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Numerics and Fluid Dynamics

1 Numerical Analysis is the application of computers to
numerically create approximate solutions to complex
problems.

2 Fluid Dynamics is the branch of physics that models fluid
motion using differential equations in multiple variables.
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Steady Action Driven by Oscillation
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Problem Geometry
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Non-Dimensionalized Problem Geometry
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Perturbation Method

If one parameter in a problem is known to be small, we can
write the solution as a Taylor expansion in that parameter, and
drop high-degree terms.

Example (Hinch)

Solve x2 − εx − 1 = 0 for the positive solution.
Expanding x = x0 + εx1 + ε2x2 + . . . yields

x20 − 1 + ε(2x0x1 − x0) + ε2(2x0x2 + x21 − x1) + · · · = 0.

Setting each coefficient to 0, and solve the resulting equations.

Then x = 1 + 1
2ε+

1
8ε

2 + . . . , agreeing with 1
2ε+

√
1 + 1

4ε.
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Finite Element Method

Example (Hughes)

Find the solution u to u′′ = −f on [0, 1] where
u(0) = u(1) = 0.

In this problem, u′′ + f = 0 is the field equation and
u(0) = u(1) = 0 is the boundary condition.
Equivalently,

∫
u′′w + fw dx = 0 for all w . We call w the test

function.
If w(0) = w(1) = 0, integrating by parts yields the weak form∫

fw dx =

∫
u′w ′ dx .



Oscillating
near circles

Alex Zhao

Introduction

Key Concepts

Problem and
Motivation

Motivation

Problem Geometry

Solving

Perturbation Method

FEM

Problem Expansion

Results

Final
Comments

Conclusion and
Acknowledgements

References

Finite Element Method

Example (Hughes)

Find the solution u to u′′ = −f on [0, 1] where
u(0) = u(1) = 0.

In this problem, u′′ + f = 0 is the field equation and
u(0) = u(1) = 0 is the boundary condition.
Equivalently,

∫
u′′w + fw dx = 0 for all w . We call w the test

function.
If w(0) = w(1) = 0, integrating by parts yields the weak form∫

fw dx =

∫
u′w ′ dx .



Oscillating
near circles

Alex Zhao

Introduction

Key Concepts

Problem and
Motivation

Motivation

Problem Geometry

Solving

Perturbation Method

FEM

Problem Expansion

Results

Final
Comments

Conclusion and
Acknowledgements

References

Finite Element Method

Example (Hughes)

Find the solution u to u′′ = −f on [0, 1] where
u(0) = u(1) = 0.

In this problem, u′′ + f = 0 is the field equation and
u(0) = u(1) = 0 is the boundary condition.
Equivalently,

∫
u′′w + fw dx = 0 for all w . We call w the test

function.
If w(0) = w(1) = 0, integrating by parts yields the weak form∫

fw dx =

∫
u′w ′ dx .



Oscillating
near circles

Alex Zhao

Introduction

Key Concepts

Problem and
Motivation

Motivation

Problem Geometry

Solving

Perturbation Method

FEM

Problem Expansion

Results

Final
Comments

Conclusion and
Acknowledgements

References

Finite Element Method

Example (Hughes)

Find the solution u to u′′ = −f on [0, 1] where
u(0) = u(1) = 0.

In this problem, u′′ + f = 0 is the field equation and
u(0) = u(1) = 0 is the boundary condition.
Equivalently,

∫
u′′w + fw dx = 0 for all w . We call w the test

function.
If w(0) = w(1) = 0, integrating by parts yields the weak form∫

fw dx =

∫
u′w ′ dx .



Oscillating
near circles

Alex Zhao

Introduction

Key Concepts

Problem and
Motivation

Motivation

Problem Geometry

Solving

Perturbation Method

FEM

Problem Expansion

Results

Final
Comments

Conclusion and
Acknowledgements

References

Finite Element Method 2

Restrict w and u to piecewise linear functions.

Using ϕi to denote basis functions, u =
∑

i uiϕi and
w =

∑
i wiϕi .
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Finite Element Method 3

Then the coefficients ui form a vector.
Recall ∫

fw dx =

∫
u′w ′ dx .

If u satisfies this equation for w equalling each basis function
ϕi then u is a solution.

∀i ,
∫

f ϕi dx =
∑
j

uj

(∫
ϕ′
jϕ

′
i dx

)
.

This now becomes a linear matrix problem.
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Boundary Perturbation

Φ
1

The length of the red line is ε2 sin
2Φ, to first order in ε2.
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Boundary Perturbation 2

Φ
K

There is no velocity on the ellipse boundary; Taylor expand this
condition from the circle.
On the circle boundary,

u⃗ − ε2 sin
2(Φ)(r⃗ · ∇)u⃗ = 0.



Oscillating
near circles

Alex Zhao

Introduction

Key Concepts

Problem and
Motivation

Motivation

Problem Geometry

Solving

Perturbation Method

FEM

Problem Expansion

Results

Final
Comments

Conclusion and
Acknowledgements

References

Boundary Perturbation 2

Φ
K

There is no velocity on the ellipse boundary; Taylor expand this
condition from the circle.
On the circle boundary,

u⃗ − ε2 sin
2(Φ)(r⃗ · ∇)u⃗ = 0.



Oscillating
near circles

Alex Zhao

Introduction

Key Concepts

Problem and
Motivation

Motivation

Problem Geometry

Solving

Perturbation Method

FEM

Problem Expansion

Results

Final
Comments

Conclusion and
Acknowledgements

References

Expansion Motivation

We will use the expansion

u⃗ = ε1e
it(û0 + ε2û1) + ε21(ū0 + ε2ū1).

1 Solving for time-independent velocity fields û0, û1, ū0, ū1.

2 At order ε1 the velocity is driven by oscillation,
necessitating the e it term.

3 At order ε21 the velocity self-interferes, creating a steady
flow.

4 We have additional expansions in ε2 at both orders to
examine the contribution from eccentricity.
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Leading Oscillatory Flow Plots
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Leading Steady Flow Plots
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Conclusion

In this talk, we

1 Discussed concepts in numerical fluid dynamics such as
the perturbation method and the finite element method

2 Introduced geometry and equations for our research
problem

3 Presented pressure and velocity streamline plots

Many thanks to

My mentor, Dr. Nick Derr

MIT PRIMES organizers, Dr. Gerovitch and Dr.
Khovanova

My parents
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