On Generalized Eulerian Numbers

David Dong
Mentored By: Tanya Khovanova

October 14–15, 2023
MIT PRIMES Conference
Permutations

- We will often consider permutations of the numbers 1, 2, ..., n.
- Treat these as functions (bijections) from \{1, 2, ..., n\} to itself.
Permutations

- We will often consider permutations of the numbers 1, 2, \ldots, n.
- Treat these as functions (bijectons) from \{1, 2, \ldots, n\} to itself.
- There are two main ways to write permutations.

Two-line Notation

Example:

\[\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 5 & 6 & 3 & 1 & 4 & 2 \end{pmatrix} \]
We will often consider permutations of the numbers 1, 2, \ldots, n. Treat these as functions (bijections) from \{1, 2, \ldots, n\} to itself. There are two main ways to write permutations.

Two-line Notation

Example:

\[
\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 5 & 6 & 3 & 1 & 4 & 2 \end{pmatrix}
\]

Here, \(\sigma(1) = 5, \sigma(2) = 6, \sigma(3) = 3\), etc.

Sometimes, we simplify and write 563142.
Permutations

- Previous Example: $\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 5 & 6 & 3 & 1 & 4 & 2 \end{pmatrix}$

- Reapplying σ on any element returns back to itself eventually:
 \[\sigma(1) = 5, \quad \sigma(\sigma(1)) = 4, \quad \sigma(\sigma(\sigma(1))) = 1. \]
Permutations

- Previous Example: \(\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 5 & 6 & 3 & 1 & 4 & 2 \end{pmatrix} \)

- Reapplying \(\sigma \) on any element returns back to itself eventually:
 \[
 \sigma(1) = 5, \quad \sigma(\sigma(1)) = 4, \quad \sigma(\sigma(\sigma(1))) = 1.
 \]

- Can interpret as cycles! Known as *cycle notation*.

- Each arrow represents an application of \(\sigma \) to the node.
Permutations

- Previous Example: \(\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 5 & 6 & 3 & 1 & 4 & 2 \end{pmatrix} \)

- Reapplying \(\sigma \) on any element returns back to itself eventually:
 \[\sigma(1) = 5, \quad \sigma(\sigma(1)) = 4, \quad \sigma(\sigma(\sigma(1))) = 1. \]

- Can interpret as cycles! Known as **cycle notation**.

 - Each arrow represents an application of \(\sigma \) to the node.
 - We similarly use shorthand and write \(\sigma = (154)(26)(3) \).
 - By convention, we arrange cycles by smallest element, and put smallest element on the left (ensures uniqueness!)
In a permutation, an \textit{ascent} is any position i where $\sigma(i) < \sigma(i + 1)$.

- The \textit{size} of an ascent is $\sigma(i + 1) - \sigma(i)$.
In a permutation, an **ascent** is any position i where $\sigma(i) < \sigma(i + 1)$.

- The **size** of an ascent is $\sigma(i + 1) - \sigma(i)$.
- Example permutation: $\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 5 & 6 & 3 & 1 & 4 & 2 \end{pmatrix}$.
In a permutation, an **ascent** is any position i where $\sigma(i) < \sigma(i + 1)$.

- The **size** of an ascent is $\sigma(i + 1) - \sigma(i)$.

- Example permutation: $\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 5 & 6 & 3 & 1 & 4 & 2 \end{pmatrix}$.

- As ascent indices are marked in green.
- **Descents** are whenever $\sigma(i) > \sigma(i + 1)$ (indices marked in red).
- Two ascents: ascent of size 1 at $i = 1$, ascent of size 3 at $i = 3$.
An *excedance* is any position i where $\sigma(i) > i$.

- The *size* of an excedance is $\sigma(i) - i$.
An *excedance* is any position i where $\sigma(i) > i$.

- The *size* of an excedance is $\sigma(i) - i$.
- Example permutation: $\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 5 & 6 & 3 & 1 & 4 & 2 \end{pmatrix}$.
Excedances

An **excedance** is any position \(i \) where \(\sigma(i) > i \).

- The **size** of an excedance is \(\sigma(i) - i \).
- Example permutation: \(\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 5 & 6 & 3 & 1 & 4 & 2 \end{pmatrix} \).

\((2, 6)\)

\((1, 5)\)

\((3, 3)\)

\((5, 4)\)

\((6, 2)\)

\((4, 1)\)

- Excedances are marked in green.
- **Anti-excedances**, whenever \(\sigma(i) < i \), are marked in red.
- Two excedances: an excedance of size 4 at \(i = 1 \) and \(i = 2 \).
Why are these definitions interesting?

Definition (Foata Transform)

The Foata transform:
- Takes a permutation σ in two-line notation.
- Splits the permutation into blocks:
Why are these definitions interesting?

Definition (Foata Transform)

The Foata transform:

- Takes a permutation σ in two-line notation.
- Splits the permutation into blocks:
 - Stops at every element smaller than all previous elements, and start a new block before that element.
- Creates a new permutation $F(\sigma)$ where every block in σ is interpreted as cycle in $F(\sigma)$.

Example permutation:

\[\sigma = (1 \ 2 \ 3 \ 4 \ 5 \ 6) \]

Stop at every element smaller than all previous elements, and start a new block before that element. Interpret blocks as cycles in transformed permutation \(F(\sigma) \):

- Number of ascents in \(\sigma \) equal to number of excedances in \(F(\sigma) \).
- Ascents in \(\sigma \) correspond exactly with excedances in \(F(\sigma) \).
- Descents inside blocks also correspond exactly.
- Finally, by convention, there must always be a descent/anti-excedance at the end of blocks.
The Foata Transform

- Example permutation:

\[\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 5 & 6 & 3 & 1 & 4 & 2 \end{pmatrix}. \]

- Stop at every element smaller than all previous elements, and start a new block before that element.
The Foata Transform

- Example permutation:

\[
\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 5 & 6 & 3 & 1 & 4 & 2 \end{pmatrix}.
\]

- Stop at every element smaller than all previous elements, and start a new block before that element.

- Interpret blocks as cycles in transformed permutation \(F(\sigma) \):

\[
F(\sigma) = (56)(3)(142) = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 4 & 1 & 3 & 2 & 6 & 5 \end{pmatrix}.
\]
The Foata Transform

- Example permutation:

\[\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 5 & 6 & 3 & 1 & 4 & 2 \end{pmatrix}. \]

- Stop at every element smaller than all previous elements, and start a new block before that element.

- Interpret blocks as cycles in transformed permutation \(F(\sigma) \):

\[F(\sigma) = (56)(3)(142) = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 4 & 1 & 3 & 2 & 6 & 5 \end{pmatrix}. \]

- Number of ascents in \(\sigma \) equal to number of excedances in \(F(\sigma) \).
The Foata Transform

- Example permutation:

\[\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 5 & 6 & 3 & 1 & 4 & 2 \end{pmatrix} \]

- Stop at every element smaller than all previous elements, and start a new block before that element.

- Interpret blocks as cycles in transformed permutation \(F(\sigma) \):

\[F(\sigma) = (56)(3)(142) = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 4 & 1 & 3 & 2 & 6 & 5 \end{pmatrix} \]

- Number of ascents in \(\sigma \) equal to number of excedances in \(F(\sigma) \).

- Ascents in \(\sigma \) correspond exactly with excedances in \(F(\sigma) \)!
The Foata Transform

- Example permutation:

\[\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 5 & 6 & 3 & 1 & 4 & 2 \end{pmatrix}. \]

- Stop at every element smaller than all previous elements, and start a new block before that element.

- Interpret blocks as cycles in transformed permutation \(F(\sigma) \):

\[F(\sigma) = (56)(3)(142) = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 4 & 1 & 3 & 2 & 6 & 5 \end{pmatrix}. \]

- Number of ascents in \(\sigma \) equal to number of excedances in \(F(\sigma) \).

- Ascents in \(\sigma \) correspond exactly with excedances in \(F(\sigma) \)!

- Descents inside blocks also correspond exactly.

David Dong
Eulerian Numbers
October 14–15, 2023 MIT PRIMES Conference
7 / 14
The Foata Transform

- Example permutation:
 \[\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 5 & 6 & 3 & 1 & 4 & 2 \end{pmatrix} . \]

- Stop at every element smaller than all previous elements, and start a new block before that element.

- Interpret blocks as cycles in transformed permutation \(F(\sigma) \):
 \[F(\sigma) = (56)(3)(142) = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 4 & 1 & 3 & 2 & 6 & 5 \end{pmatrix} . \]

- Number of ascents in \(\sigma \) equal to number of excedances in \(F(\sigma) \).
- Ascents in \(\sigma \) correspond exactly with excedances in \(F(\sigma) \)!
- Descents inside blocks also correspond exactly.
- Finally, by convention, there must always be a descent/anti-excedance at the end of blocks.
The Foata Transform

Proposition

After an application of the Foata transform on any permutation \(\sigma \), number of ascents in \(\sigma \) **always** equal to number of excedances in \(F(\sigma) \).

The Foata transform is reversible: write in cycle notation and then interpret as one-line.

\[F(\sigma) = (56)(3)(142) = \Rightarrow \sigma = 563142. \]

It is therefore a bijection!
Proposition

After an application of the Foata transform on any permutation σ, number of ascents in σ \textit{always} equal to number of excedances in $F(\sigma)$.

- The Foata transform is reversible: write in cycle notation and then interpret as one-line.

$$F(\sigma) = (56)(3)(142) \implies \sigma = 563142.$$
The Foata Transform

Proposition

After an application of the Foata transform on any permutation σ, number of ascents in σ always equal to number of excedances in $F(\sigma)$.

- The Foata transform is reversible: write in cycle notation and then interpret as one-line.

$$F(\sigma) = (56)(3)(142) \implies \sigma = 563142.$$

- It is therefore a bijection!
Definition (Eulerian Numbers)

The Eulerian number $E(n, m)$ is the number of permutations on $1, 2, \ldots, n$ with exactly m ascents.
Definition (Eulerian Numbers)

The **Eulerian number** $E(n, m)$ is the number of permutations on $1, 2, \ldots, n$ with exactly m ascents.

- By the Foata transform, this is **ALSO** the number of permutations with exactly m excedances.
Eulerian Numbers

Definition (Eulerian Numbers)

The *Eulerian number* $E(n, m)$ is the number of permutations on $1, 2, \ldots, n$ with exactly m ascents.

- By the Foata transform, this is **ALSO** the number of permutations with exactly m excedances.
- Example: $E(3, 1) = 4$. Four with exactly one ascent:

 \[132, 213, 231, 312. \]

 Four with exactly one excedance:

 \[132, 213, 312, 321. \]
Definition (\(r\)-Ascent)

Let \(\sigma\) be a permutation of \(1, 2, \ldots, n\). An \(r\)-ascent is any position \(i\) where \(\sigma(i) + r \leq \sigma(i + 1)\).
Generalized Eulerian Numbers

Definition (r-Ascent)

Let σ be a permutation of $1, 2, \ldots, n$. An r-ascent is any position i where $\sigma(i) + r \leq \sigma(i + 1)$.

- 1-ascent are equivalent to regular ascents.
Generalized Eulerian Numbers

Definition (r-Ascent)
Let σ be a permutation of $1, 2, \ldots, n$. An r-ascent is any position i where $\sigma(i) + r \leq \sigma(i + 1)$.

- 1-ascents are equivalent to regular ascents.

Definition (r-Excedance)
Let σ be a permutation of $1, 2, \ldots, n$. An r-excedance is any position i where $\sigma(i) \geq i + r$.

- Similarly, 1-excedances are equivalent to regular excedances.
A generalized Eulerian number $E_r(n, m)$ counts the number of permutations on $1, 2, \ldots, n$ with exactly m r-ascents.
A *generalized Eulerian number* $E_r(n, m)$ counts the number of permutations on $1, 2, \ldots, n$ with exactly m r-ascents.

- We claim $E_r(n, m)$ also counts the number of permutations with exactly m r-excedances.
Generalized Eulerian Numbers

Definition

A *generalized Eulerian number* $E_r(n, m)$ counts the number of permutations on $1, 2, \ldots, n$ with exactly m r-ascents.

- We claim $E_r(n, m)$ also counts the number of permutations with exactly m r-excedances.
- Consider our old examples:

 $$
 \sigma = \begin{pmatrix}
 1 & 2 & 3 & 4 & 5 & 6 \\
 5 & 6 & 3 & 1 & 4 & 2
 \end{pmatrix}, \quad
 F(\sigma) = \begin{pmatrix}
 1 & 2 & 3 & 4 & 5 & 6 \\
 4 & 1 & 3 & 2 & 6 & 5
 \end{pmatrix}.
 $$

- Power of Foata transform: ascent size in σ matched exactly with excedance size in $F(\sigma)$.

Inspired by past projects, we defined:

Definition

The number $E_r(n, m, k)$ counts the number of permutations $1, 2, \ldots, n$ with exactly m r-excedances, **and** ends with k (i.e., $\sigma(n) = k$).
Inspired by past projects, we defined:

Definition

The number $E_r(n, m, k)$ counts the number of permutations $1, 2, \ldots, n$ with exactly m r-excedances, and ends with k (i.e., $\sigma(n) = k$).

Main theorem proven:

Theorem (Dong 2023)

The number $E_r(n, m, k)$ also counts the number of permutations $1, 2, \ldots, n$ with exactly m r-ascents and ends with $n + 1 - k$.
A Further Generalization

- Inspired by past projects, we defined:

Definition
The number $E_r(n, m, k)$ counts the number of permutations $1, 2, \ldots, n$ with exactly m r-excedances, and ends with k (i.e., $\sigma(n) = k$).

- Main theorem proven:

Theorem (Dong 2023)
The number $E_r(n, m, k)$ also counts the number of permutations $1, 2, \ldots, n$ with exactly m r-ascents and ends with $n + 1 - k$.

- We can show that $E_r(n, m, k)$ also counts the permutations with m r-descents and ends with k (somewhat nicer, though in either case symmetry is broken).
A Further Generalization

We also proved several other properties of these numbers, including:

- The following generalization of Worpitzky’s identity holds:
 \[(x + 1)^{n-k+1}x^{k-1} = \sum_{i=0}^{n} E_1(n, i, k) \binom{x + i}{n - 1}.\]

- It is possible to convert this generating function into an explicit formula for \(E_1(n, m, k)\).
We also proved several other properties of these numbers, including:

- The following generalization of Worpitzky’s identity holds:

\[
(x + 1)^{n-k+1} x^{k-1} = \sum_{i=0}^{n} E_1(n, i, k) \binom{x + i}{n - 1}.
\]

- It is possible to convert this generating function into an explicit formula for \(E_1(n, m, k) \).

- For all integers \(n, m, k \) with \(k \geq 2 \), we have the equality:

\[
E_{r+1}(n, m, k) = E_r(n, m + 1, k - 1) + (r - 1) E_r(n - 1, m, k - 1) \\
- (r - 1) E_r(n - 1, m + 1, k - 1).
\]

Furthermore, \(E_{r+1}(n, m, 1) = E_r(n, m, n) \).

- This allows us to compute and potentially derive an explicit formula for \(E_r(n, m, k) \).
Acknowledgements

- I am grateful to Tanya Khovanova for introducing me to this project and mentoring me as this project has developed.
- Thanks to Ira Gessel for guidance with regards to permutations on this project.
- Thanks to Rodrigo Arrieta for providing useful feedback on improving this presentation.
- Thanks to MIT-PRIMES USA for such an amazing research opportunity!