Link Prediction and Influencer Identification on Weighted Graphs

Raina Wu
Mentor: Professor Laura Schaposnik, University of Illinois at Chicago

MIT PRIMES Conference

October 2023
Graphs and Social Networks
Weights as Transmission Probabilities

- Edge weights have the following properties:
 - friendship strength
 - physical proximity
 - frequency of interaction
 - probability of transmission

- $w(u, v) \in [0, 1] \forall uv \in E$

- $w(u, v)$ is approximated by $\frac{\# \text{ of interactions}}{\text{units of time}}$

- $T_{u,v}$ is the units of time until u and v interact

Definition

Expected transmission time is $d(u, v) = \mathbb{E}[T_{u,v}] = \frac{1}{w(u,v)}$
Modeling Information Diffusion

- How can we model information spread?
 - epidemiological models: an "infection" of information
- Does a disease model (think common cold) always fit?
 - No; peer pressure and social reinforcement exist
- Two general categories: simple contagion (disease) and complex contagion (behavior)
Simple Contagion

- A single successful interaction is enough to create adoption easily accepted, e.g. conversational topics, facts, the flu
- Each edge uv has a fixed probability p_{uv} of transmission – note that this is just $w(u,v)$
- Again, the expected transmission time between u and v is $d(u, v) = \frac{1}{w(u,v)}$
Link Prediction and Influencer Identification on Weighted Graphs
Link Prediction and Influencer Identification on Weighted Graphs
Raina Wu Mentor: Professor Laura Schaposnik, University of Illinois at Chicago

Link Prediction and Influencer Identification on Weighted Graphs
Model Definition

Definition

Given a set of initially infected nodes I_0 in the graph $G = (V, E)$, at time t the set of infected nodes I_t will be

$$I_t = \{ v | v \in V \exists u : u \in I_0, d_G(u, v) \leq t \}$$
Complex Contagion

- Multiple successful interactions (reinforcement) needed
 - more difficult topics, e.g. controversial topics, politics, health behaviors
- Often modeled with threshold models

Definition

Given an infection value $\theta \in [0, 1]$ and infected node set I_{t-1} at time $t - 1$, uninfected node v will become infected for time t if

$$\frac{\sum_{i \in I_{t-1} \cap N(v)} w(i, v)}{\sum_{i \in N(v)} w(i, v)} \geq \theta.$$

Call $\theta \cdot \sum_{i \in N(v)} w(i, v)$ as its *threshold*.
Successful interactions will be shown by red edges.
Time elapsed has not surpassed the distance, so edge 01 is not yet red.
Even though a successful interaction occurs, no new nodes become infected.

The uninfected endpoint of the red edge at $t = 2$ has threshold $\frac{1}{2} \cdot (\frac{1}{2} + \frac{1}{3} + \frac{1}{2}) = \frac{2}{3}$, and the infected edge only has a weight of $\frac{1}{2}$.
Raina Wu Mentor: Professor Laura Schaposnik, University of Illinois at Chicago

Link Prediction and Influencer Identification on Weighted Graphs
Future Networks

- How can we predict the future of graphs?
- Focus on future edges
- For each pair $u, v \in V, uv \not\in E$, we can calculate a similarity score $s_{u,v}$ to estimate probabilities of future connection.
The Common Neighbors Intuition

Definition

The common neighbors similarity is \(s_{u,v}^{CN} = |N(u) \cap N(v)| \).

- Considers first-order neighbors
Variants and Extensions

- Weighted variants consider sums of path length
- Can be extended to second-order neighbors (quasi-local extension)
Influence Maximization Problem

- Want to choose the k nodes such that influence is maximized
- Influence differs depending on the contagion model:

(a) Simple Contagion with initial infected node 0

(b) Complex Contagion with initial infected node 0
Heuristic Centrality Metrics

- Primarily concerned with searching for a single influencer \((k = 1)\)
- General categories:
 - local measures, e.g. degree centrality
 - iterative measures, e.g. PageRank, LeaderRank, coreness
 - global measures, e.g. eigenvector centrality
- For a centrality metric, the top-scoring node is its “influencer”
Choosing k Nodes

- Chooses a team instead of an individual
- Some use recursion around neighborhoods
 - e.g. VoteRank, where nodes vote for neighbors
- Can also incorporate centrality metrics after reducing redundancy
 - e.g. graph coloring, which separates the graph into independent sets before running centrality
Steps to predict future influencers/groups of k nodes:

1. Given a graph, randomly take 90% of its edges as a starting graph
2. Do link prediction on the starting graph and calculate similarity scores for each pair of nodes (u, v)
3. If $s_{u,v} \neq 0$, normalize it into a probability of existence, which becomes a probability of transmission
4. Run centrality and top k algorithms on the predicted graph to find a set of predicted k nodes
5. Test the set found on the original graph to measure final number of nodes infected
Examples When Run on Graphs

Percentage Infected Over Time for Common Neighbors in Simple Contagion

Raina Wu Mentor: Professor Laura Schaposnik, University of Illinois at Chicago
MIT PRIMES Conference
Link Prediction and Influencer Identification on Weighted Graphs
Percentage Infected Over Time for Common Neighbors in Complex Contagion

Pink: VoteRank; Green: LIR, LIR-2, Blue: rest
Percentage Infected Over Time for Local Path in Simple Contagion

Raina Wu Mentor: Professor Laura Schaposnik, University of Illinois at Chicago

MIT PRIMES Conference

Link Prediction and Influencer Identification on Weighted Graphs
Percentage Infected Over Time for Local Path in Complex Contagion

Pink: VoteRank; Green: LIR, LIR-2, Blue: rest

Raina Wu Mentor: Professor Laura Schaposnik, University of Illinois at Chicago

Link Prediction and Influencer Identification on Weighted Graphs
Applications

- Can be applied to:
 - advertising/marketing
 - social movement analysis
 - epidemiology
 - rumor propagation
 - media propaganda

- Help with prevention and planning
I would like to thank my mentor, Prof. Laura Schaposnik, for her guidance and encouragement throughout the project.

I am grateful to the MIT PRIMES-USA Program, Dr. Tanya Khovanova, Dr. Slava Gerovitch, and Prof. Pavel Etingof for making such a wonderful research opportunity.

My parents

Jian-Xiong Zhang, Duan-Bing Chen, Qiang Dong, and Zhi-Dan Zhao. Identifying a set of influential spreaders in complex networks, 2016.

J. Leskovec, J. Kleinberg and C. Faloutsos. Graph Evolution: Densification and Shrinking Diameters. ACM Transactions on Knowledge Discovery from Data (ACM TKDD), 1(1), 2007.