Existence of Circle Packings on Certain Translation Surfaces

Anton Levonian

Mentored by Professor Sergiy Merenkov

MIT PRIMES Conference

October 15, 2023
Overview

1. Translation Surfaces
2. Circle Packings
3. Our Work
4. Acknowledgements
Translation Surfaces: Demonstration on a Torus

Existence of Circle Packings

October 15, 2023
Translation Surfaces: Demonstration on a Torus

Anton Levonian

Existence of Circle Packings

October 15, 2023
Translation Surfaces: Demonstration on a Torus
Translation Surfaces: Demonstration on a Torus
Translation Surfaces: Demonstration on a Torus

Anton Levonian

Existence of Circle Packings

October 15, 2023
Translation Surfaces: Demonstration on a Torus
Translation Surfaces: Demonstration on a Torus

Existence of Circle Packings

October 15, 2023
Translation Surfaces: Demonstration on a Torus

Existence of Circle Packings

October 15, 2023
Translation Surfaces: Demonstration on a Torus

Existence of Circle Packings

October 15, 2023
Translation Surfaces: Demonstration on a Torus

Anton Levonian

Existence of Circle Packings

October 15, 2023
Translation Surfaces: Demonstration on a Torus
Translation Surfaces: Demonstration on a Torus
The torus has genus 1, where the genus of a surface is the number of holes in the surface.

A torus is an example of translation surface.
A translation surface is formed by identifying opposite sides of \mathcal{P}, where \mathcal{P} is a collection of several polygon in the plane satisfying the following conditions:

- \mathcal{P} has an even number of sides.
- Opposite sides of \mathcal{P} are parallel and equal in length.
A translation surface is formed by identifying opposite sides of \mathcal{P}, where \mathcal{P} is a collection of several polygon in the plane satisfying the following conditions:

- \mathcal{P} has an even number of sides.
- Opposite sides of \mathcal{P} are parallel and equal in length.
A translation surface is formed by identifying opposite sides of P, where P is a collection of several polygon in the plane satisfying the following conditions:

- P has an even number of sides.
- Opposite sides of P are parallel and equal in length.
A *translation surface* is formed by identifying opposite sides of \(\mathcal{P} \), where \(\mathcal{P} \) is a collection of several polygon in the plane satisfying the following conditions:

- \(\mathcal{P} \) has an even number of sides.
- Opposite sides of \(\mathcal{P} \) are parallel and equal in length.
A square-tiled surface is a translation surface for which \(\mathcal{P} \) is formed by joining opposite sides of congruent squares together.

A torus is an example of a square-tiled surface.
A square-tiled surface is a translation surface for which P is formed by joining opposite sides of congruent squares together.

A torus is an example of a square-tiled surface.
A singular point of a translation surface is a point to which multiple vertices of the polygon are identified.

The angle at a singular point, or cone angle, is $2\pi(\delta + 1)$, where δ is the order of the singular point.

The above singular point has order \((5 \cdot \frac{\pi}{2} + 3\frac{\pi}{2} + 2\pi) \cdot \frac{1}{2\pi} - 1 = 2\).
A *singular point* of a translation surface is a point to which multiple vertices of the polygon are identified.

The angle at a singular point, or *cone angle*, is \(2\pi(\delta + 1)\), where \(\delta\) is the *order* of the singular point.

The above singular point has order \((5 \cdot \frac{\pi}{2} + \frac{3\pi}{2} + 2\pi) \cdot \frac{1}{2\pi} - 1 = 2\).
A singular point of a translation surface is a point to which multiple vertices of the polygon are identified.

The angle at a singular point, or cone angle, is $2\pi(\delta + 1)$, where δ is the order of the singular point.

The above singular point has order

$$
(5 \cdot \frac{\pi}{2} + 3\frac{\pi}{2} + 2\pi) \cdot \frac{1}{2\pi} - 1 = 2.
$$
A *singular point* of a translation surface is a point to which multiple vertices of the polygon are identified.

The angle at a singular point, or *cone angle*, is \(2\pi(\delta + 1)\), where \(\delta\) is the *order* of the singular point.

The above singular point has order \((5 \cdot \frac{\pi}{2} + \frac{3\pi}{2} + 2\pi) \cdot \frac{1}{2\pi} - 1 = 2\).
Theorem (Gauss-Bonnet)

Let X be a translation surface with k singular points v_i, each with order $\delta(v_i)$, and let $\chi(X)$ be the Euler characteristic of X. Then

$$\sum_{i=1}^{k} \delta(v_i) + \chi(X) = 0.$$

- $\chi(X) = 2 - 2g$.
- A *stratum*, denoted by $\mathcal{H}(\kappa)$, is determined by a partition of $2g - 2$.
A circle packing is defined as a collection of interiorwise disjoint disks.
A circle packing is defined as a collection of interiorwise disjoint disks.

The circle packing C_3 on a surface in $H(2)$

A contacts graph G: circles corresponds to vertices of G and tangencies correspond to edges of G.
Below is a circle with radius less than $\frac{1}{2}$ centered at a singular point.
Equivalence of Circle Packings

Existence of Circle Packings

October 15, 2023
Questions

- Given a circle packing on a square tiled surface $X \in \mathcal{H}(\kappa)$, is it generally possible to realize an equivalent circle packing on a square tiled surface $Y \in \mathcal{H}(\kappa)$ with a different number of squares from X? If not, can an equivalent packing be realized on an affine transformation of Y?

- What are the "simplest" contacts graphs that cannot be realized on any surface in a certain stratum?
Realizability of C_3

An equivalent packing to C_3 cannot be realized on any four-squared translation surface in $\mathcal{H}(2)$ without applying an affine transformation.
C_3 realized on a four-squared surface stretched vertically by a factor of $\frac{4}{3}$.
Theorem

A maximum of 8 multi-loops and 8 multi-edges are realizable on any contacts graph in $\mathcal{H}(2)$.

8 multi-loops in $\mathcal{H}(2)$

8 multi-edges in $\mathcal{H}(2)$

Demonstration of theorem in $\mathcal{H}(2)$.
Theorem

Given a genus g stratum $\mathcal{H}(2g-2)$, $4g$ multi-loops and $4g$ multi-edges can be realized on at least one surface of $\mathcal{H}(2g-2)$.

Demonstration of theorem in $\mathcal{H}(4)$.

12 multi-loops in $\mathcal{H}(4)$

12 multi-edges in $\mathcal{H}(4)$
Realizable Contacts Graphs in $\mathcal{H}(1,1)$

Theorem

Up to 5 multi-loops and 6 multi-edges are realizable on any contacts graph in $\mathcal{H}(1,1)$.

5 multi-loops in $\mathcal{H}(1,1)$

6 multi-edges in $\mathcal{H}(1,1)$

Demonstration of theorem in $\mathcal{H}(1,1)$.
Theorem

Given a genus g stratum $\mathcal{H}(g-1, g-1)$, $2g+1$ multi-loops and $2g+2$ multi-edges can be realized on at least one surface of $\mathcal{H}(g-1, g-1)$.

7 multi-loops in $\mathcal{H}(2,2)$

8 multi-edges in $\mathcal{H}(2,2)$

Demonstration of theorem in $\mathcal{H}(2,2)$.
I would like to thank...

- My mentor, Professor Sergiy Merenkov, for his guidance during the research
- Dr. Tanya Khovanova, Dr. Slava Gerovitch, Professor Pavel Etingof and the PRIMES-USA program for this invaluable research opportunity
- My family, for their support

