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Introduction

▶ We all use social media to talk to people.

▶ Privacy.

▶ Messages themselves? They are normally encrypted and
hard to obtain.

▶ Activity pattern like logging on and off?

▶ In this talk, we will explore how such information can be
used to learn user connections.



Introduction

▶ We all use social media to talk to people.

▶ Privacy.

▶ Messages themselves? They are normally encrypted and
hard to obtain.

▶ Activity pattern like logging on and off?

▶ In this talk, we will explore how such information can be
used to learn user connections.



Introduction

▶ We all use social media to talk to people.

▶ Privacy.

▶ Messages themselves? They are normally encrypted and
hard to obtain.

▶ Activity pattern like logging on and off?

▶ In this talk, we will explore how such information can be
used to learn user connections.



Introduction

▶ We all use social media to talk to people.

▶ Privacy.

▶ Messages themselves? They are normally encrypted and
hard to obtain.

▶ Activity pattern like logging on and off?

▶ In this talk, we will explore how such information can be
used to learn user connections.



Introduction

▶ We all use social media to talk to people.

▶ Privacy.

▶ Messages themselves? They are normally encrypted and
hard to obtain.

▶ Activity pattern like logging on and off?

▶ In this talk, we will explore how such information can be
used to learn user connections.



User Behavior

How do users of social media behave?

They behave differently
and non-uniformly, so we can’t treat them all the same.

▶ People tend to talk based on the number of common
interests.

▶ If talking previously, it is more likely for them to talk later.
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Eavesdropper’s Observation

If someone is online, they are talking to someone (could be
multiple)

The eavesdropper gets to see all the people who are online in
a period of time called an epoch.
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Intersection attack (also known as statistical disclosure
attacks) use such information to reconstruct relationships.

▶ Graph

▶ Observation (epochs)

▶ Attack

▶ Results
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Graph Generation (Clustered?)

Previous papers all worked on a uniform graph.

How are we going to reconstruct the graph example?

▶ Every user is assigned a probability pi .

▶ For each possible interest (integer from 0 to 99), we do a
coin flip with probability pi which decides whether the
user will have that interest or not.

▶ For each pair [i, j], the larger the intersection, the more
probable it is that they talk.

▶ We will denote probability that i and j talk in an epoch
with A[i, j]
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Epoch Generation (Correlated?)

Previous papers simply did a coin flip on A[i, j] for all [i, j].

▶ If i and j talked in the previous epoch, it is more likely for
them to keep talking in this epoch.

▶ How about A[i, j] + δ if i and j talked in last epoch?

▶ This change is apparently temporary and will vanish once
A[i, j] + δ flips to tail



Epoch Generation (Correlated?)

Previous papers simply did a coin flip on A[i, j] for all [i, j].

▶ If i and j talked in the previous epoch, it is more likely for
them to keep talking in this epoch.

▶ How about A[i, j] + δ if i and j talked in last epoch?

▶ This change is apparently temporary and will vanish once
A[i, j] + δ flips to tail



Epoch Generation (Correlated?)

Previous papers simply did a coin flip on A[i, j] for all [i, j].

▶ If i and j talked in the previous epoch, it is more likely for
them to keep talking in this epoch.

▶ How about A[i, j] + δ if i and j talked in last epoch?

▶ This change is apparently temporary and will vanish once
A[i, j] + δ flips to tail



Epoch Generation (Correlated?)

Previous papers simply did a coin flip on A[i, j] for all [i, j].

▶ If i and j talked in the previous epoch, it is more likely for
them to keep talking in this epoch.

▶ How about A[i, j] + δ if i and j talked in last epoch?

▶ This change is apparently temporary and will vanish once
A[i, j] + δ flips to tail



Correlation for the Example Graph



Some Math to Consider

▶ Given A, what is probability that user i and j appear
online at the same time?

▶ {
Edge [i, j] is active

They each have an edge active other than [i, j]

▶ User i having at least one conversation with someone
other than j

▶ g(i , j) = 1−
∏

k ̸∈j(1− A[i , k])

▶
F[i,j](A) = A[i, j] + (1− A[i, j]) · g(i , j) · g(j , i)
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What Does the Eavesdropper See

▶ We just calculated the theoretical probability of i and j
appearing online together using A.

▶ What is this probability, call it C[i,j], as observed by the
eavesdropper?

▶ Number of times divided by total number of epochs!
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Attack

Now we want to consider the entire graph. Let
F(A) =

∑
F[i,j](A) and C =

∑
C[i,j]

▶ The eavesdropper tries to find a A′ for which F(A′) is the
closet to C . In a sense, F(A′) = C .

▶ In this way, the guess A′ matches the observation the
most.

▶ Why does it work?

▶
lim
t→∞

Ct = F(A)
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How Fast?

▶ Let C be a random variable representing the observations
with Ci the sample for epoch i .

▶ Then {C1,C2, . . . ,Ct} are independent observations of
an unknown distribution Dist(µ = F(A), σ2)

▶ We want to look at the sample average which is(
C̄ =

C1 + C2 + . . .+ Ct

t

)
→ F(A) when t → ∞

▶ We are interested in the rate of convergence.
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Central Limit Theorem

Central Limit theorem states that

(C̄− F(A)) ∼ N (0, σ2)√
t

▶ It essentially says that C̄− F(A) converges to 0 at the
speed of 1√

t
.

▶ If I double the number of epochs given, the new difference
should be 1√

2
≈ 70.7% of the previous difference.
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▶ We can apply attacks in other papers on our setting and
compare the results.

▶ We can modify F by adding in extra terms to better
accommodate the graph.
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