Title:

Amith Saligrama
Commonwealth School, Boston MA 02215
MIT PRIMES PROJECT
Mentors: Dr. Giulio Genovese & Prof. Steve McCarroll
McCarroll Lab
Introduction

• Questions motivating my Project:
 1. Can we develop statistical tools for pinpointing which cells in a sample (e.g. brain cells of a person) has chromosomal mutations?
 2. Can we uncover gene expression patterns that are unique to mutated cells?

• Why study Chromosomal Mutations?
 • Are chromosomal alterations in neurotypical individuals the first steps to the development of overt brain cancer"?

• Why cell-level classification?
 • We can understand the heterogeneity of mutations, which can be crucial for diagnosis, treatment, predicting disease progression, and personalized treatment.
Drop-Seq: A Single-cell-RNA-sequencing Method

• Droplets isolate individual cells
 • Barcodes for each cell.

• Digital Gene-Expression for each cell
 • Cell lysed → mRNA molecules associated with each gene identified.
 • Gene expression “essentially” #mRNA molecules detected
 • Chromosomal counts = Group gene counts.

• Contrast with bulk-analysis
 • “Fruit salad vs. fruit smoothie”
Datasets

Loss-of-18 - Brain Cells Dataset

- 7-Cell-types: Astrocyte, Gabaergic, Glutamatergic, Polydendrocyte, Oligodendrocyte, Endothelia, and Microglia

- Raw Data: DGE Matrix for each type.

- \((i, j)\) component: counts for gene \(i\) and cell \(j\).

Context: The dataset is from a person with known ring 18 chromosome. Evidently cells recurrently lose chromosome 18 as a result. [Yardin et.al 2001, https://pubmed.ncbi.nlm.nih.gov/11754054/]

This data serves as a ground-truth for testing and validation for our approach.
Problem Statement: Mutated Cell-Identification

• Normal Cell:
 • Cell j is normal (jth column) expression is statistically consistent with normal cells.

• Mutated Cell:
 • Column j has subset of rows, (e.g. genes k, l, m in chromosome xx) that are statistically abnormal.

• Problem:
 • Identify cells (columns) that are mutated.
Prior Works

• Large-scale Bulk RNA [Anders 2013]
 • average analysis

• Cell-by-cell identification ([Vermeulen et.al 2022])
 • Loss of (Sex) Chromosome Y (LoY)

Cell 2: Loss of Y
 "Easily Identifiable"
Chromosome 18

- **Non-Sex Chromosome**
- Chromosome pair – Loss of one expected to change count.
 - Yet - in a Perfect World (if no Noise)
 - Count reduces by one-half!!
- Challenging in noisy situation
- Do not have annotations to learn patterns that stand out

Loss of 18 in Cell 2 – Expect 50% of counts
Non-Sex Chromosome Loss Detection

- Chromosome pair – Loss expected to change count.
 - Loss difficult to “predict” purely from counts.

- Sampling Noise in DGE:
 - Technical Variations
 - # Reads/Cell, Amplification Noise, Read Efficiency etc.
 - Biological Variations
 - Cell diversity – not all cells are identical
Key Idea (Control Chr): \textit{statistically independent} of target chromosome.

- Validated with Bulk MoChA analysis “Chromosome 4” independent of Chromosome 18.

- Property 1:
 \[
 \Pr[\text{Count}(\text{Gene } M) = c \mid \text{Loss of 18}] \\
 = \Pr[\text{Count}(\text{Gene } M) = c \mid \text{any Cell}]
 \]

- Property 2: On average, count in Loss of 18 cell (e.g. cell 2 and gene 1) is $\frac{1}{2}$ of average counts of normal cell.
Scatter Plots: Diverse Cell types with Lo18 (Brain Cells)

- Validation
 - MoChA study – No impact of Lo18 on CH4
- Probabilistic Framework – Scatter plots depict ploidy of Lo18 cells
 - Evident separation into different clusters

If no noise

https://software.broadinstitute.org/software/mocha/
Binomial Model

• Assumptions:
 • Detection prob constant across molecules
 • Reads uniform distributed across molecules
 • (recall) CH4 independent of CH18

• Prob Count(CH18) given CH4+CH18:
 • Each count a coin toss;
 • p: success prob of CH4 count. So,

\[
\begin{align*}
 \text{CH4} & \sim Bin(N, p) \\
 \text{CH18} & \sim Bin(N, 1 - p)
\end{align*}
\]
Binomial Model

• Assumptions:
 • (recall) $E[\text{Counts(CH18)} \mid \text{Loss}] = 0.5 \ E[\text{Counts(CH18)} \mid \text{No Loss}]$

• Two Cases:
 • No Loss Cell
 \[\text{CH4} \sim \text{Bin}(N, p) \]
 \[\text{CH18} \sim \text{Bin}(N, 1 - p) \]
 • Lossy Cell
 \[\text{CH4} \sim \text{Bin}(N, q) \]
 \[\text{CH18} \sim \text{Bin}(N, 1 - q) \]

 Odds ratio (success vs. failure) for Lossy CH18 cell is twice as likely!!

Think of a casino with two tables
Table 1: CH4 against lossy CH18,
Table 2: CH4 against normal CH18.
1st table odds 1:2 means 2nd is 2:2)

• How would p and q be related?

\[\frac{q}{1 - q} = 2 \frac{p}{1 - p} \]
Validation

• Cluster ratios, i.e., for each cell i

$$\rho_i = \frac{\#[G_{ij}]_{j \in CH4}}{\#[G_{ij}]_{j \in CH4} + \#[G_{ij}]_{j \in CH18}}$$

• Validate cluster median, $\hat{\rho}, \hat{q}$ satisfy:

$$\frac{\hat{q}}{1-\hat{q}} \approx 2 \frac{\hat{\rho}}{1-\hat{\rho}}$$

<table>
<thead>
<tr>
<th></th>
<th>Cell: 1</th>
<th>2</th>
<th>...</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>GENE 1</td>
<td>1</td>
<td>XX</td>
<td></td>
<td>14</td>
</tr>
<tr>
<td>GENE 2</td>
<td>4</td>
<td>XX</td>
<td></td>
<td>8</td>
</tr>
<tr>
<td>GENE 3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>GENE M</td>
<td>6</td>
<td>2</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>
Detected Cells with Binomial Model

\[\frac{\hat{q}}{1-\hat{q}} \approx 2 \frac{\hat{\rho}}{1-\hat{\rho}} \]

\[\text{Slope} = \frac{1-\hat{\rho}}{\hat{\rho}} \]

\[\text{Slope} = \frac{1-\hat{q}}{\hat{q}} \]
Trans-Chromosomal Expression in Mutated Cells

- Mutated vs. normal
 - Gene A expression different in mutated
 - Null: No statistical difference

- Wilcoxon Rank-Sum Test (p-value)
 - Non-parametric test - independent populations
 - Works well with small counts.

- Multiple-comparisons
 - Bonferroni Correction
 - Burden of simultaneous gene comparisons
Volcano Plots – Expression Change vs. Significance

- Volcano Plot: P-Value vs. Gene k Expression Change (odds-ratio - gene k vs. control)
- After Bonferroni correction – for many non-Chromosome 18 genes
 - expression change statistically significant (adj p-value (0.05))
Conclusions

• We show that it is possible to classify single brain nuclei from post-mortem samples as whether they harbor Chromosome 18 loss or not

• We show that Loss of Chromosome 18 can affect the majority of oligodendrocytes and polydendrocytes of a normal person (no specific neurological phenotype at the time of death).

• We show that we can identify gene expression differences beyond chromosome 18 within each cell type mosaic for Loss of chromosome 18

• Future directions:
 • We have preliminary extensions of our method for analyzing 9q Copy Neutral-loss of heterozygosity in Induced Pluripotent Stem Cells.
 • Extend work to other samples to identify gene expression differences consistent across multiple individuals
Acknowledgements

• I would like to thank my mentor Dr. Giulio Genovese for his mentorship and advice over the last 10 months.

• Prof. Steve McCarroll was a sounding board and generously offered advice during the project.

• Dr. Nicole Rockweiler and Bob Handsaker at the McCarroll lab for making me feel at home and patiently answering my many questions.