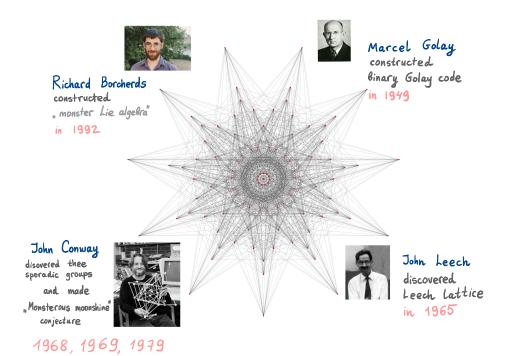
Nearly impossible

Leech lattice



1979 (V. Levenstein / A. Odlyzko & N. Sloan)

The shortest non-zero vectors of the Leech lattice form the best sphere kissing configuration in \mathbb{R}^{24} .

2016 (H. Cohn, A. Kumar, S. Miller, D. Radchenko, M.V)

deech lattice provides the Best sphere packing in dimension 24.

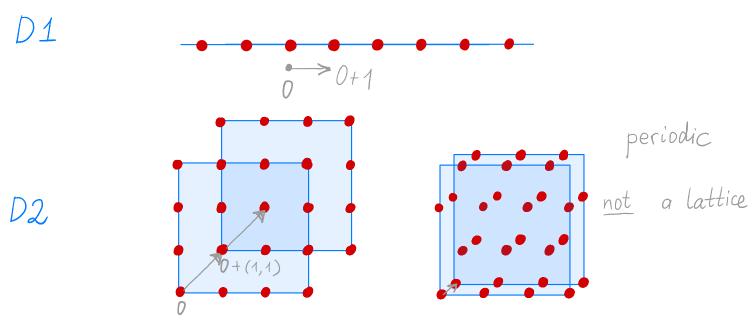
Dimension

D1 D2 D3

The d-dimensional Euclidean space \mathbb{R}^d consists of the points $x = (x_1, x_2, ..., x_d)$.

Each coordinate α_i is a real number.

Lattices



Example: $\mathbb{Z}^2 = \{(m,n) \mid m,n \in \mathbb{Z}^2\}$ the set of points on the plane with integer coordinates.

Distance between 2 points in 12^d

Let
$$x = (x_1, ..., x_d)$$
 and $y = (y_1, ..., y_d)$
Be two points in \mathbb{R}^d .
Then

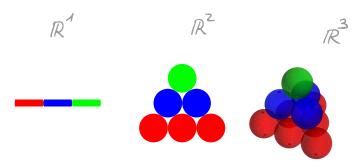
dist
$$(x, y) = \sqrt{(x_1 - y_1)^2 + ... + (x_d - y_d)^2}$$
.

$$(x_1, y_1) = (x_2, y_2)$$

$$|x_2 - y_2|$$

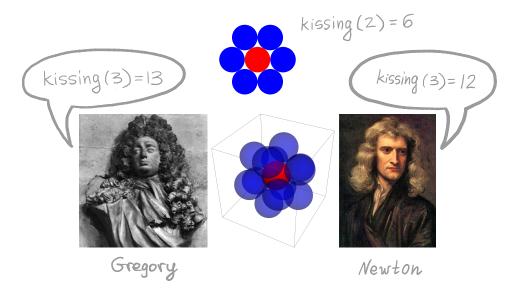
$$|x_1 - y_1|$$

Balls and spheres in Rd



The ball with center x and radius r is the set of points y such that the distance between x and y is less then r.

Kissing number

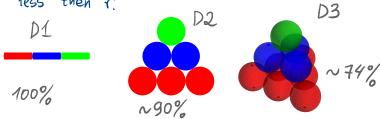


What do we know about kissing numbers?

dimension	Kissing number
1	2
2	6
3	12
4	24 2003 O. Musin
5	40-44 V. Levenstein
6	72-78 A. Odlyzko & N. Sloane
7	126 - 134
8	240 The shortest vectors of E8 Lattice
24	196560 The shortest vectors of Leech Lattice 1979

Sphere packing in Rd

The Ball with center x and radius r is the set of points y such that the distance between x and y is less then r.

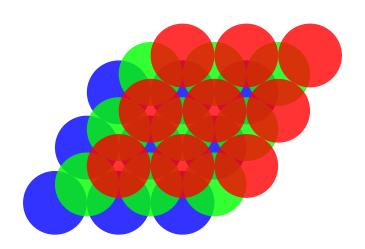


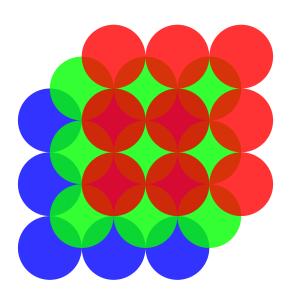
What is the densest possible configuration of balls in IRd?

Keplers conjecture

Johan Kepler

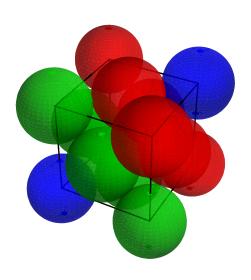
Thomas Harriot

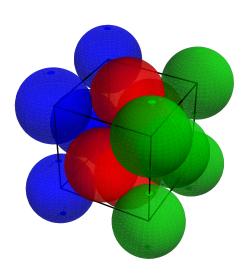




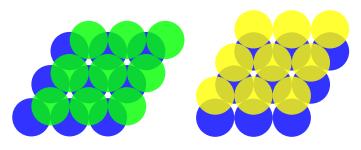
face centered cubic fattice

White the second cubic faces of the cubes





Why is Kepler conjecture so difficult?



There exist uncountably many sphere packings of maximum density.

Thomas Hales resolved Kepler's conjecture in 1998.

Packings and error correcting codes

Claud Shannon

"A mathematical theory of communication"

Richard Hamming

Error correcting codes

1947

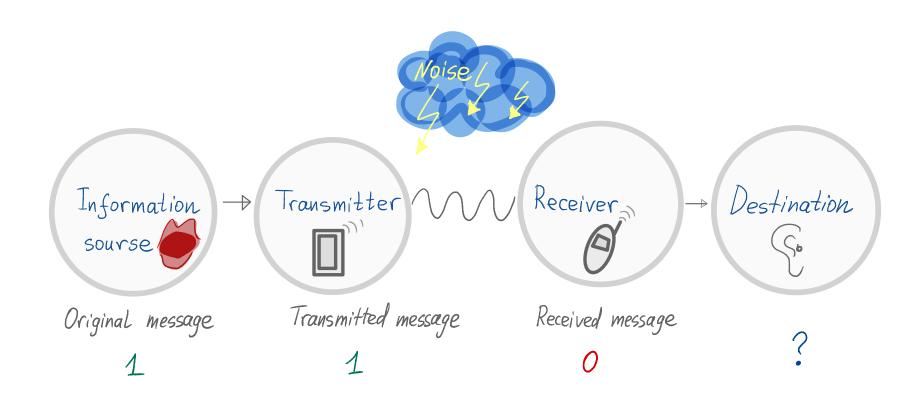
Marcel Golay

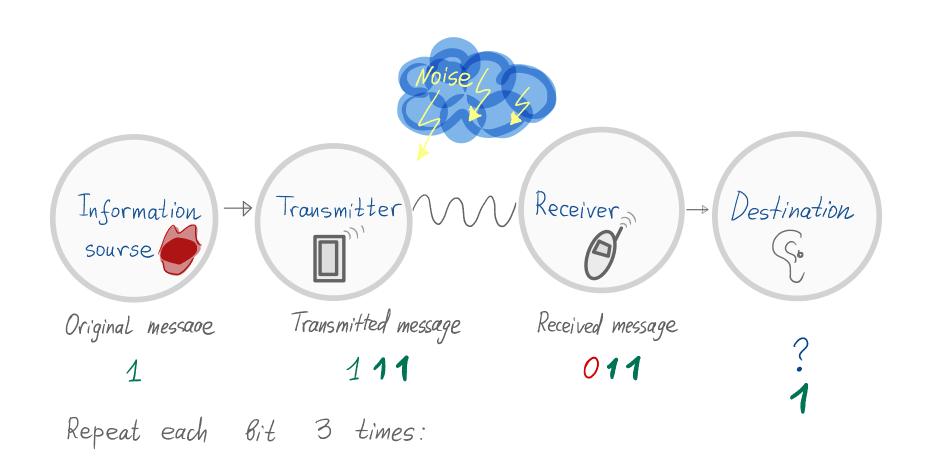
Binary Golay code

1949

A general communication system (By C. Shannon) Moise Information Transmitter Receiver Destination

sourse





We can detect 2 errors and correct 1 error.

Binary Golay code

```
Voyager

2 codewords of length 24

Original message of length 12 each 2 distinct

Transmitted message of length 24 codewords

Detects 7 errors

Corrects 3 errors

Corrects 3 errors
```

Geometric interpretation of error correcting codes

Hamming space: all words of fixed length

$$x = (x_1, ..., x_d) \qquad x_i \in \{0, 1\}$$

Hamming distance: the number of distinct symbols on corresponding positions.

Example: dist
$$((0,1,0), (0,0,0)) = 1$$

Triangle inequality:

dist
$$(x, y) \leq dist(x, z) + dist(z, y)$$

Recall:

The Ball with center or and radius or is the set of points y such that the distance between x and y is less then r.

$$B(x,r):=dy \mid dist(x,y) < 1$$

A code that corrects r errors
is
a packing of balls of radius r

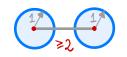
in Hamming space.

From Golay code to Leech lattice

deech lattice is the set of vectors of the form: $\frac{1}{2^{3/2}}\begin{pmatrix} 1 & 0 & 0 & 11 \\ a_1, a_2, \dots, a_{24} \end{pmatrix}$ a_i are integers such that $a_1 + a_2 + \dots + a_{24} \equiv 4a_1 \equiv 4a_2 \equiv \dots \equiv 4a_{24} \pmod{8}$ and

for each fixed residue class modulo 4 the 24 bit word, whose 1-s correspond to the coordinates i such that 9; belongs to this residue class is a word in a binary Golay code.

- · Leech lattice has 1 point per unit of volume in R29
- ullet distance between two distinct points is ≥ 2



$$\begin{aligned} & \ell_1, \ \ell_2 \in \mathcal{L}_{24} \\ & | \ \ell_1 - \ell_2 | = \sqrt{2n} \\ & n \in \mathbb{Z}_{\geq 0} \end{aligned}$$

Theorem (2016) No packing of equal Balls in 24-dimensional Euclidean space has density greater then the density of the Leech lattice packing.

- 1) Sphere packing
- 2) Dimensions
- 3) Lattices
- 4) Error correcting codes
 5) Golay code
 6) deech lattive

- 7) Mathematical proofs