Algorithmically Generated Pants Decompositions of Combinatorial Surfaces

Nicholas Hagedorn
Mentor: Elia Portnoy

MIT PRIMES Conference
October 15, 2023
Overarching Question: How can you cut up a surface?

• What do we mean by surface?

Riemannian 2-Manifolds

• 2-Manifold: A surface that looks “2-dimensional” around each point.

• Riemannian: The surface is smooth and has a geometry: we can define length, angles, and area.

• Orientable.

Just like polygons can be cut up into triangles, Riemannian 2-Manifolds can be cut up into 3-holed spheres (called pairs of pants).
Overarching Question: How can you cut up a surface?

- What do we mean by surface?
Overarching Question: How can you cut up a surface?

- What do we mean by surface?
 - *Riemannian 2-Manifolds.*
Overarching Question: How can you cut up a surface?

- What do we mean by surface?
 - Riemannian 2-Manifolds.
 - 2-Manifold: A surface that looks “2-dimensional” around each point.
 - Riemannian: The surface is smooth and has a geometry: we can define length, angles, and area.
Overarching Question: How can you cut up a surface?

• What do we mean by surface?
 • *Riemannian* 2-Manifolds.
 • 2-Manifold: A surface that looks “2-dimensional” around each point.
 • Riemannian: The surface is smooth and has a geometry: we can define length, angles, and area.
 • Orientable.
Overarching Question: How can you cut up a surface?

- What do we mean by surface?
 - *Riemannian 2-Manifolds.*
 - 2-Manifold: A surface that looks “2-dimensional” around each point.
 - Riemannian: The surface is smooth and has a geometry: we can define length, angles, and area.
 - Orientable.

- Just like polygons can be cut up into triangles, Riemannian 2-Manifolds can be cut up into 3-holed spheres (called pairs of pants).
Definition

A pants decomposition of a topological surface is a set of disjoint, closed, and non-contractible curves that decompose the surface into three-holed spheres.

• Every genus \(g \geq 2 \) surface has a pants decomposition.
• Each such pants decomposition consists of \(3g - 3 \) curves that cut the surface into \(2g - 2 \) pairs of pants.

Fact

Any \(3g - 3 \) curves on a genus \(g \) surface that are disjoint, closed, non-contractible, and not homotopic give a pants decomposition.
Definition

A pants decomposition of a topological surface is a set of disjoint, closed, and non-contractible curves that decompose the surface into three-holed spheres.

• Every genus $g \geq 2$ surface has a pants decomposition.
A pants decomposition of a topological surface is a set of disjoint, closed, and non-contractible curves that decompose the surface into three-holed spheres.

- Every genus \(g \geq 2 \) surface has a pants decomposition.
- Each such pants decomposition consists of \(3g - 3 \) curves that cut the surface into \(2g - 2 \) pairs of pants.
Definition

A *pants decomposition* of a topological surface is a set of disjoint, closed, and non-contractible curves that decompose the surface into three-holed spheres.

- Every genus $g \geq 2$ surface has a pants decomposition.
- Each such pants decomposition consists of $3g - 3$ curves that cut the surface into $2g - 2$ pairs of pants.

Fact

Any $3g - 3$ curves on a genus g surface that are disjoint, closed, non-contractible, and not homotopic give a pants decomposition.
Definition

The *length* of a pants decomposition is the maximum length of a curve in the pants decomposition.
Definition

The *length* of a pants decomposition is the maximum length of a curve in the pants decomposition.

Definition

The *Bers’ constant* of a Riemannian surface S, denoted by \mathfrak{B}_S, is the smallest length of a pants decomposition of S.
Definition

The *length* of a pants decomposition is the maximum length of a curve in the pants decomposition.

Definition

The *Bers’ constant* of a Riemannian surface S, denoted by \mathfrak{B}_S, is the smallest length of a pants decomposition of S.

- Describes how difficult it is to cut a surface S into simpler surfaces.
Definition

The length of a pants decomposition is the maximum length of a curve in the pants decomposition.

Definition

The Bers’ constant of a Riemannian surface S, denoted by \mathcal{B}_S, is the smallest length of a pants decomposition of S.

- Describes how difficult it is to cut a surface S into simpler surfaces.
- Understanding \mathcal{B}_S is one the largest open problems in the geometry of surfaces.
Prior Results

Theorem (Buser, 1981)
A genus $g \geq 2$ hyperbolic surface S with no boundary components satisfies: $g^{1/2} \lesssim \mathcal{B}_S \lesssim g \log(g)$.

Theorem (Buser, 1992)
A genus $g \geq 2$ closed Riemann surface S with no boundary components satisfies: $\mathcal{B}_S \lesssim \left(\frac{\text{Area}(S)}{g} \right)^{1/2}$.

• Uses theoretical algorithm.
• Unknown optimal behavior.

\[a(S) \lesssim b(S) \implies \text{there exists universal constant } C \text{ such that } a(S) \leq b(S)C. \]
Prior Results

Theorem (Buser, 1981)

A genus $g \geq 2$ hyperbolic surface S with no boundary components satisfies: $g^{1/2} \lesssim \mathcal{B}_S \lesssim g \log(g)$.

Theorem (Buser, 1992)

A genus $g \geq 2$ closed Riemann surface S with no boundary components satisfies: $\mathcal{B}_S \lesssim (g \text{Area}(S))^{1/2}$.

- Uses theoretical algorithm.
- Unknown optimal behavior.

$a(S) \lesssim b(S) \implies$ there exists universal constant C such that $a(S) \leq b(S)C$.
Motivating Questions

Question #1

What pants decompositions can we actually find?
Motivating Questions

Question #1
What pants decompositions can we actually find?

Question #2
Does Buser’s algorithm give shorter pants decompositions for “average” surfaces?
Motivating Questions

Question #1
What pants decompositions can we actually find?

Question #2
Does Buser’s algorithm give shorter pants decompositions for “average” surfaces?

Question #3
What’s the length of the nth cut in the decomposition?
How do we make a “discrete” surfaces?

1. Glue together \(n \) triangles with side length one into an \(n \)-gon.
2. Identify edges of the polygon.

A combinatorial surface is a type of Riemannian 2-manifold that is amenable to computation.

Gives rise to random surfaces.
How do we make a “discrete” surfaces?

- Glue together n triangles with side length one into an n-gon.
- Identify edges of the polygon.

A combinatorial surface is a type of Riemannian 2-manifold that is amenable to computation. Gives rise to random surfaces.
How do we make a “discrete” surfaces?

• Glue together \(n \) triangles with side length one into an \(n \)-gon.
• Identify edges of the polygon.

A combinatorial surface is a type of Riemannian 2-manifold that is amenable to computation.

Gives rise to random surfaces.
How do we make a “discrete” surfaces?

- Glue together \(n \) triangles with side length one into an \(n \)-gon.
How do we make a “discrete” surfaces?

- Glue together n triangles with side length one into an n-gon.
- Identify edges of the polygon.
How do we make a “discrete” surfaces?

• Glue together n triangles with side length one into an n-gon.
• Identify edges of the polygon.
• A combinatorial surface is a type of Riemannian 2-manifold that is amenable to computation.
How do we make a “discrete” surfaces?

- Glue together n triangles with side length one into an n-gon.
- Identify edges of the polygon.
- A combinatorial surface is a type of Riemannian 2-manifold that is amenable to computation.
- Gives rise to random surfaces.
Two main ideas:

1. Add together homotopically distinct curves.
Finding Short Curves: Algorithm #1

Two main ideas:

1. Add together homotopically distinct curves.
Finding Short Curves: Algorithm #1

Two main ideas:

1. Add together homotopically distinct curves.
2. Find a new homotopically distinct curve on a surface with zero or one boundary components.
Finding Short Curves: Algorithm #1

Two main ideas:

(1) Add together homotopically distinct curves.
(2) Find a new homotopically distinct curve on a surface with zero or one boundary components.

Question #1

What pants decompositions can we actually find?
Finding Short Curves: Algorithm #1

Two main ideas:

1. Add together homotopically distinct curves.
2. Find a new homotopically distinct curve on a surface with zero or one boundary components.

Question #1
What pants decompositions can we actually find?

Theorem (H. 2023)
Let S be a genus g combinatorial surface. Algorithm #1 finds a length $\lesssim (g \text{Area}(S))^{1/2}$ pants decomposition of S in $\mathcal{O}(g^3)$ time.
Results of Algorithm #1

Question #2

Does Buser’s algorithm give shorter pants decompositions for “average” surfaces?
Question #2
Does Buser’s algorithm give shorter pants decompositions for “average” surfaces?

No!

Nicholas Hagedorn
Algorithmic Pants Decompositions
October 2023
Question #3
What’s the length of the nth cut in the decomposition?
Question #3
What’s the length of the nth cut in the decomposition?

After a certain point, every third cut has length $\frac{4}{3}n$.
Finding Short Curves: Algorithm #2

New idea:

• Grow a ball around a random point until we find a loop that is in a different homotopy class than previous loops.
New idea:

- Grow a ball around a random point until we find a loop that is in a different homotopy class than previous loops.
New idea:

- Grow a ball around a random point until we find a loop that is in a different homotopy class than previous loops.
Finding Short Curves: Algorithm #2

New idea:

- Grow a ball around a random point until we find a loop that is in a different homotopy class than previous loops.
New idea:

- Grow a ball around a random point until we find a loop that is in a different homotopy class than previous loops.
Results of Algorithm #2

Average Pants Decomposition Length vs. Genus

Pants Decomposition of a Genus 50 Surface
Results of Algorithm #2

Average Pants Decomposition Length vs. Genus

Pants Decomposition of a Genus 50 Surface
I would like to thank:

- My mentor, Elia Portnoy for his excellent guidance throughout the past year. He has been consistently kind, patient, and enthusiastic and has been invaluable to my PRIMES experience.

- Dr. Tanya Khovanova, Dr. Slava Gerovitch, Prof. Pavel Etingof, and the MIT PRIMES-USA Program for making this research possible.

- My family.
P. Buser.
Riemannshe flächen und längenspektrum vom trigonometrinishen standpunkt.

P. Buser.
Geometry and spectra of compact Riemann surfaces.

P. Buser and M. Seppälä.
Symmetric pants decompositions of Riemann surfaces.

L. Guth, H. Parlier, and R. Young.
Pants decompositions of random surfaces.
Geometric and Functional Analysis, 21, 2011.