for predicting the recurrence of DTC, and pave the way for more personalized
and accurate treatment strategies.
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• FAMD: Factor Analysis of Mixed Data
• FIA: Feature Importance Analysis
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