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Abstract. In this paper, we research the partial order of minors of the positive Grassman-
nian (i.e. a space that parametrizes k × n matrices with all k × k minors positive) with a
fixed maximal set of largest minors. This is connected to a combinatorial structure called
a circuit graph. The maximal set of the largest minors corresponds to some cycle of length
n in the circuit graph, and then, abstractly, the further away in the graph some minor is
from maximal the less its value. But this further is some non-trivial property called cubical
distance, which be explained in the paper.

1. Introduction

Since its introduction by Postnikov in 2006 [6], the totally positive (TP) Grassmannian
has been studied extensively, unveiling a rich combinatorial structure as well as numerous
applications to physics and beyond. Due to its manifold connections to other combinatorial
objects, as well as connections to objects important to physics such as the amplituhedron [1]
and to integrable systems [4], it is very natural to study in detail the structure of the totally
positive Grassmannian itself, in hopes that this will lead to insights in related fields. One
such direction is to study equalities and inequalities between minors in the TP Grassmannian.
Inequalities between products of minors have been studied as early as 2004, by Skadera in [8]
and others ( [5] [7]).

It is also of interest to study inequalities between the minors themselves. This was first
done by Farber and Postnikov in [3], and then extended by Farber and Mandelshtam in [2].
In particular, arrangements of largest equal minors were shown in [3] to be in bijection with
the simplices of a triangulation of the hypersimplex studied by Stanley, Sturmfels, Lam,
and Postnikov. In [2], second largest minors were shown to correspond to the facets of
the simplices of the triangulation. For the tth largest minors, [2] conjectures that these are
related to points of so-called cubical distance t on the dual graph of the triangulation. In
this paper, we address this conjecture and discuss steps that we have taken towards proving
it.

This paper is structured as follows. In section 2, we give relevant background and defini-
tions to understand the rest of the paper. In section 3, we are introducing a combinatorial
connection between an arrangement of minors and the circuit graph, introducing the cubi-
cal distance on the circuit graph and conjecture 2.10 what we intended to prove. Section
4 is dedicated to our own research results on trying to simplify a cubical distance concept
by finding an alternative approach that we called the stratification of the circuit graph, we
introduced some conjectures (see 4.9 and 4.7)about this structure that is enough to prove
conjecture 4. In section 5 we wrote some small things about not partial but absolute order.

Acknowledgements. We would like to thank our mentor Yelena Mandelshtam for help-
ing us with this project and revising the paper. Also, we want to express our gratitude to
everyone at MIT who made the Yulia’s Dream program possible.
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2. Preliminaries

Definition 2.1. let V be an n−dimensional real vector space, and let k be an integer such
that 0 ≤ k ≤ n. The Grassmannian Gr(k, V ) is the space of all k− dimensional subspaces
of V .

The space G(k,Rn) is denoted by Gr(k, n). For A ∈ Gr(k, n) let AI , for I ∈
(
[n]
k

)
, denote

its k × k submatrix with column set I and ∆I = det(AI). The ∆I are called Plücker

coordinates and give an embedding of Gr(k, n) into P(
n
k)−1, the

(
n
k

)
-dimensional projective

space. Further we will be mostly interested in positive Grassmannian, Gr+(k, n). It is the

subset of G(k, n) such that det(AI) ≥ 0 holds for all A ∈ Gr+(k, n) and I ∈
(
[n]
k

)
.

Definition 2.2. Let U = (U0,U1, · · ·Ul) be an ordered set-partition of
(
[n]
k

)
according to

Plücker coordinates in A ∈ Gr+(k, n) such that:
(1) ∆I = 0 for I ∈ U0

(2) ∆I = ∆J if I,J ∈ Ui

(3) ∆I < ∆J if I ∈ Ui J ∈ Uj with i < j
We call such an ordered set partition an arrangement of minors.

This partition cannot be arbitrary and has an interesting combinatorial structure, which
is the focus of this paper.

Definition 2.3. We say that AI , I ∈
(
[n]
k

)
is a t-largest minor in A ∈ Gr+(k, n) if there

exists an arrangement of minors U of G(k, n) such that I ∈ Ul−t.

The next definitions are a crucial combinatorial feature of arrangements of minors

Definition 2.4. For a multiset S of elements from [n], let Sort(S) be the non-decreasing se-

quence obtained by ordering the elements of S. Let I, J ⊂
(
[n]
k

)
and let Sort(I∪J)=(a1; a2; · · · ; a2k).

Define:
Sort1(I, J) := {a1; a3; · · · ; a2k−1}, Sort2(I, J) := {a2; a4; · · · ; a2k}.

A pair I;J is called sorted if Sort1(I, J) = I and Sort2(I, J) = J , or vice versa

For example the pair {1,2,5},{3,4,6} is not sorted and Sort1(I, J) ={1,2,3} , Sort2(I, J) ={4,5,6}
which means that the pair {1,2,3},{4,5,6} is sorted. The next inequality is known as Skan-
dera inequality and it is the main tool for building the partial order in our partition.

Theorem 2.5 ( [8]). Let I, J ∈
(
[n]
k

)
be a pair which is not sorted. Then ∆sort1(I,J)∆sort2(I,J)

≥ ∆I∆J .

Definition 2.6. A collection I = I1, I2, · · · , Ir of elements in
(
[n]
k

)
is called sorted if Ii, Ij

are sorted, for any pair 1 ≤ i < j ≤ n. Equivalently, if Ii = {ai1 < ai2 < · · · < aik} for all i
then I is sorted if (after possible reordering of the Ii’s) we have

a11 ≤ a21 · · · ≤ ar1 ≤ a12 ≤ a22 ≤ · · · ≤ ark

For I ∈
(
[n]
k

)
let ϵI be the vector {ϵ1, ϵ2, · · · , ϵn} ∈ {1, 0}n where ϵi = 1 if i ∈ I otherwise

ϵi = 0. We will use such designation later to define circuit.
As was shown in [3] the arrangement of largest minors in a matrix is necessarily a sorted

set, and every possible maximal sorted set can be an arrangement of largest minors. Any
maximal (by inclusion) sorted set of

(
[n]
k

)
contains n elements.
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Figure 1. An example of all maximal thrackles for
(
[5]
2

)
up to rotation and

symmetry.

For k = 2 a sorted set can be represented on a graph where vertices form a regular n-gon
and every two edges intersect or have a common vertex. This kind of graph is called a
thrackle. See Figure 1 for some examples.

Now we want to define the graph Γk,n, which is a dual graph of a certain triangulation
of the hypersimplex, and as we will show later there is a connection between some features
of the dual graph and the partial order on the partition of minors induced by a maximal
arrangement.

Definition 2.7. The Dual Graph Γk,n is the graph whose vertices are all maximal sorted
sets and two vertices I, J are connected if |I ∩ J | = n− 1, in the language of thrackle, it can
be explained that two vertices (thrackles) are connected if we can obtain one thrackle from
the other by switching one edge.

Figure 3 shows some dual graphs. For us, it is important that every vertex of a graph
corresponds to a maximal arrangement of minors, and conceptually, there is a correlation
between how big, the determinant of the matrix can be, and how close the first vertex of the
dual graph where this ∆I appears, to vertex that corresponds to maximal minors.

But to define this “closeness” we have to define the so-called cubical distance. To give
intuition on cubical distance let us consider the blue edges in Figure 2, and note that they
form a square, while the red edges form a 3-dimensional cube. We say that two vertices J1, J2
in Γ(k,n) are of cubical distance 1 if both of them lie on a certain cube (of any dimension).
For example, vertices a and b from Figure 2 are of cubical distance 1 since both of them lie
on a 1-dimensional cube (which is just an edge). similarly, a and c are of cubical distance 1
(both of them lie on a square), as well as c and d (both of them lie on a 3-dimensional cube).

Definition 2.8. Let J1, J2 ⊂
(
[n]
k

)
be maximal sorted collections, then we say that the cubical

distance cubed(J1, J2) = D if we can arrive from J1 to J2 by moving along D cubes in Γ(k,n)

and D is minimal with regard to this property. Also for W ∈
(
[n]
k

)
and J1 ⊂

(
[n]
k

)
we say

that cubed(W,J1) = cubed(J1,W ) = D, if for every J2 that contains W , cubed(J1, J2) ≥ D
and there exist such J2 that this inequality turns into equality.

Definition 2.9. Let J ⊂
(
[n]
k

)
be arrangment of largest minors, then we say that W ∈

(
[n]
k

)
is

(≥ t, J)-largest minor if for any arrangement U = (U0,U1, · · ·Ul) where Ul = J the following
holds, W /∈ Ul−t+1,U1, · · ·Ul.
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Figure 2. Γ2,6 where some vertices attached to corresponding thrackle

And now we are ready to present the conjecture from [2] that we are working on.

Conjecture 2.10. Let J ⊂
(
[n]
k

)
be an arrangement of largest minors. If cubed(W,J) = t

then W is a (≥ t, J)-largest minor.

In the following part of our paper we will introduce some other ways to simplify and
understand the concept of cubical distance, since in present form it is structure is difficult
to work with.

3. Dual Graph and Circuit triangulation

Here we will demonstrate an alternative approach to maximal sorted sets.

Definition 3.1. We define Gn,k to be the directed graph whose vertices are {ϵI}I∈([n]
k )

and

two vertices ϵ = (ϵ1, ϵ2, ..., ϵn) and ϵ′ are connected by an edge oriented from ϵ to ϵ′ if there
exists some i ∈ [n] such that (ϵi, ϵi+1) = (1, 0) and the vector ϵ′ is obtained by ϵ by switching
ϵi, ϵi+1(note that we are working mod n so if i = n then i + 1 = 1. We call the graph Gn,k

the circuit graph.

A circuit in Gk,n of minimal length must be of length n, for an example see Figure 4. And
the most interesting fact about the minimal circuits is that they exactly match the maximal
sorted sets, so every minimal circuit is some maximal sorted set and vice versa. From now
on we will think of maximal sorted sets as minimal circuits.

Now we introduce the connection between cubical distance and circuit triangulation that
was described in [2].
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Figure 3. Γ3,6 (left-top),Γ2,7 (right-top),Γ2,8 (at the bottom)

Claim 3.2. All vertices of a t-dimensional cube correspond to all permutations of some t
non-intercepting detours.

For example, a circuit with all the following detours in Figure 4 forms a 3-dimensional
cube in Γ3,6

Proof. If some circuit has t non-intersecting detours then these t edges of the dual graph
coming from this vertex will be completed to a cube because any subset of these detours can
be applied and these will be exactly the 2t vertices of our cube. ■

From this fact flow plenty of interesting facts about the dual graph, for example, that the
maximal dimension of any cube in the graph is ⌈n

2
⌉. And more importantly, now we can

interpret cubical distance as follows:

Claim 3.3. The cubical distance equals t if and only if Ci is obtained from Cj (where Ci

Cj are minimal circuits) by a series of t actions like in 3.2 See Figure 6 for a picture of
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Figure 4. This is some minimal circuit in G3,6, and one can easily check
that all elements are sorted

Figure 5. Here we can change {1, 4, 5} to {1, 3, 6}, {2, 4, 7} to {1, 4, 8} and
{1, 3, 4} to {1, 2, 5}.And we can apply any subset of these detours, so this
will be 8 vertices of some 3-dimensional cube in Γ3,6.

every possible set of detours for certain triangulation, each different color corresponds to the
element at a certain cubical distance:

4. Stratification of circuit graph

In this section, we shall introduce the alternative approach to the concept of cubical
distance. We will define this stratification recursively.

Definition 4.1. The Column-Stratification R = {R0, R1, · · ·Rn} of a circuit graph Gn,k is
the division of its vertices according its value mod(n). A vertex x={x1, x2, · · ·xn} ∈ Gn,k is
in Rt if sum of i where xi = 1 is equal to t mod(n).

Such a stratification is comfortable for us because every edge is directed from Ri to Ri+1.
This stratification is cyclic meaning that Rn+i= Ri. For some vertex v we call incoming and
outgoing edges left and right, respectively.
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Figure 6. Here the cubical distance from the maximal set (black) to pink
vertices is 2, to purple is 3, and to green is 4

Figure 7. This picture illustrates all inequalities that can be obtained from
the particular maximal set (which is black)

Definition 4.2. The row-Stratification S = {S0, S1, · · ·Sl} of the circuit graph Gn,k with
maximal circuit W ⊂ Gn,k is defined inductively:
(1) S0=W
(2) St+1 consists of vertices that were not in any Si with i ≤ t and has two edges to vertices

from Si one in and one out (i.e one left and one right).
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The maximal circuit W can be any circuit in Gn,k. The column-Stratification gives us
better picture and understanding of construction while the Row-Stratification is another
approach to cubical distance. Assume that we have A ∈ Gr+(k, n) such that there exist n
maximal minors so that they form a maximal sorted arrangement W which is a circuit in
Gn,k. S0=W so all minors are on cubical distance 0, S1 are on distance 1 and so on. The
purpose of this stratification is to change the cubical distance to something easier to work
with. See figure 8 for an example.

Figure 8. It is a picture that illustrates row and column stratifications of
G2,6 with maximal circuit {{2, 6}; {1, 2}; {1, 3}; {2, 3}; {2, 4}; {2, 5}}.

Theorem 4.3. The Row-Stratification exists for every circuit graph Gn,k and maximal circuit
W ⊂ Gn,k.

Proof. The main idea is to use the fact that a dual graph is connected, i.e that we can reach
every circuit from every other circuit by a set of detours. Now, let us suppose that at some
point in our algorithm, we cannot add any vertex, it means that every vertex that isn’t in
our S yet has at most one connection to S. let us notice now that if we change the maximal
circuit to other maximal circuits where all vertices are from S the situation will remain the
same. But we know that we may reach every circuit by a set of detours, but on the other
hand, while doing detours, we always remain inside S, so stratification always exists. ■

We would like to prove the equivalence of the stratification we described and the stratifi-
cation according to cubical distance. For some maximal C0, let us call Ci the set of minors
at cubical distance i.

Proposition 4.4. If S0 = C0, then S1 = C1.

Proof. Here definitions of C1 and S1 actually coincide, both C1, S1 are vertices connected
twice to the maximal set. ■

Now we will describe what will happen with the stratification after making the detour.
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Theorem 4.5. If S
′
0 obtained from S0 by detour, then the level of all members of the circuit

graph is less than by 1, so each vertex in Si or stayed in Si, or went to S±1+i.

Proof. If we suppose for the sake of contradiction that A moved from Si to S<i−1 then some
of its on-top neighbors B on Si−1 have to move to at least S<i−2, but we can now say the
same for B, so that will eventually lead us to that some vertex on S1 has to be moved by at
least two levels on top, what is actually impossible. ■

Here is our result about the relationship between cubical distance and our stratification:

Theorem 4.6. If S0 = C0, then any vertex in Ci is on S≤i.

Proof. The statement easily follows from two previous statements. Suppose that for some
A ∈ Ci, also A ∈ S>i, then by definition of being in Ci there is a sequence of i detours after
which A will be in C0. If we will apply this sequence to S0, then each time level of A in
the stratification will decrease on at most 1, so it will be impossible to A get to S0 after i
detours. ■

Actually, we believe that our stratification and division according to cubical distance
coincide. We can prove it up to S4 and again checked it for some large grassmanians using
code.

Conjecture 4.7. If S0 = C0, then Si = Ci for all i.

Now we want to formulate the main conjecture about the structure of the stratification,
first, we need a small lemma:

Lemma 4.8. Every two vertices A,B that are connected with some vertex C by two incoming
vertices are connected with some other vertex D by outgoing vertices and vice versa.

Proof. Let us look at C, in fact, A,B are increasing (or decreasing) two distinct, non-
consecutive (because otherwise increasing one of these wouldn’t be possible) numbers by 1.
So D is just a vertex where these two numbers increased simultaneously. ■

See Figure 9 for an example of such A,B,C,D.
Now we are interested in possible positions of D in our stratification regarding A,B:

Conjecture 4.9. If A,B belonging to Si, Sj respectively with i ̸= j, then D belongs to Sk,
where k ≥ min(i, j). And if i = j, then common vertices lies on S≤i+1

We checked this using code for some random S0 up to Gr(10, 20). From this conjecture
follows immediately many interesting things, in particular, that there are no two vertices
on S>n−1 connected to one vertex on Sn cause if we apply conjecture to another common
vertex we will get a contradiction. Figure 10 visualizes the allowed location of C,D with
green, and not allowed with red (note that there are two cases depending on whether or not
i = j. Now we see how if this conjecture is true, it can prove some really good results about
the arrangements of minors. Note that in all future conjectures and theorems, when we are
writing some relation on some minors regarding its position in stratification we mean that
this relation holds with some fixed maximal set S0.

Theorem 4.10. If A is a vertex in Sn so there exist B ∈ S<n−1 connected to A, such that
∆A < ∆B
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Figure 9

Proof. Assume that edge from A goes to B it means that B is on the right side from A. It
is just for our convenience. Let A ∈ Rm then B ∈ Rm+1. Let’s call such vertex long because
the difference between levels is more than one. From circuit stratification, it follows that
there exists such vertex B1 ∈ Rm that is higher than B and is connected to it. Hence from
lemma 4.8 there exists vertex A1 ∈ Rm−1 that is connected to A and B1 moreover it is not
higher than Sn−1 from rules of stratification (note that here we do not need the conjecture
4.9, because even if A1 is lower than A it does not matters). Therefore edge A1B1 should be
long. And from Scandera inequality:

∆A∆B1 < ∆B∆A1

So we see that ∆A < ∆B equivalent to ∆A1 < ∆B1 . So we have an algorithm that allows us
to obtain a new long edge Bi higher than Bi−1 and ∆Ai

< ∆Bi
implies ∆Ai−1

< ∆Bi−1
, so for

some Bk ∈ S0, which means that ∆Ak
< ∆Bk

holds, so ∆Ak−1
< ∆Bk−1

holds, and eventually
we will end up with that ∆A < ∆B, what we intended to prove. ■

We would like to give one more proof of this statement that uses conjecture 4.9:

Proof. We prove it by induction on n. The base is immediate, so now let us assume that
it holds for all S<n. First, if B ∈ S0, then it obviously holds for all n, so we might assume
that B is not maximal, then by construction of the stratification, there exists C, such that
B is connected to C, C ∈ S<k and C and A are in the same Rp, so by 4.9, there exist such
D, that D ∈ S<n, and again, by the construction of the stratification D has to be in Sn−1

because otherwise A would be connected to incoming and outgoing vertices on a level higher
than n− 1, what is a contradiction to that A ∈ Sn. let us notice that this conjecture holds
for C,D, so ∆C > ∆D, and applying Skandera inequality for A,B,C,D, we obtain:

∆D∆B > ∆A∆C

so since we know that ∆C > ∆D we have ∆B > ∆A, so we are done. ■
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Figure 10

We understood the relations between long edges, but unfortunately, we cannot prove the
same for edges of length 1, but the following conjecture gives us a relation for at least one
edge of length 1 for any vertex:

Conjecture 4.11. If A is a vertex in Sn there exists B and B1 connected to A, incoming
and outgoing respectively, such that B and B1 are higher in stratification and ∆A < ∆B and
∆A < ∆B1.

Proof. Here we will use induction on n. And the base is immediate, so now let us consider
two cases (see Figure 11). First, if A is connected to B ∈ S<n+1. In such a case, we might
take B as in the previous proof, but instead of taking arbitrary C, we will take such C that
∆B < ∆C (by induction assumption), then we take D and apply the Skandera inequality:

∆D∆B > ∆A∆C

here we know that ∆C bigger than both ∆D,∆B, so we get ∆D > ∆A,so D and B are such
vertices for A. The second case will be almost the same. Again, we take arbitrary B, then
take C connected to B and bigger than it and of the proper type, and let us notice that in
this case, D can be only on Sn−1, so here we will obtain Skandera inequality with ∆C > ∆B,
so we will get ∆D > ∆A so D is desired vertex, then we can do it symmetrically to get D1

from the other side for B1 ■

The last conjecture together with an equivalence between stratification and cubical dis-
tance proves Conjecture 2.10 immediately, since for any vertex in Si we can obtain a chain
of length i+ 1 such that on every step the next minor will be bigger.

5. Arrangements of minors

First of all, we suggested the following conjecture:

Conjecture 5.1. Let J ⊂
(
[n]
k

)
be an arrangement of largest minors, then the two following

statements if cubed(W,J) = t then W is (t, J)-largest minor.

It looks exactly the same as Conjecture 2.10, but instead of (≥ t, J) we have (t, J). We
don’t know yet how to approach this problem, because the example suggested in [3] for
maximal arrangements does not always satisfy this conjecture. Furthermore, we have shown
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Figure 11

that for some J , it is actually impossible for all (2, J) largest minors to simultaneously be
second largest minors. However, individually they all can be. So we likely have to build
completely new structures or improve existing ones. Also, it might be easier to prove this
conjecture for k = 2 or some additional weaker versions of the conjecture. Then we might
think of some other properties of the partitions, because for example, when we suggested
that there exists a matrix where every minor on cubical distance 2 is really second it appears
to be false for Gr+(2, 6).
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