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Outline

Background: convex optimization and second-order cone
programming (SOCP)

Existing algorithms: interior point methods

My work: developing an efficient SOCP algorithm
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What is convex optimization?

Minimization of a convex function f (x) over a convex set C .

min
x∈C

f (x)

Convex function Convex set
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Subsets of Convex Optimization
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Applications of Second-order Cone Programming

Second-order cone programs provide a general framework for solving a
wide range of linear and quadratic programming problems with many
applications in:

Financial portfolio optimization

Engineering and control systems

Energy management systems

Logistics and supply chain management

Machine learning algorithms, such as support vector machines
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Second-order Cone Definition

Definition (Second-order Cone)

A second-order cone Lk is defined as

{(x0, x̃), x̃ ∈ Rk : ∥x̃∥2 ≤ x0}.

Euclidean norm: ∥x∥2 =
√
x21 + · · ·+ x2n .

Figure: The second-order cone L2 is equivalent to the inequality
√

x2 + y2 ≤ z .
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Second-order Cone Program Definition

Objective function: Linear function c⊤x
Constraint function: Intersection of an affine set Ax = b and the
Cartesian product L of second-order cones.
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Second-order Cone Program Formal Definition

Definition (Second-order Cone Program)

Given the constraint matrix A ∈ Rm×n, two vectors b ∈ Rm and c ∈ Rn,
and r second-order cones L1, . . . ,Lr . The optimization problem can be
expressed as:

min c⊤x subject to Ax = b, xi ∈ Li for all i ∈ [r ], (1)

where x is the concatenation of xi lying inside the domain

L def
= L1 × · · · × Lr and each Li ∈ Rni is a second-order cone.
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Previous Work and Our Result

Karmarkar Linear program 1984 O(n3.5)

Nesterov,
Nemirovski

Second-order cone
program

1994 O(nω+0.5)

Lee, Song,
Zhang

Constant
dimension convex

program
2019 O(nω)

Cohen, Lee,
Song

Linear program 2021 O(nω)

Gu, Song,
Zhang

Quadratic
program

2023 O(nω)

Our result
Second-order
cone program

2023 O(nω)
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My Approach

Developed a second-order cone programming algorithm that runs in matrix
multiplication time.

Applied approximation techniques to reduce the runtime of each
iteration.

Developed a novel approach to decompose large cone constraints into
smaller ones.

Utilized self-concordance properties to prove that the algorithm
converges in matrix multiplication time.
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Interior Point Methods: Duality

Definition

Given an SOCP of the form

min
Ax=b,x∈L

c⊤x

the dual of this SOCP is the new SOCP

max
A⊤y+s=c,s∈L

b⊤y .

We call the original SOCP a primal SOCP.

Theorem (Complementary Slackness)

Any feasible x and s are optimal if and only if x⊤s = 0.
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Interior Point Methods: Central Path

In the IPM, we start with a feasible solution pair (x , s) and follow a
central path to the solution. While the duality gap x⊤s > ϵ, where ϵ is the
error we tolerate, perform the following steps:

Compute the next point (x + δx , s + δs) to decrease the duality gap.

Update (x , s) to the new point.
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Interior Point Methods: Central Path

The interior point method follows the central path x(t) which starts at
some interior point (t ≫ 0) to the optimal solution (t = 0):

x(t) = arg min
Ax=b

c⊤x + tϕ(x) with ϕ(x) def
=

r∑
i=1

ϕi (xi ),

where ϕi : Li → R are barrier functions: they increase rapidly near the
border of each second-order cone.
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Interior Point Methods: Approximate Solution

Because it is costly to compute (x , s) exactly at each iteration, we use an
approximate solution (x̄ , s̄) that remains within a small neighborhood of
the central path.

To ensure (x̄ , s̄) remains close to (x , s), we update certain blocks of (x̄ , s̄)
at each step.
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Interior Point Methods: Optimality Conditions

Theorem (Karush–Kuhn–Tucker condition)

The optimal condition of the path satisfies

1

t
s +∇ϕ(x) = 0.

We denote µ = s/t +∇ϕ(x), which serves as a measure of proximity to
the central path.
At each step, we update t by some multiplicative factor, then update x
and s by solving the following system (Newton System): ∇2ϕ(x) I/t̄ 0

A 0 0
0 I A⊤

 δx
δs
δy

 =

 δµ
0
0


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Cone Splitting

Even without recomputing from scratch at each iteration, updates for
high-dimension blocks are still expensive! It takes nωi time just to update
one block of dimension ni .
Instead, we can transform higher dimension cones into the intersection of
smaller cones and an affine space:

where a = x (1)
0 and b = x (2)

0 .

We can convert back from new SOCP to old SOCP in O(n) time.
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Final Algorithm for SOCP

Cone-splitting

Find initial feasible solution (x , s)
While t > ϵ,

Update t to t
(
1− 1√

r

)
.

Calculate δx and δs .
Update x to x + δx and s to s + δs .
Update x̄ , s̄ as needed.

Using the solution to the modified SOCP, reconstruct the solution to
the original SOCP.

This algorithm solves a second-order cone program in
O(nω + n2r1/6 + n2.5−α/2 log(1/ϵ)) time.
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