Rank and Rigidity of Group-Circulant Matrices

Michael Yang
Mentor: Dr. Minh-Tâm Trinh
Lakeside School

October 14-15, 2023
MIT PRIMES Conference
1. Circulant Matrices

2. Group-Circulant Matrices

3. Matrix Rigidity

4. Acknowledgements
Definition (Circulant Matrix)

A (classical) **circulant matrix** is a square matrix where every row is the same as the previous one, but shifted to the left by one unit (with wrap-around).
Definition (Circulant Matrix)

A (classical) **circulant matrix** is a square matrix where every row is the same as the previous one, but shifted to the left by one unit (with wrap-around).

Example

\[
\begin{bmatrix}
1 & 2 & 3 \\
2 & 3 & 1 \\
3 & 1 & 2 \\
\end{bmatrix}
\quad \begin{bmatrix}
1 & 0 & 1 & 0 \\
0 & 1 & 0 & 1 \\
1 & 0 & 1 & 0 \\
0 & 1 & 0 & 1 \\
\end{bmatrix}
\]
General form of a circulant matrix:

$$
\begin{bmatrix}
 c_0 & c_1 & c_2 & \cdots & c_{n-1} \\
 c_1 & c_2 & c_3 & \cdots & c_0 \\
 c_2 & c_3 & c_4 & \cdots & c_1 \\
 \vdots & \vdots & \vdots & \ddots & \vdots \\
 c_{n-1} & c_0 & c_1 & \cdots & c_{n-2} \\
\end{bmatrix}
$$

Each of the c_is appears exactly once in every row and column.
Circulant matrices are useful in many areas.

\[
\begin{pmatrix}
1 & 2 & 3 \\
2 & 3 & 1 \\
3 & 1 & 2
\end{pmatrix}
\]

\[
\begin{pmatrix}
1 & 0 & 1 & 0 \\
0 & 1 & 0 & 1 \\
1 & 0 & 1 & 0 \\
0 & 1 & 0 & 1
\end{pmatrix}
\]

We'll actually answer these questions for a larger family of matrices: group-circulants.
Circulant matrices are useful in many areas.

- Signal processing
Circulant matrices are useful in many areas.

- Signal processing
- Discrete Fourier Transform

Example

$$\begin{pmatrix}
1 & 2 & 3 \\
2 & 3 & 1 \\
3 & 1 & 2
\end{pmatrix}$$

rank = 3

$$\begin{pmatrix}
1 & 0 & 1 & 0 \\
0 & 1 & 0 & 1 \\
1 & 0 & 1 & 0 \\
0 & 1 & 0 & 1
\end{pmatrix}$$

rank = 2
Circulant matrices are useful in many areas.

- Signal processing
- Discrete Fourier Transform

What are their ranks? When are they invertible?
Circulant matrices are useful in many areas.

- Signal processing
- Discrete Fourier Transform

What are their ranks? When are they invertible?

Example

\[
\text{rank } \begin{bmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \\ 3 & 1 & 2 \end{bmatrix} = 3
\]

\[
\text{rank } \begin{bmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \\ 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \end{bmatrix} = 2
\]
Circulant matrices are useful in many areas.

- Signal processing
- Discrete Fourier Transform

What are their ranks? When are they invertible?

Example

\[
\begin{bmatrix}
1 & 2 & 3 \\
2 & 3 & 1 \\
3 & 1 & 2
\end{bmatrix}
\]

\[
\text{rank } \begin{bmatrix}
1 & 2 & 3 \\
2 & 3 & 1 \\
3 & 1 & 2
\end{bmatrix} = 3
\]

\[
\begin{bmatrix}
1 & 0 & 1 & 0 \\
0 & 1 & 0 & 1 \\
1 & 0 & 1 & 0 \\
0 & 1 & 0 & 1
\end{bmatrix}
\]

\[
\text{rank } \begin{bmatrix}
1 & 0 & 1 & 0 \\
0 & 1 & 0 & 1 \\
1 & 0 & 1 & 0 \\
0 & 1 & 0 & 1
\end{bmatrix} = 2
\]

We’ll actually answer these questions for a larger family of matrices: group-circulants.
Circulant matrices are a special example of a larger class of matrices, called **group-circulant matrices**.
Circulant matrices are a special example of a larger class of matrices, called **group-circulant matrices**.

Definition (Group-Circulant Matrix)

Given a finite group G, a ring Λ, and a function $f : G \to \Lambda$, a G-circulant matrix of f is a $|G| \times |G|$ matrix M with rows and columns indexed by the elements of G, such that $M_{x,y} = f(xy)$ for all $x, y \in G$.

Michael Yang

Rank and Rigidity of Group-Circulant Matrices
Classical circulant matrices are $\mathbb{Z}/n\mathbb{Z}$-circulant matrices.
Classical circulant matrices are $\mathbb{Z}/n\mathbb{Z}$-circulant matrices.

\[
\begin{pmatrix}
0 & f(0) & f(1) & f(2) & \cdots & f(n-1) \\
1 & f(1) & f(2) & f(3) & \cdots & f(0) \\
2 & f(2) & f(3) & f(4) & \cdots & f(1) \\
\vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\
n-1 & f(n-1) & f(0) & f(1) & \cdots & f(n-2)
\end{pmatrix}
\]
Classical circulant matrices are $\mathbb{Z}/n\mathbb{Z}$-circulant matrices.

$$
\begin{pmatrix}
0 & f(0) & f(1) & f(2) & \ldots & f(n-1) \\
1 & f(1) & f(2) & f(3) & \ldots & f(0) \\
2 & f(2) & f(3) & f(4) & \ldots & f(1) \\
\vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\
n-1 & f(n-1) & f(0) & f(1) & \ldots & f(n-2)
\end{pmatrix}
$$

If we let $f(i) = c_i$ for $i = 0, 1, \ldots, n - 1$, we get the general form for a circulant.
Take $G = K_4 := \{e, x, y, xy\}$, where $xy = yx$ and $x^2 = y^2 = e$.
Take $G = K_4 := \{e, x, y, xy\}$, where $xy = yx$ and $x^2 = y^2 = e$.

$$ \begin{pmatrix}
 e & x & y & xy \\
 e & \text{f}(e) & \text{f}(x) & \text{f}(y) & \text{f}(xy) \\
 x & \text{f}(x) & \text{f}(e) & \text{f}(xy) & \text{f}(y) \\
 y & \text{f}(y) & \text{f}(xy) & \text{f}(e) & \text{f}(x) \\
 xy & \text{f}(xy) & \text{f}(y) & \text{f}(x) & \text{f}(e)
\end{pmatrix}$$
Take $G = K_4 := \{ e, x, y, xy \}$, where $xy = yx$ and $x^2 = y^2 = e$.

$$
\begin{pmatrix}
 e & x & y & xy \\
 e & f(e) & f(x) & f(y) & f(xy) \\
 x & f(x) & f(e) & f(xy) & f(y) \\
 y & f(y) & f(xy) & f(e) & f(x) \\
 xy & f(xy) & f(y) & f(x) & f(e)
\end{pmatrix}
$$

$f : G \to \mathbb{R}$ satisfies $f(e) = 1, f(x) = 2, f(y) = 3, f(xy) = 4$.
Take $G = K_4 := \{e, x, y, xy\}$, where $xy = yx$ and $x^2 = y^2 = e$.

$$
\begin{pmatrix}
 e & x & y & xy \\
 e & f(e) & f(x) & f(y) & f(xy) \\
 x & f(x) & f(e) & f(xy) & f(y) \\
 y & f(y) & f(xy) & f(e) & f(x) \\
 xy & f(xy) & f(y) & f(x) & f(e)
\end{pmatrix}
$$

$f : G \to \mathbb{R}$ satisfies $f(e) = 1$, $f(x) = 2$, $f(y) = 3$, $f(xy) = 4$.

$$
\begin{pmatrix}
 e & x & y & xy \\
 e & 1 & 2 & 3 & 4 \\
 x & 2 & 1 & 4 & 3 \\
 y & 3 & 4 & 1 & 2 \\
 xy & 4 & 3 & 2 & 1
\end{pmatrix}
$$
Take $G = K_4 := \{e, x, y, xy\}$, where $xy = yx$ and $x^2 = y^2 = e$.

<table>
<thead>
<tr>
<th></th>
<th>e</th>
<th>x</th>
<th>y</th>
<th>xy</th>
</tr>
</thead>
<tbody>
<tr>
<td>e</td>
<td>$f(e)$</td>
<td>$f(x)$</td>
<td>$f(y)$</td>
<td>$f(xy)$</td>
</tr>
<tr>
<td>x</td>
<td>$f(x)$</td>
<td>$f(e)$</td>
<td>$f(xy)$</td>
<td>$f(y)$</td>
</tr>
<tr>
<td>y</td>
<td>$f(y)$</td>
<td>$f(xy)$</td>
<td>$f(e)$</td>
<td>$f(x)$</td>
</tr>
<tr>
<td>xy</td>
<td>$f(xy)$</td>
<td>$f(y)$</td>
<td>$f(x)$</td>
<td>$f(e)$</td>
</tr>
</tbody>
</table>

$f : G \to \mathbb{R}$ satisfies $f(e) = 1$, $f(x) = 2$, $f(y) = 3$, $f(xy) = 4$.

$$\begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 1 & 4 & 3 \\ 3 & 4 & 1 & 2 \\ 4 & 3 & 2 & 1 \end{pmatrix}$$

rank $= 3$

What are the ranks of group-circulants?
Theorem (Group-Circulant Rank)

For any group G, good field Λ, and function $f : G \rightarrow \Lambda$, express f in the form

$$f(x) = \sum_{\rho} \left(\sum_{1 \leq i, j \leq \deg \rho} c_{\rho, i, j} \rho_{i, j}(x) \right)$$

where ρ runs over irreducible representations of G, the functions $\rho_{i, j}$ are the matrix coefficients of ρ, and $c_{\rho, i, j} \in \Lambda$. Then, the rank of the G-circulant corresponding to f equals

$$\sum_{\rho} (\deg \rho) \text{ rank} \left(\begin{bmatrix} c_{\rho, 1, 1} & c_{\rho, 1, 2} & \cdots & c_{\rho, 1, N} \\
 c_{\rho, 2, 1} & c_{\rho, 2, 2} & \cdots & c_{\rho, 2, N} \\
 \vdots & \vdots & \ddots & \vdots \\
 c_{\rho, N, 1} & c_{\rho, N, 2} & \cdots & c_{\rho, N, N} \end{bmatrix} \right).$$
How do we read the theorem?
How do we read the theorem?

- For any group G and good field Λ, the matrix coefficients form a basis for the vector space of functions from G to Λ.
How do we read the theorem?

- For any group G and good field Λ, the matrix coefficients form a basis for the vector space of functions from G to Λ.
- This basis is well-studied and nice to work with.
How do we read the theorem?

- For any group G and good field Λ, the matrix coefficients form a basis for the vector space of functions from G to Λ.
- This basis is well-studied and nice to work with.
- The theorem notes that when we write f as a sum of the matrix coefficients, the rank of the G-circulant can be deduced from the coefficients in that sum.
How do we read the theorem?

- For any group G and good field Λ, the matrix coefficients form a basis for the vector space of functions from G to Λ.
- This basis is well-studied and nice to work with.
- The theorem notes that when we write f as a sum of the matrix coefficients, the rank of the G-circulant can be deduced from the coefficients in that sum.

While this theorem was known to Diaconis, we gave a new, more elementary proof.
When we take $G = \mathbb{Z}/n\mathbb{Z}$ in the theorem, we get the following result on the rank of classical circulant matrices:
When we take $G = \mathbb{Z}/n\mathbb{Z}$ in the theorem, we get the following result on the rank of classical circulant matrices:

Corollary (Circulant Rank)

Let $\omega = e^{2\pi i/n}$. The rank of the $n \times n$ circulant matrix with first row $[c_0, c_1, \ldots, c_{n-1}]$ is the number of nonzero entries in the vector

$$
\begin{bmatrix}
 a_0 \\
 a_1 \\
 \vdots \\
 a_{n-1}
\end{bmatrix} =
\begin{bmatrix}
 1 & 1 & 1 & \cdots & 1 \\
 1 & \omega^{-1} & \omega^{-2} & \cdots & \omega^{-(n-1)} \\
 \vdots & \vdots & \vdots & \ddots & \vdots \\
 1 & \omega^{-(n-1)} & \omega^{-(2n-2)} & \cdots & \omega^{-(n-1)^2}
\end{bmatrix}
\begin{bmatrix}
 c_0 \\
 c_1 \\
 \vdots \\
 c_{n-1}
\end{bmatrix}.
$$

Vanishing sums of roots of unity \Rightarrow singular circulants.

Michael Yang

Lakeside School

Rank and Rigidity of Group-Circulant Matrices
When we take $G = \mathbb{Z}/n\mathbb{Z}$ in the theorem, we get the following result on the rank of classical circulant matrices:

Corollary (Circulant Rank)

Let $\omega = e^{2\pi i/n}$. The rank of the $n \times n$ circulant matrix with first row $[c_0, c_1, \ldots, c_{n-1}]$ is the number of nonzero entries in the vector

\[
\begin{bmatrix}
a_0 \\
a_1 \\
\vdots \\
a_{n-1}
\end{bmatrix} = \begin{bmatrix} 1 & 1 & 1 & \cdots & 1 \\ 1 & \omega^{-1} & \omega^{-2} & \cdots & \omega^{-(n-1)} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & \omega^{-(n-1)} & \omega^{-(2n-2)} & \cdots & \omega^{-(n-1)^2} \end{bmatrix} \begin{bmatrix} c_0 \\ c_1 \\ \vdots \\ c_{n-1} \end{bmatrix}.
\]

Vanishing sums of roots of unity \implies singular circulants.
Definition (Matrix Rigidity)

Fix a square matrix M. The **rank-r rigidity** of M, denoted $R_M(r)$, is the minimum number of entries one needs to change in M to decrease its rank to at most r.
Definition (Matrix Rigidity)

Fix a square matrix M. The rank-r rigidity of M, denoted $\mathcal{R}_M(r)$, is the minimum number of entries one needs to change in M to decrease its rank to at most r.

Example

For the $n \times n$ identity matrix I_n,

$$\mathcal{R}_{I_n}(r) = n - r.$$

We can change $n - r$ of the diagonal 1s to 0s to make the rank r.

Michael Yang
Lakeside School

Rank and Rigidity of Group-Circulant Matrices
Example

Let

\[I_3 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}. \]

Then, \(R_{I_3}(1) = 2. \)
Example

Let

\[I_3 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}. \]

Then, \(R_{I_3}(1) = 2. \)
Example

Let

\[M = \begin{bmatrix}
 2 & 3 & 5 \\
 1 & 0 & 1 \\
 4 & 6 & 7 \\
\end{bmatrix}. \]

Then, \(R_M(1) = 3. \)
Example

Let

\[M = \begin{bmatrix} 2 & 3 & 5 \\ 1 & 0 & 1 \\ 4 & 6 & 7 \end{bmatrix}. \]

Then, \(R_M(1) = 3. \)
Example

Let

\[
M = \begin{bmatrix}
2 & 3 & 5 \\
1 & 0 & 1 \\
4 & 6 & 7 \\
\end{bmatrix}.
\]

Then, \(\mathcal{R}_M(1) = 3 \).

Changing any two entries will leave a \(2 \times 2 \) rectangle of full rank unchanged.
Theorem (Valiant 1977)

If M is a Valiant-rigid $N \times N$ matrix, then the linear map corresponding to M cannot be computed by circuits of size $O(N)$ and depth $O(\log N)$.
Theorem (Valiant 1977)

If \(M \) is a Valiant-rigid \(N \times N \) matrix, then the linear map corresponding to \(M \) cannot be computed by circuits of size \(O(N) \) and depth \(O(\log N) \).

Valiant-rigid matrices are highly rigid.

Goal: find an \textbf{explicit} Valiant-rigid matrix.
Theorem (Valiant 1977)

If M is a Valiant-rigid $N \times N$ matrix, then the linear map corresponding to M cannot be computed by circuits of size $O(N)$ and depth $O(\log N)$.

Valiant-rigid matrices are highly rigid.

Goal: find an explicit Valiant-rigid matrix.

Not rigid:
Theorem (Valiant 1977)

If M is a Valiant-rigid $N \times N$ matrix, then the linear map corresponding to M cannot be computed by circuits of size $O(N)$ and depth $O(\log N)$.

Valiant-rigid matrices are highly rigid.

Goal: find an explicit Valiant-rigid matrix.

Not rigid:
- Super-regular matrices
Theorem (Valiant 1977)

If M is a Valiant-rigid $N \times N$ matrix, then the linear map corresponding to M cannot be computed by circuits of size $O(N)$ and depth $O(\log N)$.

Valiant-rigid matrices are highly rigid.

Goal: find an explicit Valiant-rigid matrix.

Not rigid:
- Super-regular matrices
- Walsh-Hadamard transform
Theorem (Valiant 1977)

If M is a Valiant-rigid $N \times N$ matrix, then the linear map corresponding to M cannot be computed by circuits of size $O(N)$ and depth $O(\log N)$.

Valiant-rigid matrices are highly rigid.

Goal: find an \textbf{explicit} Valiant-rigid matrix.

Not rigid:
- Super-regular matrices
- Walsh-Hadamard transform
- G-circulants for abelian G
Theorem (Dvir–Liu 2019)

Let G be an abelian group. The family of G-circulant matrices is not Valiant-rigid over any field of characteristic relatively prime to $|G|$.
Theorem (Dvir–Liu 2019)

Let G be an abelian group. The family of G-circulant matrices is not Valiant-rigid over any field of characteristic relatively prime to $|G|$.

Theorem (Trinh–Y. 2023)

For groups G with relatively large abelian normal subgroups, the family of G-circulant matrices is not Valiant-rigid.
Acknowledgements

Thank you to my mentor, Dr. Minh-Tâm Trinh, for proposing the project and resourcefully and patiently guiding me to the discovery of these results. Thank you also to the PRIMES-USA Program for the incredible opportunity to conduct this research. Lastly, thank you to my parents; without your unwavering support, none of this would have been possible.
References

