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Abstract. Let G be a finite abelian group and let D(G) be the Davenport constant
of the group. In this paper we demonstrate several bounds on the Davenport constant.
We also investigate whether D(G), along with other numerical invariants of the group, is
sufficient to uniquely determine its structure. Our investigations lead us to a conjecture
that relates the divisibility of the Davenport constant of the subgroups to the structure
of the group. We also study the inverse Davenport problem– the structure of maximal
0-sequences of length D(G). The structure of these sequences motivates the study of
necessary and sufficient conditions for two elements x and y ∈ G to be automorphic
images of one another. We ultimately prove that there exists φ ∈ Aut(G) such that
φ(x) = y if and only if G/⟨x⟩ ∼= G/⟨y⟩. This result leads to our development of the
two fastest known algorithms to determine if two elements of a finite abelian group are
automorphic images of one another. We use this algorithm to develop the fastest known
algorithm to compute the orbits of finite abelian groups.

1. Introduction

In this paper, we will study the Davenport constant and areas related to it, such as the
inverse Davenport problem and conditions on when two elements of a finite abelian group
are automorphic images of one another.

First introduced by Rogers (see [15]) in 1963, and made famous by Harold Davenport at
the 1966 Conference in Group Theory and Number Theory [13], the Davenport constant
has become a classic object of study at the intersection of algebra, combinatorics, and
number theory. Defined as the minimal number n such that any G-sequence of length n
must have a subsequence summing to the identity, this constant is important because of
its use in the study of factorization in algebraic number rings. Given a Dedekind domain
D, its elastisicity (denoted ρ(D)), a measure of failure of unique factorization lengths,
is closely related to the Davenport constant of the ideal class group G ∼= Cl(D) of D:

ρ(D) ⩽ D(G)
2 with equality achieved if G is finite and each ideal class in G contains a

prime of D (see [12, 20]). In the proof of the existence of infinitely many Carmichael
numbers, this bound plays an important role [1].

In Section 3, we start the paper by stating additional bounds on D(G) that do not
appear to be in the literature. In Section 4, we investigate the relation of D(G) with the
structure of the finite abelian group G. We propose an original problem on the relation of
the Davenport constant of the subgroups of G to D(G) and solve it for numerous cases.

We then shift gears to the inverse Davenport problem, the investigation of the struc-
ture of maximal 0-sequences of length D(G). We propose and investigate definitions for
equivalence classes of sequences, contrary to previous papers which were more focused
on solving the inverse Davenport problem completely for specific classes of groups (see
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[4, 9, 16]). These equivalence classes motivate us to investigate when two elements x,
y ∈ G are automorphic images of each other.

Finally, in Section 7, we state and prove a theorem that is important not just in the
study of the Davenport constant, but in group theory in general: given x, y ∈ G, there
exists φ ∈ Aut(G) such that φ(x) = y if and only if G/⟨x⟩ ∼= G/⟨y⟩. In Section 8, we use
this result to develop of the two fastest known algorithms to determine if two elements
of a finite abelian group are automorphic images of one another by computing matrices
in Smith Normal Form. We use these algorithms to compute the orbits of finite abelian
groups in Section 9, in the fastest known time complexity.

2. Background and Literature Review

Let G be a finite abelian group, written additively.

Definition 2.1. A G-sequence {g1, g2, . . . , gn} of (not necessarily distinct) elements of G
is a 0-sequence (alternatively zero-sum sequence) if g1 + g2 + · · · + gn = 0. We say that
the sequence {g1, g2, . . . , gn} has a 0-subsequence (alternatively zero-sum subsequence) if

there exists a nonempty set S ⊆ {1, 2, . . . , n} such that
∑
i∈S

gi = 0.

Definition 2.2. The Davenport constant, D(G), of G is defined as

D(G) = min{n | every G-sequence of length n has a 0-subsequence}.
Alternatively, the Davenport constant can also be defined as follows.

Definition 2.3. D(G) is the maximum length of a 0-sequence that contains no proper
zero subsequence.

Proposition 2.4. Definition 2.2 and Definition 2.3 are equivalent.

Proof. Let x be the value of D(G) as in Definition 2.2, let y be D(G) as in Definition 2.3.
First, we prove that x ⩾ y. Let A be a 0-sequence with length y and no proper 0-

subsequences. If x < y, any x-element subsequence in A must have a 0-subsequence, so A
contains a proper 0-subsequence, which is a contradiction.

We finish by proving that y ⩾ x. There exists a G-sequence {g1, g2, . . . , gx−1} with
no 0-subsequence by definition. Let gx = −(g1 + g2 + · · · + gx−1). The sequence A =
{g1, g2, . . . , gx−1, gx} is a 0-sequence. Assume A contains a proper 0-subsequence. Note
that this 0-subsequence must contain gx since the original sequence had no zero-subsequences.
However, taking every term in A that does not appear in this 0-subsequence creates a 0-
subsequence in {g1, g2, . . . , gx−1}, which is a contradiction, so A is a 0-sequence with no
proper 0-subsequences. Therefore, |A| = x ⩽ y.

We conclude that x = y, so the two definitions are equivalent. □

Definition 2.5. We say a 0-sequence is maximal if it contains no proper 0-subsequences.

Definition 2.6. Throughout this paper, given x ∈ G and k ∈ N, let kx denote x+ x+ · · ·+ x︸ ︷︷ ︸
k times

.

If Cm1⊕Cm2⊕· · ·⊕Cmt is the invariant factor decomposition of G, consider the sequence
consisting of (1, 1, 1, . . . 1) and for each 1 ⩽ i ⩽ t, we take mi − 1 copies of the element
that has a 0 in every component except the ith component which is 1. This sequence is
a maximal 0-sequence and has length m1 + . . .mt − t + 1, which motivates the following
definition.
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Definition 2.7. Let G ∼= Cm1 ⊕ Cm2 ⊕ · · · ⊕ Cmt be a finite abelian group expressed in

its invariant factor decomposition. Define D∗(G) = 1 +
∑t

i=1(mi − 1).

From Definition 2.3, it follows that D(G) ⩾ D∗(G); the question of when equality is
achieved is a central question in the study of the Davenport constant.

From [13], we haveD(G) ⩽ |G|. The following is a much tighter bound of the Davenport
constant.

Theorem 2.8 (Emde-Boas [21]). Given a finite abelian group G ∼= Cm1⊕Cm2⊕· · ·⊕Cmt

written in its invariant factor decomposition,

D(G) ⩽ exp(G)

(
1 + log

(
|G|

exp(G)

))
= mt

(
1 + log

(
m1m2 . . .mt

mt

))
.

This bound is used frequently throughout this paper.
While a formula for the Davenport constant is not known for a general abelian group,

it is known for some special cases.
The following is the list of groups where it is known that D(G) = D∗(G) from [10,17]:

• G has rank less than or equal to 2;
• G is a p-group;
• G ∼= G1 ⊕ Cpkn, where G1 is a p-group and pk ⩾ D∗(G1);

• G ∼= C3
2 ⊕ C2n where n is odd;

• G ∼= C2pk1 ⊕ C2pk2 ⊕ C2pk3 where p is prime;

• G ∼= C2 ⊕ C2
2n with p ∤ n for every prime p ⩾ 11;

• G ∼= C3 ⊕ C3 ⊕ C3d where d ∈ N;
• G ∼= C3·2t ⊕ C3·2u ⊕ C3·2v where t ≥ u ≥ v;
• G ∼= C4 ⊕ C4 ⊕ C4d where d ∈ N;
• G ∼= C6 ⊕ C6 ⊕ C6d where d ∈ N.

However, it is known that in general, D(G) ̸= D∗(G). One such class of groups is shown
below.

Theorem 2.9. (Geroldinger and Schneider [10]) Let n ⩾ 2, k ⩾ 2 with gcd(n, k) = 1,

0 ⩽ ρ ⩽ n− 1, and G = C
(k−1)n+ρ
n ⊕ Ckn.

(1) If ρ ⩾ 1 and ρ ̸≡ n (mod k), then D(G) ⩾ D∗(G) + ρ.
(2) If ρ ⩽ n − 2 and x(n − ρ + 1) ̸≡ n (mod k) for any x ∈ {1, 2, . . . , n − 1}, then

D(G) ⩾ D∗(G) + ρ+ 1.

3. Additional Bounds on D(G)

The information in the previous section is all known in existing literature. In this
section, we will develop additional bounds.

Proposition 3.1. Let G1, G2, . . . , Gn be finite abelian groups. Then, D(G1 ⊕G2 ⊕ · · · ⊕
Gn) ⩽

∏n
i=1D(Gi).

Proof. We will first prove that if G,H are finite abelian groups then D(G ⊕ H) ⩽
D(G)D(H). Let D(G) = k and D(H) = m; let S be a sequence of km elements from
G⊕H, so S = {(g1, h1), (g2, h2), . . . , (gkm, hkm)} where gi ∈ G and hi ∈ H.

We define m sequences S1, S2, . . . , Sm, where the sequence Si consists of the i
th “block”

of k elements, or elements i(k − 1) + 1 to ik. Consider Si for all i. Since D(G) = k, Si
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contains a subsequence Ki where the corresponding elements from G (the first component
of the elements) sum to zero. Let the sum of the corresponding elements of Si from H
(the sum of the elements in the second component) be pi; there are m such sums. Since
D(H) = m, the sequence {{p1, p2, . . . , pm} where pi ∈ H} contains a 0-subsequence. By
construction, the corresponding elements from G for each of these sequences already form
a 0-subsequence. Therefore, there is a 0-subsequence in S. This proves that D(G⊕H) ⩽
D(G)D(H).

Inductively applying this property to G1⊕G2⊕· · ·⊕Gn, we get D(G1⊕G2⊕· · ·⊕Gn) ⩽∏n
i=1D(Gi). □

Since the above bound is very weak for groups of higher rank, it is worth exploring if a
tighter bound can be established.

Proposition 3.2. If G is a finite abelian group of rank d ⩾ 2, we have D(G) ⩽ |G|−d+1.

Proof. We will induct on the rank of G. Let G ∼= Cm1⊕Cm2⊕· · ·⊕Cmd
withm1 | m2 | · · · |

md. The base case, rank 2, is true since D(G) = m1+m2−1 and m1+m2−1 ⩽ m1m2−1
for all m1,m2 ⩾ 2, since we can rewrite this as (m1 − 1)(m2 − 1) ⩾ 1.

By Proposition 3.1 and the inductive hypothesis,

D(G) ⩽ D(Cmd
) ·D(Cm1 ⊕ · · · ⊕ Cmd−1

) ⩽ md(m1m2 . . .md−1 − (d− 1) + 1)

= |G| −md(d− 2).

Note that md(d− 2) ⩾ d− 1 for d > 2, md ⩾ 2. □

Remark 3.3. For rank d > 3, |G| −md(d − 2), where md is the exponent of the group,
is an even better bound than the one above.

We will now investigate some bounds for the quotient group G/H where G is a finite
abelian group and H is a subgroup of G.

Theorem 3.4. Given finite abelian group G and subgroup H ≤ G, D(G/H) ≤ D(G).

Proof. Consider the sequence g1, g2, . . . , gk of elements from G/H and consider the se-
quence g1, g2, . . . , gk in G. If k ⩾ D(G) then there exists a 0-subsequence gi1 , gi2 , . . . , gim .
The sequence gi1 , gi2 , . . . , gim in G/H will be a 0-sequence because

gi1 + gi2 + · · ·+ gim = gi1 + gi2 + · · ·+ gim = 0̄,

implying D(G/H) ⩽ D(G). □

4. The Relation Between D(G) and the Structure of G

From the previous sections, we know that if G is cyclic, D(G) = |G|. It is natural to
ask if the converse also holds true, which we prove in the following proposition.

Proposition 4.1. D(G) = |G| if and only if G is cyclic.

Proof. If G is cyclic and g is a generator of G, the sequence {g, g, . . . , g} where g is repeated
|G| times is a maximal 0-sequence. We have already established that D(G) ⩽ |G|, so we
are done.

For the other direction, assume D(G) = |G| and we prove G is cyclic. Let |G| = n and
consider a maximal 0-sequence A = {ai}ni=1 and define bi = a1+a2+ · · ·+ai for 1 ⩽ i ⩽ n.
Because A is a maximal 0-sequence, all terms of {bi}ni=1 must be distinct. We swap the
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order of a1 and a2 to create a maximal 0-sequence A′ = {a2, a1, . . . , an} = {a′1, a′2, . . . , a′n}.
Define b′k =

∑k
i=1 a

′
i for 1 ⩽ k ⩽ n. Note that bk = a1+a2+ · · ·+ak = a2+a1+ · · ·+ak =

a′1 + a′2 + · · · + a′k = b′k for all k > 1, so b1 = b′1, implying a1 = a2. Without loss of
generality this proves that ai = aj for 1 ⩽ i, j ⩽ n since the choice of a1 and a2 was
arbitrary, implying that G is generated by a1 and that the group is cyclic. □

Clearly, D(G) is determined by G. It is natural to ask if D(G), along with other
numerical invariants of G, can uniquely identify G.

Question 4.2. Let G be a finite abelian group. Is knowing |G| and D(G) sufficient to
determine G?

We give a counterexample with two groups, G1 and G2, where |G1| = |G2| and D(G1) =
D(G2). We can find a counterexample in 2-groups. Consider G1 = C2 ⊕C4

22 ⊕C23 . Then

|G1| = 21+2+2+2+2+3 = 212. Since G1 is a 2-group, we have D(G1) = (2 − 1) + 4 · (22 −
1) + (23 − 1) + 1 = 21. Let G2 = C6

2 ⊕ C2
23 . Then |G2| = 21+1+1+1+1+1+3+3 = 212. Since

G2 is a 2-group, we have D(G2) = 6 · (2−1)+2 · (23−1)+1 = 21 = D(G1). The following
question adds a new condition for this question, motivated by the above counterexample.

Question 4.3. If the rank, the order, and Davenport constant of a finite abelian group
G is known, can G be uniquely determined?

The answer to the above question is no. There are infinitely many pairs of non-
isomorphic groups which have the same rank, order, and Davenport constant.

Proposition 4.4. Consider the p-groups G1 and G2 defined by

G1 = Cp
p ⊕ C

p+2
p3

and G2 = C2p+1
p2

⊕ Cp4 .

We have |G1| = |G2|, D(G1) = D(G2), rank(G1) = rank(G2), but G1 ̸∼= G2.

Proof. We have rank(G1) = rank(G2) = 2p + 2 and |G1| = pp · p3(p+2) = p4p+6 =

p2(2p+1)p4 = |G2|. Since G1 and G2 are p-groups, D(G1) = p(p−1)+(p+2)(p3−1)+1 =
p4+2p3+p2−2p−1. Also, D(G2) = (2p+1)(p2−1)+(p4−1)+1 = p4+2p3+p2−2p−1.
Therefore, D(G1) = D(G2) but G1 ≇ G2. □

The above construction is not unique.
Some additional observations can be made about pairs of non-isomorphic groups that

have the same rank, order, and Davenport constant.

Theorem 4.5. For every prime p, there exists an infinite number of non-isomorphic p-
groups G1 and G2 satisfying D(G1) = D(G2), |G1| = |G2|, rank(G1) = rank(G2), but
G1 ≇ G2.

Proof. Consider the two p-groups G1 and G2 constructed in Proposition 4.4. We can
replace each invariant factor Cpk by Cpk+1 to get a new pair of groups that satisfies our
conditions. Consider

G1 = Cp
p1+n ⊕ Cp+2

p3+n and G2 = C2p+1
p2+n ⊕ Cp4+n where n ∈ N.

Then, for all n ∈ N, we have D(G1) = D(G2), |G1| = |G2|, rank(G1) = rank(G2), but
G1 ≇ G2, showing that there is an infinite number of such p-groups. Another way of
extending the groups is by considering G′

1 = Cpk ⊕ G1 and G′
2 = Cpk ⊕ G2. If G1 and

G2 satisfy the properties above then so do G′
1 and G′

2. In fact, we can generalize the
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construction above even more. Define G1n = Cp
p1+n ⊕ Cp+2

p3+n and G2n = C2p+1
p2+n ⊕ Cp4+n .

Then the groupsG1 =
∏t

i=1G1ni andG2 =
∏t

i=1G2ni also satisfyD(G1) = D(G2), |G1| =
|G2|, rank(G1) = rank(G2), but G1 ≇ G2. □

Question 4.6. Suppose there is a finite abelian group G with D(G) > D∗(G). Is this
also true for all finite abelian groups that contain G?

The answer is no. Consider G = C4
2 ⊕ C6, which has D(G) > D∗(G) due to Theorem

2.9, as we can set n = 2, k = 3, and ρ = 0. However, C4
2 ⊕ C2d where d ⩾ 70 is even has

D(G) = D∗(G), according to Theorem 5.8 in [4].
This is a very interesting result as it implies that there are groups for which D(G) =

D∗(G) but D(H) > D∗(H) for some subgroup H. If we think about modifying H (by
either adding more invariant factors or increasing existing ones) with D(H) > D∗(H) to
get a group G, when can this“repairing” or “healing” effect take place? The next theorem
addresses this question.

Theorem 4.7. Let G be a finite abelian group with D(G) > D∗(G) and G ≤ H. Let G
be a direct summand of H such that the invariant factors of G appear as invariant factors
of H also. Then, D(H) > D∗(H).

Proof. Let rank(H) = t and write the invariant factor decomposition H ∼= Ca1⊕Ca2⊕· · ·⊕
Cat where 1 < a1 | a2 | · · · | at. Since G is a direct summand of H, we have H ∼= G ⊕K
where K is a non-trivial abelian group. Therefore, there exists A ⊂ {1, 2, . . . , t} = [t]
such that G ∼=

⊕
i∈A

Cai and K ∼=
⊕

j∈[t]−A

Caj . Because D(G) > D∗(G) there exists a G-

sequence {g1, . . . , gn} with n ⩾ D∗(G), which contains no 0-sequence. Now let our current
H-sequence be

SH = {(g1, 0), . . . , (gn, 0)},
where each component corresponds to an element of G and K and 0 represents the identity
in K. Assume for the sake of contradiction that D(H) = D∗(H). Then D∗(H) = D∗(G)+
D∗(K)− 1 implies that D(H) = D∗(G) +D∗(K)− 1. We will now expand the sequence
SH as follows. For each j ∈ [t]− A consider the element hj ∈ H consisting of the t-tuple

with 0 everywhere except for the jth entry where we have 1. This element has order aj
and so we include it (aj − 1) times in SH . Now, we have a sequence SH satisfying

|SH | = n+
∑

j∈[t]−A

(aj − 1) = n+D∗(K)− 1 ≥ D∗(G) +D∗(K)− 1 = D(H).

This implies that we have a 0-sequence in SH , but the way we constructed SH makes this
impossible. Therefore, D(H) ̸= D∗(H) and indeed, D(H) > D∗(H), as desired. □

5. The D(H) | D(G) Problem

In this section, we expand on the question of how D(G) relates to the structure of G
by investigating how D(G) relates to the Davenport constant of the subgroups of G.

One natural question to ask is: for which groups G do all of its subgroups H satisfy
D(G/H) = D(G)/D(H)?

Lemma 5.1. An abelian group G satisfies D(G/H) = D(G)/D(H) for each H ⩽ G if
and only if G is cyclic.
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Proof. LetG be represented by its invariant factor decompositionG ∼= Cm1⊕Cm2⊕. . . Cmt .
Consider the subgroup H ∼= Cmt . Then we know G/H ∼= Cm1 ⊕ Cm2 ⊕ . . . Cmt−1 . Since
D(G) ≥ D∗(G), we have

D(G/H) ≥ 1 +
t−1∑
i=1

(mi − 1).

We claim that if D(G/H) = D(G)/D(H), then G has rank 1. Assume D(G/H) =
D(G)/D(H). From Theorem 2.8, D(G) ≤ mt +mt log(m1m2 . . .mt−1). This implies that

D(G)/D(H) ≤ mt +mt log(m1m2 . . .mt−1)

D(H)

=
mt +mt log(m1m2 . . .mt−1)

mt

= 1 + log(m1m2 . . .mt−1).

Combining all the inequalities, we get

1 +

t−1∑
i=1

(mi − 1) ≤ D(G/H) = D(G)/D(H) ≤ 1 + log(m1m2 . . .mt−1).

which rearranges into
t−1∑
i=1

log(mi) ≥
t−1∑
i=1

(mi − 1).

We know mi > 1 + log(mi) for all mi > 1. Therefore, this inequality does not hold for
t > 1, and t must be equal to 1.

If t = 1, let G ∼= Cm1 . Consider a subgroup H ∼= Cm with m | m1. Then

D(G/H) = D(Cm1/m) = m1/m = D(G)/D(H),

as desired. □

We can loosen the above constraint and investigate the following.

Definition 5.2 (Property P). Define finite abelian group G to have Property P if for all
subgroups H ⩽ G, D(H) | D(G).

It is straightforward to show that cyclic groups have Property P. We conjecture that
the only groups that have Property P are cyclic groups. In this section, we eliminate some
cases.

Theorem 5.3. If G is rank 2, G does not have Property P.

Proof. Let G ∼= Ca ⊕ Cab. Then D(G) = a + ab − 1. However, the subgroup H = Ca

satisfies D(H) = a and a ∤ a+ ab− 1, so G does not satisfy the condition. □

Theorem 5.4. If G is rank 3, G does not have Property P.

Proof. Let G ∼= Ca⊕Cab⊕Cabc and assume G has Property P. By Theorem 2.8, we know
that

D(G) ⩽ abc

(
1 + log

(
a · ab · abc

abc

))
= abc(1 + log(a) + log(ab)).
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Consider the subgroups Cab and Cab⊕Cabc. The Davenport constants of these two groups
are ab and ab+ abc− 1 respectively. If the hypothesis is true,

ab | D(G) and ab+ abc− 1 | D(G).

Thus, lcm(ab, ab+abc−1) | D(G). Since gcd(ab, ab+abc−1) = 1, we have ab(ab+abc−1) |
D(G) which implies

ab(ab+ abc− 1) ⩽ abc(1 + log(a) + log(ab)).

This simplifies to ab + abc − 1 ⩽ c + c log(a) + c log(ab). We can rewrite this (where e
refers to Euler’s number) as

ab− 1 ⩽ c(log(a2be)− ab).

Using a computational tool, such as Wolfram Alpha, we find this inequality never holds
if b > 1 and that we must have a = 2 or 3 (a = 1 is not allowed, since C1 can’t be one of
the factors) for the inequality to hold.

We solve each case separately. If a = 2, we can write the group as G = C2 ⊕ C2 ⊕ C2c.
According to [6], we have D∗(G) ⩽ D(G) ⩽ D∗(G)+1 for groups of the form Cn⊕Cnm⊕
Cnmq for n = 2 or 3. We have D∗(G) = 2 + 2c, so 2 + 2c ⩽ D(G) ⩽ 3 + 2c. But C2 ⊕ C2c

is a subgroup of G, so 2c+ 1 | D(G). This is impossible, since gcd(2c+ 1, 2c+ 2) = 1 and
gcd(2c+ 1, 2c+ 3) = gcd(2c+ 1, 2) = 1, so 2c+ 1 ∤ 2c+ 2 and 2c+ 1 ∤ 2c+ 3 for all c ⩾ 1.

We now consider the case of a = 3. Let G = C3 ⊕C3 ⊕C3c. From the list in Section 2,
D(G) = D∗(G) in this group. Because D∗(G) = 3c+4 and 3 = D(C3) | D(G) = D∗(G) =
3c+ 4, which is impossible, we have reached a contradiction.

Having exhausted all cases, we have proven that if G is rank 3, then the condition does
not hold. □

Theorem 5.5. If G is rank 4, G does not have Property P.

Proof. Let G ∼= Ca⊕Cab⊕Cabc⊕Cabcd with a ⩾ 2. Since D(A⊕B) ⩽ D(A)D(B) due to
Proposition 3.1, we can write

D(G) ⩽ (a+ ab− 1)(abc+ abcd− 1).

Consider the two subgroups H1 = Cabc and H2 = Cabc⊕Cabcd. We know that D(H1) = abc
and D(H2) = abc + abcd − 1. Since both of these values divide D(G) and are relatively
prime, we get abc(abc+ abcd− 1) | D(G) which implies that

abc(abc+ abcd− 1) ⩽ D(G) ⩽ (a+ ab− 1)(abc+ abcd− 1).

We can divide out abc+ abcd− 1 to get abc ⩽ a+ ab− 1. If c > 1, we get that ab+ ab ⩽
abc ⩽ a + ab − 1, but this is clearly false as ab ⩾ a and ab ⩾ ab, so 2ab ⩾ a + ab which
implies 2ab > a+ ab− 1.

We are left to consider c = 1. We use the Emde-Boas bound (Theorem 2.8) to get that

ab(ab+ abd− 1) ⩽ D(G) ⩽ abd(1 + log(a3b2))

which implies that
ab− 1

d
+ ab ⩽ 1 + log(a3b2).

We claim that for a > 6, ab > 1 + log(a3b2) = 1 + 3 log a+ 2 log b.
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Notice that increasing b by one increases the left hand side by a while it increases the
right hand side by at most 2 log 2 < 2. Therefore, if the inequality holds true for some
(a, b), it must hold true for (a, x) for all x ⩾ b.

When b = 1, we get a− 3 log a− 1 > 0. The derivative of this is 1− 3
a . For a > 3, the

derivative is positive, so the function increases. At a = 7, we get 7 − 3 log 7 − 1 > 0, so
for all a > 6, the inequality must hold.

We are left to consider a < 7. We find all ordered pairs (a, b) that don’t satisfy ab >
1 + log(a3b2) = 1 + 3 log a+ 2 log b:

• If a = 2, we can check that (2, 3) satisfies the inequality and (2, 2) does not, so the
only ordered pairs here are (2, 1) and (2, 2);
• If a = 3, we can check that (3, 2) satisfies the inequality and (3, 1) does not, so the
only ordered pair here is (3, 1);
• If a = 4, we can check that (4, 2) satisfies the inequality and (4, 1) does not, so the
only ordered pair here is (4, 1);
• If a = 5, we can check that (5, 2) satisfies the inequality and (5, 1) does not, so the
only ordered pair here is (5, 1);
• If a = 6, we can check that (6, 2) satisfies the inequality and (6, 1) does not, so the
only ordered pair here is (6, 1).

We now prove that none of these work using the Emde-Boas bound.
For (2, 1), we are considering groups of the form G ∼= C2 ⊕ C2 ⊕ C2 ⊕ C2d. We know

that D(G) ⩽ 2d(1 + log 8) ⩽ 7d. But the subgroups C2 ⊕ C2 ⊕ C2 and C2 ⊕ C2d have
Davenport constants 4 and 2d + 1 respectively, which are relatively prime. So 8d + 4 =
4(2d+ 1) ⩽ D(G) ⩽ 7d, which is not true.

For (2, 2), the proof is analogous to (2, 1), we use the subgroups C2 ⊕ C2 ⊕ C4 and
C4 ⊕ C4d which have Davenport constants 8 and 4d+ 3, which are relatively prime.

For (3, 1), the proof is analogous to (2, 1), we use the subgroups C3⊕C3⊕C3⊕C3 and
C3 ⊕ C3d which have Davenport constants 9 and 3d+ 2, which are relatively prime.

For (4, 1), the proof is analogous to (2, 1), we use the subgroups C2 ⊕ C4 ⊕ C4 and
C4 ⊕ C4 which have Davenport constants 8 and 4d+ 3, which are relatively prime.

For (5, 1), we are considering groups of the form G ∼= C5 ⊕ C5 ⊕ C5 ⊕ C5d. First note
that 5(5d+ 4) ⩽ 5d(1 + log 125) by the Emde-Boas bound. Solving the inequality, we get
d ⩾ 5. Now consider the two subgroups C5d and C5 ⊕ C5d. The Davenport constants are

5d and 5d + 4 respectively. Note that gcd(5d, 5d + 4) | 4, so lcm(5d, 5d + 4) ⩾ 5d(5d+4)
4 .

Then 5d(5d+4)
4 ⩽ 5d(1+log 125). Solving the quadratic shows that this inequality does not

hold for d ⩾ 5, as desired.
For (6, 1), the proof is analogous to (2, 1), we use the subgroups C3⊕C3⊕C3⊕C3 and

C6 ⊕ C6d which have Davenport constants 9 and 6d+ 5, which are relatively prime. □

Lemma 5.6. If G is a p-group of rank greater than 1, G does not have Property P.

Proof. Let the invariant factor decomposition of G be G ∼= Cpa1 ⊕ Cpa2 ⊕ · · · ⊕ Cpak with
k > 3 (we already resolved all groups with rank 2 and 3) and assume it has Property

P. The Davenport constant of G is −k + 1 +
∑k

i=1 p
ai by [13]. Consider the subgroup

H = Cpa2 ⊕ · · · ⊕Cpak . It has Davenport constant −k+2+
∑k

i=2 p
ai . Note this is strictly
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less than D(G) and divides D(G); therefore, it is at most D(G)/2. We have,

2D(H) = −2k + 4 + 2
k∑

i=2

pai .

However, note that

2

k∑
i=2

pai −
k∑

i=1

pai ⩾ pa1 · (k − 2) ⩾ 2(k − 2) > k − 3 = 2(k − 2) + (1− k),

which can be rewritten as

2D(H) = 2(−k + 2) + 2

k∑
i=2

pai > (−k + 1) +

k∑
i=1

pai = D(G)

which gives a contradiction. □

Lemma 5.7. If G is a group of at least rank 2 with all distinct invariant factors, then
there exists at least one subgroup H ⩽ G, such that D(H) ∤ D(G).

Proof. We need to show that G does not have Property P. Let G ∼= Ca1 ⊕ Ca1a2 ⊕ · · · ⊕
Ca1a2...an satisfy Property P. Define Pi,j = aiai+1 · · · aj .

By Theorem 2.8, we know

D(G) ⩽ P1,n(1 + log(a1) + log(a1a2) + · · ·+ log(a1a2 . . . an−1)).

We use the facts that P1,n−1 | D(G) and (P1,n−1 + P1,n − 1) | D(G). These two factors
are relatively prime, so P1,n−1(P1,n−1 + P1,n − 1) | D(G), and therefore,

P1,n−1(P1,n−1+P1,n−1) ⩽ D(G) ⩽ P1,n(1+log(a1)+ log(a1a2)+ · · ·+log(a1a2 . . . an−1)).

Simplifying, we get

P1,n−1 + P1,n − 1 ⩽ an(1 + log(a1) + log(a1a2) + · · ·+ log(a1a2 . . . an−1)).

The condition that the invariant factors are distinct is equivalent to ai ⩾ 2 for each i.
We claim this inequality doesn’t hold for n ⩾ 2. To prove this claim, we use induction on
rank. The base case is n = 2. The inequality becomes

a(a+ ab− 1) ⩽ b(1 + log a).

However, note that a2 > 1 + log a for all a ⩾ 2, so a(a − 1) + a2b ⩾ a2b > b(1 + log a),
which means the inequality does not hold, as desired.

Assume that this inequality holds for some values of a1, a2, . . . , an with n ⩾ 3. We claim
it holds when you decrease a1 by 1. If a1 is decreased by 1, the left hand side decreases
by P2,n−1 +P2,n and the right hand side decreases by an(n− 1) log a1

a1−1 ⩽ an(n− 1) log 2.

But P2,n = P2,n−1an ⩾ 2n−2an > an(n − 1) log 2 if n ⩾ 3, so the left hand side decreases
more than the right hand side which means the inequality still holds.

Now assume the inequality does not hold for any rank n group. We claim that it
does not hold for any rank n + 1 group. Assume for the sake of contradiction that the
inequality held for the sequence a1, a2, . . . , an+1. Then applying the previous claim, we
can continuously reduce a1 to 1 and the inequality still holds. But if a1 = 1, we are left
with a group of rank n, since an invariant factor of 1 can be excluded. By the assumption
that the inequality does not hold for rank n groups, the inequality does not hold for
1, a2, . . . , an, an+1, which is a contradiction.
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Applying this inductively gives the result. □

The work in this section motivates the following conjecture.

Conjecture 5.8. A group G has property P if and only if it is cyclic.

6. The Inverse Davenport Problem

In addition to determining the properties of the Davenport constant, we also investigate
the inverse Davenport problem–the study of the structure of maximal 0-sequences of length
D(G). Information on these sequences uncovers information on the structure of the groups.

Consider two maximal 0-sequences of length D(G) in group G. Denote these sequences
as {xi}1⩽i⩽D(G) and {yi}1⩽i⩽D(G). We develop and investigate three different equivalence
relations for such sequences.

Definition 6.1 (Condition 1). Define {xi} ∼ {yi} if there exists a φ ∈ Aut(G) and a
permutation σ ∈ SD(G) such that φ(xi) = yσ(i) for each 1 ⩽ i ⩽ D(G).

Definition 6.2 (Condition 2). Define {xi} ≈ {yi} if there exists a permutation σ ∈ SD(G)

and D(G) automorphisms, call them φ1, φ2, . . . , φD(G), such that φi(xi) = yσ(i).

Definition 6.3 (Condition 3). Define {xi} ∼∼∼ {yi} if there exists a permutation σ ∈ SD(G)

such that |xi| = |yσ(i)| for each 1 ⩽ i ⩽ D(G).

It is easy to see that Condition 1 is the strongest, followed by Condition 2, and finally
Condition 3. Symbolically,

{xi} ∼ {yi} =⇒ {xi} ≈ {yi} =⇒ {xi} ∼∼∼ {yi}.

Proposition 6.4. Let φ : G → H be a group homomorphism between finite abelian
groups G and H. If {x1, x2, . . . , xn} is a 0-sequence of G, then {φ(x1), φ(x2), . . . , φ(xn)}
is a 0-sequence of H.

Proof. We have φ(x1) + φ(x2) + · · ·+ φ(xn) = φ(x1 + x2 + · · ·+ xn) = φ(0) = 0. □

Remark 6.5. The converse of the above statement is not true. Consider a homomorphism
φ : C4 → C2 ⊕ C2 defined by φ(1) = (1, 0). Notice that {φ(1), φ(1)} is a 0-sequence of
C2 ⊕ C2 but {1, 1} is not a 0-sequence of C4.

However, the converse holds if ker(φ) = {0}. In this case, φ(x1)+φ(x2)+· · ·+φ(xn) = 0
implies that φ(x1 + x2 + · · ·+ xn) = 0 which in turn implies that x1 + x2 + · · ·+ xn = 0.

A natural first question to ask is if any two maximal 0-sequences are automorphic
images of each other.

Question 6.6. If {xi} and {yi} are two maximal 0-sequences of length D(G), is {xi} ∼
{yi}?

The answer to the above question is no. We construct a counterexample. Consider the
group G ∼= C2 ⊕ C6. From [14], D(G) = 2 + 6 − 1 = 7. Consider the sequences {xi} and
{yi} given by

{xi} = {(0, 1), (0, 1), (0, 1), (0, 1), (0, 1), (1, 0), (1, 1)}
{yi} = {(0, 1), (0, 1), (0, 1), (1, 1), (1, 1), (1, 1), (1, 0)}.
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Both {xi} and {yi} are 0-sequences of length 7. Furthermore neither {xi} nor {yi} have
any proper 0-subsequence. The element (0, 1) appears fives times in {xi} and there is no
element of {yi} appearing five times, so {xi} and {yi} do not satisfy Condition 1.

In fact, the structural dissimilarity in maximal 0-sequences can go much further than
this.

Question 6.7. If {xi} and {yi} are two maximal 0-sequences of length D(G), is {xi} ∼∼∼
{yi}?

The answer to this question is no; it is not necessary that the orders of all elements in
two maximal 0-sequences are the same up to permutation. Consider this counterexample
in C2 ⊕ C2 ⊕ C4 with D(G) = 6:

{xi} = {(1, 1, 1), (1, 0, 0), (0, 1, 0), (0, 0, 1), (0, 0, 1), (0, 0, 1)}
{yi} = {(0, 0, 1), (0, 0, 1), (0, 0, 1), (1, 0, 1), (0, 1, 1), (1, 1, 3)}

where the order sequences are 4, 2, 2, 4, 4, 4, and 4, 4, 4, 4, 4, 4, respectively. These are
clearly not permutations of one another.

In order to get a better understanding of which maximal sequences of length D(G)
are equivalent under the three equivalence relations, a condition on when two elements of
finite abelian groups are automorphic images of one another would be helpful. However,
to the best of our knowledge, there isn’t an elementary condition for this in the literature.
This is the motivation to explore the question, which we address in the following section.

7. Condition for Automorphic Equivalence

For the rest of the paper, let G denote a finite abelian group.

Theorem 7.1. Given x, y ∈ G, there exists φ ∈ Aut(G) such that φ(x) = y if and only
if G/⟨x⟩ ∼= G/⟨y⟩.

Lemma 7.2. (Lemma 2.1 in [11]) If H and K are finite groups with relatively prime
orders,

Aut(H)⊕Aut(K) ∼= Aut(H ⊕K).

Proposition 7.3. In order to prove that G/⟨x⟩ ∼= G/⟨y⟩ implies there exists φ ∈ Aut(G)
such that φ(x) = y, it is sufficient to only consider p-groups.

Proof. We know that any additively defined finite abelian group is isomorphic to the
direct sum of its Sylow p-subgroups. Therefore, if G is a finite abelian group such that

|G| = p1
e1p2

e2 . . . pn
en where each pi is a distinct prime, then

G ∼=
n⊕

i=1

Hpi ,

where Hpj is the unique Sylow pj-subgroup. We will represent elements of G as an n-

tuple with the ith member of the tuple being an element of Hpi . For x, y ∈ G, let x =
(xp1 , xp2 , . . . , xpn) and y = (yp1 , yp2 , . . . , ypn), where xpi , ypi ∈ Hpi for each 1 ⩽ i ⩽ n. We
will use (xpi) to denote the element of the G (written in its Sylow p-group decomposition)

with xpi as the i
th component and identity 0 everywhere else.
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For 1 ⩽ i ⩽ n, the order of (xpi) is a power of pi and Hpi is the only component in
this decomposition of G that has order divisible by pi, so G/⟨x⟩ ∼=

⊕n
i=1Hpi/⟨(xpi)⟩ and

G/⟨y⟩ ∼=
⊕n

i=1Hpi/⟨(ypi)⟩. We conclude that G/⟨x⟩ ∼= G/⟨y⟩ is equivalent to
Hpi/⟨(xpi)⟩ ∼= Hpi/⟨(ypi)⟩ for all 1 ⩽ i ⩽ n.

Combining this with Lemma 7.2, because the orders of Hpi/⟨(xpi)⟩ are pairwise coprime
for 1 ⩽ i ⩽ n, we see that to prove the sufficient condition for Theorem 7.1, it is sufficient
to prove the condition for p-groups. □

Proof of Theorem 7.1. First, we prove that G/⟨x⟩ ∼= G/⟨y⟩ is a necessary condition for
there to exist φ ∈ Aut(G) such that φ(x) = y.

Define X = ⟨x⟩, Y = ⟨y⟩. If φ(x) = y where φ ∈ Aut(G), we claim that ψ : a +X 7→
φ(a)+Y is an isomorphism. First, we show that ψ is well-defined. Assume a+X = b+X,
then a−b ∈ X. Hence, φ(a−b) = φ(a)−φ(b) ∈ Y implies that φ(a)+Y = φ(b)+Y which
proves ψ(a+X) = ψ(b+X). Thus, ψ is well-defined. The surjectivity of ψ follows from the
fact that φ is surjective. Since x and y have the same order, the number of cosets of X in
G is equal to the number of cosets of Y , so injectivity follows from surjectivity and the fact
that |G| is finite. Finally, ψ is a homomorphism as ψ((a+X)+(b+X)) = ψ((a+b)+X) =
φ(a+ b)+Y = (φ(a)+φ(b))+Y = (φ(a)+Y )+ (φ(b)+Y ) = ψ(a+X)+ψ(b+X). This
implies that G/⟨x⟩ ∼= G/⟨y⟩.

Now, we prove that G/⟨x⟩ ∼= G/⟨y⟩ is sufficient.
Let G be a finite abelian p-group such that

G ∼=
n⊕

i=1

Cpei

where p is prime and 1 < e1 ⩽ e2 ⩽ . . . ⩽ en. From [3] we know that if G/A ∼= G/B
where A and B are cyclic groups, there exists a φ1 ∈ Aut(G) that maps the elements of
A to the elements of B. Taking A = ⟨x⟩ and B = ⟨y⟩, we have

φ1(x) = ky for some k ∈ N.
Therefore, we have that |ky| = |x| = |y|.

We will first prove that for the non-trivial case when x and y are not the identity
elements of G, we have gcd(k, p) = 1. Assume for the sake of contradiction that p | k.
Since G is a p-group, we know p | |y|, so

0 =
k

p
(|y|y) = |y|

p
(ky)

which implies |ky| | |y|p so |ky| ≠ |y|, which is a contradiction. Therefore, gcd(k, p) = 1.

From the above, we know that k−1 exists modulo pm for all m ∈ N. In other words, for
each pei , there exists some ai ∈ N such that aik ≡ 1 (mod pei).

Consider x = (x1, x2, . . . , xn). We can show that the map defined by φ2 : G → G
with φ2(x) = (a1x1, . . . , anxn) is an automorphism. Since φ2 is a linear map, it is also
a homomorphism. If φ2(g) = φ2(h), then kφ2(g) = kφ2(h), implying φ2(kg) = φ2(kh),
which implies g = h. Therefore, φ2 is injective. Surjectivity follows from injectivity since
G is finite.

From the above, we get that φ2 is an automorphism so φ2 ◦ φ1 ∈ Aut(G). Then,

(φ1 ◦ φ2)(x) = φ2(φ1(x)) = φ2(ky) = y.
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Therefore, there exists an automorphism mapping x to y, as desired. □

Theorem 7.1 establishes the necessary and sufficient conditions for two elements in a
finite abelian group to be automorphic images of one another. In addition to algorithmic
applications, which we discuss in Section 8, this theorem can be applied alongside other
results in group theory to create corollaries that would otherwise be difficult to see.

Theorem 7.4. If x and y are both of maximal order in G, they are automorphic images
of one another.

Proof. Let G ∼= Cm1 ⊕ Cm2 ⊕ · · · ⊕ Cmk
be a finite abelian group written in its invariant

factor decomposition. Let Cmr , Cmr+1 , . . . , Cmk
be the invariant factors of maximal

order. For an element x ∈ G to be of maximal order, there exists i where r ⩽ i ⩽ k
such that the ith component of x is a generator of Cmi . Define this generator as xi. We
construct an automorphism φx composing the automorphism switching the ith and the
kth component (which is an automorphism because Cmi and Cmk

have the same order, the
maximal order) with the automorphism mapping xi to 1 in the kth component but fixing
all other components. Define x′ = φx(x); x

′ must be of the form x′ = (x′1, x
′
2, . . . , x

′
n−1, 1).

We construct another map ψx : G→ G as follows:

ψx : (1, 0, . . . , 0, 0) 7→ (1, 0, . . . , 0, 0)

ψx : (0, 1, . . . , 0, 0) 7→ (0, 1, . . . , 0, 0)

...

ψx : (0, 0, . . . , 1, 0) 7→ (0, 0, . . . , 1, 0)

ψx : (x′1, x
′
2, . . . , x

′
n−1, 1) 7→ (0, 0, . . . , 0, 1).

We claim ψx is an automorphism. First of all, ψx is a homomorphism by construction
because the preimages of all the maps we defined is a minimal spanning set of G. Further-
more, ψx is surjective because the images of all the defined maps form a minimal spanning
set of G. Since G is finite, injectivity is implied, so ψx must be an automorphism.

Similarly, φy can be defined mapping y to y′ and ψy can be defined mapping y′ to
(0, 0, . . . , 0, 1). An automorphism mapping x to y is therefore φ−1

y ◦ ψ−1
y ◦ ψx ◦ φx. □

The above theorem combined with Theorem 7.1 implies a result that is not immediately
clear.

Corollary 7.5. Given two elements x, y ∈ G of maximal order, G/⟨x⟩ ∼= G/⟨y⟩.

8. Computing Automorphic Equivalence of Two Elements

8.1. First Algorithm: Directly Applying Smith Normal Form. It is well known
that given finite abelian group G and x ∈ G, G/⟨x⟩ can be computed by Smith Normal
Form [2]. Let G ∼= Cm1 ⊕ Cm2 ⊕ · · · ⊕ Cmk

and x = (x1, x2, . . . , xk). Then, G/⟨x⟩ can be
computed by writing the matrix 

x1 x2 . . . xk
m1

m2

. . .

mk
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in Smith Normal Form.
The time complexity to compute Smith Normal Form for integer matrices in Z(n×m)

is O(nθ−1mM(n log(||A||))) where ||A|| = max{A(i, j) | 1 ⩽ i, j ⩽ n}, M(t) bounds the
cost of multiplying two t-bit integers, and θ is the exponent of multiplication of two n×n
matrices [18].

The most commonly used fast matrix multiplication algorithm is Strassen’s algorithm
with a time complexity of O(n2.8074) ([19]). For a group of rank n, the associated matrix
to describe in Smith Normal Form is an (n + 1) × n matrix. Assuming multiplication
is a constant time operation, this gives a time complexity of verifying G/⟨x⟩ ∼= G/⟨y⟩
as O(n2.8074) where n is the rank of the group. Therefore, the problem of determining
whether two elements are automorphic images of one another can be solved with a time
complexity of O(n2.8074).

8.2. Second Algorithm: Splitting into p-groups. We present another algorithm to
compute G/⟨x⟩.

To do this, we describe a simpler Smith Normal Form algorithm to compute G/⟨x⟩ for
p-groups which runs the Smith Normal Form algorithm in [2] in terms of νp.

Algorithm 8.1. Suppose that G ∼= Cpe1 ⊕ · · · ⊕ Cpek and x = (a1p
f1 , a2p

f2 , . . . , akp
fk)

where p ∤ ai for 1 ⩽ i ⩽ k if ai ̸= 0. If any of the ai are equal to 0, we can simply remove
the zero and remove the component of G that ai is in. Without loss of generality, let the
first component of x be zero, so x = (0, a2p

f2 , . . . , akp
fk). Consider x′ = (a2p

f2 , . . . , akp
fk)

and G′ ∼= Cpe2⊕· · ·⊕Cpek , and note that G/⟨x⟩ is isomorphic to Cpe1⊕G′/⟨x′⟩. Therefore,
assume ai ̸= 0 for all i.

Without loss of generality, let f1 ⩽ f2 ⩽ . . . ⩽ fk (so the invariant factors of G do not
need to be from least to greatest). We only need to consider x = (pf1 , pf2 , . . . , pfk) since
it is an automorphic image of (a1p

f1 , a2p
f2 , . . . , akp

fk).
First, we write down the following list:

f1 f2 . . . fk
e1 e2 . . . ek.

Let amn denote the element of that list in the mth row and the nth column. The
algorithm is as follows. For each 1 ⩽ i ⩽ k − 1, add max(0, a2i − a1i) to all a1j where
i+ 1 ⩽ j ⩽ k and then erase the larger value among a2i and a1i. Finally, erase the larger
value among a2k and a1k. There is one value left per column, which are the powers of the
invariant factors of the quotient group.

Example 8.2. As an example, we compute (C2⊕C4⊕C8⊕C8)/⟨(2, 1, 2, 4)⟩. Here, f1 = 0,
f2 = f3 = 1, f4 = 2, e1 = 2, e2 = 1, e3 = e4 = 3. Our list is

0 1 1 2
2 1 3 3

.

Proceeding with the algorithm,

0 3 3 4
1 3 3

→ 0 3 4
1 3 3

→ 0 3 4
1 3

→ 0 3
1 3
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where each stage is the operation run on the succeeding column, so our quotient group is
C20 ⊕C21 ⊕C23 ⊕C23 which is what we would expect if we ran the normal Smith Normal
Form algorithm.

Now, we describe the algorithm for computing G/⟨x⟩. We break the algorithm into two
steps: first, we decompose G into the direct sum of its Sylow p-subgroups, and second, we
compute G/⟨x⟩ when G is a p-group.

Let G be a finite abelian group such that

G ∼= Ca1 ⊕ Ca2 ⊕ · · · ⊕ Can
∼=

t⊕
i=1

Hpi ,

where the first representation is its invariant factor decomposition and the Hpi are Sylow
p-subgroups with distinct primes.

Decomposing G into a product of p-groups requires finding the prime factorization of
an.

Several algorithms exist to do this; we can use the general number field sieve (see [5]),
which has heuristic time complexity

O(exp(((64/9)1/3 + o(1))(log an)
1/3(log log an)

2/3)).

Let d(k) be the number of prime factors of k (not necessarily distinct). Clearly,

d(a1) ⩽ d(a2) ⩽ · · · ⩽ d(an) ⩽ log2(an).

For each distinct prime factor p of an, we can find νp(ai) for each i, which takes

O(d(a1) + d(a2) + · · ·+ d(an)) = O(nd(an))

time overall. This gives us our decomposition into p-groups as for each prime p, the
corresponding p-group is

n⊕
i=1

Cpνp(ai) .

The time complexity of this step is O(nd(an)). We can also do this for x and compute
νp(xi) for each p | an and 1 ⩽ i ⩽ n, which we will use later. This is also O(nd(an)) since
we can perform the exact same algorithm.

Due to Lemma 7.2, it is sufficient to find the quotient of each p-group component of
G by its corresponding p-group component of ⟨x⟩. Since this can be done independently
for each prime, we instead describe an algorithm to compute H/⟨x⟩ when H is a p-group
that runs in O(k log k) time, where k is the rank of H.

Algorithm 8.1 requires the sequence f to be sorted from least to greatest. We can sort
f in O(k log k) and move around the respective elements in e. The remaining algorithm
involves the following procedure:

• Add some integer to the rest of the elements in the array f ;
• Find the value of f at any position in the list;
• Find the value of e at any position in the list.

Notice that querying for a value in e is O(1), as the list is always constant. While doing
range add queries on arbitrary intervals and querying a point can be done in O(k log k)
using a Segment Tree, for this specific use case, we can do it in O(k) since we specifically
do range add queries on suffixes. We create a variable, call it sum, initialized at 0 storing
the amount we need to add to the rest of the array. At each index of f , we add sum to
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the value at f . After processing that specific index i, we can calculate max(0, ei− fi) and
add this value to sum since this is the value we are adding to the rest of the array f .

To summarize, given a group G with rank n, it takes us O(nd(an)) to decompose it
into its p-group components after prime factorizing. Each p-group component has rank
at most n and therefore it takes worst case O(n log n) to find the quotient group for a
p-group. The number of p-group components is d(an), so the complexity of computing
the quotient groups is O(n log(n)d(an)). We can replace all the d(an) terms with log an,
since d(an) ⩽ log2(an). Adding all the terms together, we get a complexity of

O(exp(((64/9)1/3 + o(1))(log an)
1/3(log log an)

2/3) + n log n log an),

which is verified in Appendix A.
The algorithm is most feasible when an ≤ 1020 due to the large complexity contributed

by prime factorizing the exponent.
Now, we compare our two algorithms described above. Although the complexity of the

algorithm in Section 8.2 is a significant improvement from our algorithm in Section 8.1,
it is helpful to know the rank at which the former outerforms the latter, since the latter
has a large constant factor. The number of operations required assuming the exponent of
the group is 1020 can be approximated with

2 · 107 + 4n · 67 + 67n log n,

where the first quantity is from the prime factorization of an, the second is from computing
νp and running the algorithm, and the third is from the sorting.

Figure 1. Comparing the speed of directly applying SNF versus splitting
G into p-groups and applying modified SNF on each, assuming the expo-
nent is 1020.

Directly applying Smith Normal Form on G/⟨x⟩ (the algorithm in Section 8.1) is faster
for groups of rank below (approximately) 400 assuming the exponent of G is 1020, but
for groups of larger ranks, our second algorithm (the algorithm in Section 8.2) is optimal.
When the exponent of G is small, our algorithm is faster at much smaller ranks.

8.3. Comparing Algorithms. To the best of our knowledge, there is no literature on
the time complexity of an algorithm that computes whether two elements of a group are
automorphic images of one another. Theorem 7.1 combined with efficient algorithms to
determine whether two quotient groups are isomorphic provides a strategy to implement
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an efficient algorithm for this purpose. It is more reasonable to compute the Smith Normal
Form for integer matrices to check if G/⟨x⟩ ∼= G/⟨y⟩ than determine an automorphism
that maps x to y.

Naively, a brute force algorithm to determine if x and y are automorphic images would
be to compute Aut(G) and then iterate through it, computing φ(x) for all φ ∈ Aut(G) and
checking if it is equal to y. In the worst-case scenario, where x and y are not automorphic
images of each other, we must iterate through the entirety of Aut(G). The best known
algorithm to compute Aut(G) implemented in GAP is described by Eick, Leedham-Green
and O’Brien. The time complexity of this algorithm is dominated by n7 where n is the
rank of G (see Section 11.1 in [8]). If we run this algorithm and then iterate through all
elements of Aut(G) to check if φ(x) = y, we obtain a time complexity of O(|Aut(G)|+n7).
Our algorithm compares very favorably at O(n2.8). Furthermore, we can show that Aut(G)
is exponential in n, where n is the rank of G.

Proposition 8.3. |Aut(G)| is exponential in n, where n is the rank of G.

Proof. From Lemma 7.2, it suffices to assume that G is a p-group. Let G ∼=
⊕k

i=1C
ni
pmi

and let n = n1 + n2 + · · · + nk be the rank of G. A corollary of Theorem 4.1 in [11] is

|Aut(Cni
pmi )| = p(mi−1)ni

2
ni−1∏
j=0

(pni − pj) = pmini
2
ni−1∏
j=0

(
1− 1

pni−j

)
. Since p ⩾ 2, this gives

|Aut(Cni
pmi )| ⩾

pmini
2

2ni
. For p = 2, we have |Aut(Cni

pmi )| ⩾
pmini

2

2ni
= 2ni(mini−1) > 2ni . For

p > 3, |Aut(Cni
pmi )| ⩾

pmini
2

2ni
>
(p
2

)ni

. Considering elements of G to be k-tuples, we can

construct an automorphism in G by individual component-wise automorphisms of Cni
pmi .

This gives |Aut(G)| ⩾
k∏

i=1
|Aut(Cni

pmi )|. For p = 2, this implies that |Aut(G)| >
k∏

i=1
2ni =

2n. For p > 2, this implies that |Aut(G)| ⩾
k∏

i=1

(p
2

)ni

=
(p
2

)n
. In either case, we prove

that |Aut(G)| is exponential in the rank of G. □

Since we have shown that |Aut(G)| is exponential in the rank n, the runtime of the naive
algorithm, which has time complexity of O(|Aut(G)| + n7), is exponential in n. This is
significantly worse than our runtime of O(n log(n) log an), especially for groups with small
exponent. See Appendix A for an implementation of Algorithm 8.1 and its numerical
runtime analysis.

9. Computing Automorphic Orbits

Consider a finite abelian group G with invariant factor decomposition Cd1 ⊕Cd2 ⊕· · ·⊕
Cdn . We describe an algorithm that computes the automorphic orbits in G with a time

complexity of O(
√
|G|2nn log n). However, this algorithm works significantly faster for

most groups G and achieves this complexity only when the invariant factors of G are
relatively small.

Previous works computed the number of orbits in finite abelian groups (see [7]). We
compute the orbits (hence also the number of orbits) by reducing each element to a specific
form and applying Algorithm Two to compute the quotient group, which can be used to
determine which orbit each element fits into.
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Define the orbits of G as the equivalence classes by ∼, where x ∼ y if and only if there
exists φ ∈ Aut(G) such that φ(x) = y. Equivalently, we can define them as the orbits of
the natural action of Aut(G) on G.

By the same process as described earlier (in the algorithm in Section 8.2), we can split
G into a direct sum of p-groups. In this case, we can ignore the complexity of prime
factorizing an, since it can be done in much faster than

√
|G| time, and therefore, this

step is insignificant compared to the overall complexity.
We first describe the algorithm for finding automorphic orbits in p-groups and show

how these orbits can subsequently be combined to find the orbits of G.

Let H be a p-group of the form
n⊕

i=1
Cpei . For each pair of elements x, y in the orbit

O of H, recall that H/⟨x⟩ ∼= H/⟨y⟩ by Theorem 7.1. Therefore, we can say a group K
corresponds to orbit O if H/⟨x⟩ ∼= K for each x ∈ O.

Consider an element x ∈ H of the form (a1p
b1 , a2p

b2 , · · · , anpbn), where 0 ⩽ bi ⩽ ei and
p ∤ ai for each 1 ⩽ i ⩽ n. The element x is in the same orbit as (pb1 , pb2 , · · · , pbn) because
there exists an automorphism between x and (pb1 , pb2 , · · · , pbn) component-wise for each
component. We say (pb1 , pb2 , · · · , pbn) is the reduced form of x. Therefore, it is sufficient
to compute the orbits of the elements that satisfy a1 = a2 = · · · = an = 1.

There are
∏n

i=1(ei+1) such elements. Therefore, for each element x = (pb1 , pb2 , · · · , pbn),
we can compute H/⟨x⟩, and any element that has a reduced form equal to x is in the orbit
corresponding to H/⟨x⟩. In fact, we can compute the number of elements that have this
property. Since this is independent for each component, we can show how to calculate it
for the ith component and multiply this across.

If bi = ei, then there is only one distinct x as the component is just 0. If bi < ei, then
we claim there are pei−bi − pei−bi−1. It is sufficient to compute how many 1 ⩽ ai ⩽ pei−bi

exist such that gcd(ai, p) = 1, but this is simply φ(pei−bi), where φ is the Euler Totient
function.

Overall, this algorithm takes O(
∏
(ei+1) ·n log n) time and it computes the size of each

orbit and the reduced forms that are part of that orbit.
Doing this for all k different p-groups gives k sets of orbits S1, S2, . . . , Sk. The number

of orbits is |S1||S2| · · · |Sk|, since we choose orbits O1 ∈ S1,O2 ∈ S2, · · · ,Ok ∈ Sk and each
of these k-tuples of orbits corresponds to a unique orbit in G.

We can also find the properties of this unique orbit. The size of the orbit is the product
of the sizes of the k individual orbits. The representative elements of the orbit are any
combination of k representative elements, one from each Oi. In other words, x ∈ G is a
representative element for this orbit if and only if the component of x for the ith p-group
is one of the representatives for Oi.

Overall, the time complexity is

O

 ∏
p⩽n

p prime

n∏
i=1

(νp(di) + 1) · n log n

 .
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Notice that the double product simply computes the number of factors of di, so we can
rewrite this as

O

(
n∏

i=1

τ(di)n log n

)
.

However, τ(di) ⩽ 2
√
di, so we can bound this complexity above with

O

(
n∏

i=1

(2
√
di)n log n

)
= O(

√
|G|2n · n log n).

As stated earlier, when di are large, the
√
di replacement is weak and the algorithm is

much faster.

10. Conclusion

In this paper, we started with the Davenport constant, a purely combinatorial problem.
In particular, we investigated several conjectures which led us to an interesting group
theory result with many computational applications. This demonstrates the intercon-
nectedness of mathematics: the investigation of a concept often leads to discoveries in
seemingly unrelated ideas. Our work also points to several future directions for study:
Conjecture 5.8 is still an open problem that can provide insights between the Davenport
constant and the structure of the group. In addition, Theorem 7.1 along with the al-
gorithms in sections 8.1 and 8.2 can help guide future investigations for applications in
computational algebra. We hope to pair these algorithms with theorems in the literature
to compute Aut(G) and other group properties.



THE DAVENPORT CONSTANT AND AUTOMORPHICALLY EQUIVALENT ELEMENTS 21

Appendix A. Pseudocode for Algorithms and Numerical Analysis

The following is pseudocode for Algorithm 8.1, where the isAutoImage(x, y, G) function
returns whether x and y are automorphic images in finite abelian group G written in its
invariant factor decomposition.

1: function DecomposeElementIntoParts(G, x)
2: factors← factors(|G|)
3: for p in factors do
4: for i← 1 to |G| do
5: if νp(G[i]) ̸= 0 then
6: Add i to psubindeces
7: end if
8: end for
9: for i in psubindeces do

10: Add νp(x[i]) to components
11: end for
12: Add components to pParts
13: end for
14: return pParts
15: end function
16: function DecomposeAbelianGroup(G)
17: factors← factors(|G|)
18: for p in factors do
19: for i← 1 to |G| do
20: if νp(G[i]) ̸= 0 then
21: Add νp(G[i]) to components
22: end if
23: end for
24: Add components to pParts
25: end for
26: return pParts
27: end function
28: function Sort(f)
29: Sort f by the first element in the pair
30: end function
31: function pGroupSNF(f)
32: Sort(f)
33: for i← 1 to Length(f) do
34: Add addto to f [i][1]
35: Add Max(0, f [i][2]− f [i][1]) to addto
36: end for
37: for i← 1 to Length(f) do
38: Add Min(f [i][1], f [i][2]) to final
39: end for
40: return final
41: end function
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42: function combineLists(list1, list2 )
43: for i← 1 to length(list1) do
44: list [i] ← [list1 [i], list2 [i]]
45: end for
46: return list
47: end function
48: function isAutoImage(x, y, G)
49: decomp ← DecomposeAbelianGroup(G)
50: partsx ← DecomposeElementsIntoParts(x)
51: manipx ← CombineLists(partsx, decomp)
52: for i← 1 to Length(manipx ) do
53: manipx[i] ← pGroupSNF(manipx [i])
54: end for
55: partsy ← DecomposeElementsIntoParts(y)
56: manipy ← CombineLists(partsy, decomp)
57: for i← 1 to Length(manipy) do
58: manipy [i] ← pGroupSNF(manipy [i])
59: end for
60: if manipx = manipy then
61: return true
62: end if
63: return false
64: end function

We ran this algorithm for groups of the form Cn
4 for n ∈ {3 + 10k | 0 ⩽ k ⩽ 16} ∪ {2k |

1 ⩽ k ⩽ 9}, x = (1, 1, . . . ), and y = (3, 3, . . . ) so that the exponent remains constant
and small enough so that the prime factorization does not contribute significantly to the
runtime. The data is shown in the table below.

Rank 2 3 4 8 13 16 23 32 33 43 53 63 64 73
Runtime (ms) 1.6 2 1.8 3.6 4 4.6 8 9.2 9 17 20 26 26.6 35

Table 1. Rank vs Runtime (ms)

Rank 83 93 103 113 123 128 133 143 153 163 256 512
Runtime (ms) 44 61 72 88 106 110.6 122 145 173 199 545.8 3263

Table 2. Rank and Runtime (ms) continued

Implementing in GAP and using Python polynomial fitting code, the best fit polyno-
mial is 0.2129476474670508x1.28247480729629, which is near-linear and consistent with the
runtime of O(n log n).
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