Public-key signature scheme with
reduced hardware trust

M
Albert Lu and Andrew Carratu = -
WHIL BT

Mentors:
Jules Drean and Sacha Servan-Schreiber \IIT '
w

CS!

Table of Contents

1. Remote Attestation

2. Digital Signatures

3. Lamport Signature Scheme

4. Zero Knowledge Proof-of-Knowledge

5. Putting All Together

Remote Attestation

Setup:

A remote user wants to perform some sensitive computation on an untrusted computer in the cloud.

More Specifically:

- A‘verifier” wants to verify that a “prover” is not compromised i.e. doesn't contains malicious

code.
- The untrusted device sends the remote user a certificate or proof or remote attestation.
Untrusted Cloud
m ; |:| ; Trusted Secure
Remote User Runnd Processor (prover)

(verifier)

Remote Attestation

Setup:

A remote user wants to perform some sensitive computation on an untrusted computer in the cloud.

More Specifically:

- A‘verifier” wants to verify that a “prover” is not compromised i.e. doesn't contains malicious

code.
- The untrusted device sends the remote user a certificate or proof or remote attestation.
Binary + Data
1010 Untrusted Cloud
& oo
m ; |:| ; Trusted Secure
Remote User Runnd Processor (prover)

(verifier)

Remote Attestation

Setup:

A remote user wants to perform some sensitive computation on an untrusted computer in the cloud.

More Specifically:

- A‘verifier” wants to verify that a “prover” is not compromised i.e. doesn't contains malicious

code.
- The untrusted device sends the remote user a certificate or proof or remote attestation.
Binary + Data
1010 Untrusted Cloud
@ Ol@
m N~ __— ; |:| E Trusted Secure (prover)
Remote User ~&m ST Processor
(verifier)

Certificate

Remote Attestation

Setup:

A remote user wants to perform some sensitive computation on an untrusted computer in the cloud.

More Specifically:

- A‘verifier” wants to verify that a “prover” is not compromised i.e. doesn't contains malicious

code.
- The untrusted device sends the remote user a certificate or proof or remote attestation.
Binary + Data
1010 Untrusted Cloud
& oo
m ; |:| ; Trusted Secure
Remote User Runnd Processor (prover)

Certificate

(verifier)

This is used as a “proof of attestation”

—

xecution through

SGAxe: How SGX Fails in Practice

Stephan van Schaik Andrew Kwong Daniel Genkin

University of Michigan University of Michigan University of Michigan University of Adelaide and Data6]
stephvs @umich.edy ankwong @umich.edy genkin@umich.edy yval@cs.adelaide.edu.ay

Seatile wasﬁington
kryan@eng ucsd edy

Yuval Yarom

In recent years, the security of remote attestation schemes
has been compromised.

Most attacks target the hardware (microarchitectural side
. .
channels and transient execution attacks).

i ificate.
e These attacks steal the secret key used to sign the certific

Hardware Vulnerabilities and Side Channels

- Systems are not secure if an attacker can steal secret keys.
- The hardware resources (processors, memory etc...) are shared between several programs.
- One program might be able to exploit shared resources to spy on another and steal secret keys.

These are called side channels:

Real life example: When you watch a movie on your computer and it freezes...
... you can guess someone else in the house is using the internet connection!

Similarly, an attacker program can observe the ressources it shares with a victim and infer secrets!

The introduction of the Spectre (transient-execution attack) make these attacks even worse!

Conclusion: We need to change our trust assumptions on the hardware.

Digital Signatures

- Family of cryptographic algorithms used to prove the authenticity of a message.
- Some schemes use a key pair with a private key (to sign) and a public key (to verify the signature).

Digital Signatures

- Family of cryptographic algorithms used to prove the authenticity of a message.
- Some schemes use a key pair with a private key (to sign) and a public key (to verify the signature).

Alice

Only Alice knows her private
key, so nobody can forge her
signature

Bob

Everybody can see Alice’s
public key, so anyone can
verify Alice’s signature.

Digital Signatures

- Family of cryptographic algorithms used to prove the authenticity of a message.
- Some schemes use a key pair with a private key (to sign) and a public key (to verify the signature).

Alice
Alice owes
Bob asks Alice Bob $100.
to sign this
message

Only Alice knows her private
key, so nobody can forge her
signature

Bob

Everybody can see Alice’s
public key, so anyone can
verify Alice’s signature.

Digital Signatures

- Family of cryptographic algorithms used to prove the authenticity of a message.
- Some schemes use a key pair with a private key (to sign) and a public key (to verify the signature).

Alice
Alice owes
Bob asks Alice Bob $100.

to sign this
message

Only Alice knows her private
key, so nobody can forge her
signature

Bob

Alice’s
Public
Key

Everybody can see Alice’s
public key, so anyone can
verify Alice’s signature.

Digital Signatures

- Family of cryptographic algorithms used to prove the authenticity of a message.
- Some schemes use a key pair with a private key (to sign) and a public key (to verify the signature).

Alice
Alice owes
Bob asks Alice Bob $100.
to sign this
message
Sign . .
Only Alice knows her private
key, so nobody can forge her
signature
> Signature:
" | 2042616221
Bob

Everybody can see Alice’s
public key, so anyone can
verify Alice’s signature.

Digital Signatures

- Family of cryptographic algorithms used to prove the authenticity of a message.
- Some schemes use a key pair with a private key (to sign) and a public key (to verify the signature).

Alice
Alice owes
Bob asks Alice Bob $100.
to sign this
message
Sign . .
Only Alice knows her private
key, so nobody can forge her
signature
; Signature:
|
* | 20426f6221
Bob Alice’s
Public
Key
" Everybody can see Alice’s
el .
i public key, so anyone can

verify Alice’s signature.

Digital Signatures

- Family of cryptographic algorithms used to prove the authenticity of a message.
- Some schemes use a key pair with a private key (to sign) and a public key (to verify the signature).

Alice
Alice owes
Bob asks Alice Bob $100.
to sign this
message
Sign . .
Only Alice knows her private
key, so nobody can forge her
signature
; Signature:
I |
" | 20426f6221
Bob Alice’s
Public
Key
w Everybody can see Alice’s
oty public key, so anyone can

| verify Alice’s signature.

V Yes, the message was signed by Alice.

Digital Signatures: Forgery Detection

- What if Bob modified the message?

Alice Allce!
Alice owes Pn!szt:
Bob $100. Key
Sign
. Signature:
I | I
© | 204266221
Bob Alice’s
Public
Key

Verify

l

X No, the message was NOT signed by Alice.

How to make digital signhatures with minimal trust?

Contribution I: Limit shared hardware resources
Contribution Il: Keep all secrets in the CPU registers

Main Memory

CPU Core PfiVXEY

Registers| [][][]
Cache

Array

{“Normal” range
Bus

How to make digital signhatures with minimal trust?

- Contribution I: Limit shared hardware resources
- Contribution |I: Keep all secrets in the CPU registers

Main Memory

CPU Core

Registers | | oaere |

Cache

Array

{“Normal” range
Bus

How to make digital signhatures with minimal trust?

- Contribution I: Limit shared hardware resources

- Contribution |I: Keep all secrets in the CPU registers

- Challenges

- Very little room for in-between Main Memory
computation (only ~20kB)

- Weneeda CPU Core
lightweight
signature scheme!

Registers | | pmerer |
Cache

Array

{“Normal” range
Bus

Digital Signature: Lamport Signature Scheme

First Public Key Digital Signature Algorithm!

For each bit of the message to sign (256 bits):

We generate 2 random 128-bit number, one to encode O and one to encode 1.
0: 53285a2d862e7d9b13bbf416bb4a09e3— @
HO)

These are one element of the private key.

We can generate an element of the public key by hashing.
0: H(53285a2d862e7d9b13bbf416bb4a09%e3) = H(@@)

- -0

Digital Signhature: Lamport Signature Scheme

a pair of random numbers
for each bit

l Hash each number

o0 O
O}

Public key: o

Digital Sighature: Lamport Signature Scheme

a pair of random numbers
for each bit

) O O O
Private key: OO ®
l Hash each number
Public key: 8 8 8
- Select corresponding numbers
from private key
O] O ()
S0 ® Signature for M
256 bits ol B

Hash

messageM —— (e.g.01...0)

Digital Signhature: Lamport Signature Scheme

Generate a pair of random numbers
Key for each bit
Private key: OO0 O
' OO O
l Hash each number

OO0 O
Public key:

4 00 0O

; Select corresponding numbers
UL from public key

do . [d

; o o
Hash 256 bits ©

(e.g. 01...0) - @

message M

Signature for M

Digital Signhature: Lamport Signature Scheme

Generate a pair of random numbers
Key for each bit
Private key: OO0 O
' OO O
l Hash each number
OO0 O
Public key:
d 00 O
; Select corresponding numbers
Vertfy from public key
Qo [d
o 266t OO O
message M (e.g. 01...0) - [@
- ?
Signature for M = Are they equal?

Hash each number

Limitations of Lamport

One Time Usage: a private key may only be used once!!

Each signature reveal part of the key ->

an attacker could sign new unseen messages by reconstructing the key!

Limitations of Lamport

One Time Usage: a private key may only be used once!!

Each signature reveal part of the key ->

an attacker could sign new unseen messages by reconstructing the key!

Partially Reconstructed Key!

Msg 1 @ @@ @

Msg 2 @D O

Zero Knowledge Proof-of-Knowledge

- Canwe “sign” a message without revealing any of the private key values?
- Prove that we know the value of a secret “s” without revealing the secret.
- Example: Where’s Waldo?

We have a blank canvas with a hole.

We have a blank canvas with a hole.

We position the picture behind the canvas so Waldo can be seen through the hole!

We have a blank canvas with a hole.
We position the picture behind the canvas so Waldo can be seen through the hole!

Someone can verify that we know where Waldo is, but we are not revealing Waldo's exact location.

Digital Signature: Lamport Signature Scheme + Zero Knowledge

Generate
Key

Sign

Private key:

Public key:

a pair of random numbers

for each bit
00 e For each bit of the message, we want to
OO0 O prove we know @ such that
|, Bsshiach number H(@) = O, but without revealing the
value of @.
00 .. O
ON@) O We can use zero-knowledge proof of

that! (represented with C)

Select corresponding numbers
from private key and find ZKP

@ Q L6—| Signature for M

message M

- @) @
Hask 256 bits @

——— (e.g. 01...0) |§|

Assumptions we are considering for Zero-Knowledge Proof Scheme

- Discrete Logarithm & Schnorr
- Rabin one-way-function & square root modulo N

- Dual of Learning Parity with Noise (dual-LPN) & Stern ZKP

Dual of Learning Parity with Noise (dual-LPN)

Assumption that given (H, Hs), it is “hard” to find s, where
H is an (n x m) bit matrix
s is a m-length random bit vector with hamming weight m/10 (sparse)

I
I
z

Stern's ZKP

- Prover picksy, a m-length random bit vector, and a permutation ¢ of size m

- Commitment 1:¢ || Hy
- Commitment 2: 6 (y)
- Commitment 3:6(y ®5s)
- Verifier picks arandom bit bin {0, 1, 2}, and Prover opens the commitments as follows:
- Ifb=0,it opens commitment to ¢ (y) by giving (y and ¢)
- Ifb=1,itopens(yes)
- Ifb=2,itopenso(y) and o(s)
- Verifier verifies that
- Ifb=0,it verifies commitments (1), (2)
- Ifb=1,itverifies (1), (3) and that H*(y ® s) @ H*(s) = H(y)
- Ifb=2,itverifies (2), (3) and that o(s) has correct hamming weight

Next Steps

- Designing our signature scheme
- Implementing the signature scheme
- Performance evaluation if the signature scheme is fast enough

Acknowledgements

Our mentors

Jules Drean Sacha Servan-Schreiber

MIT PRIMES organizers for making this possible!

Thank you!

