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Abstract

Consider a typical streaming problem, where an agent dynamically interacts
with its environment to learn an optimal behavior. Such methods are used
in a variety of applications, including playing Atari games and robotic hand
manipulation. We analyze an agent that learns the rewards of each path
in its environment, which can be modeled as determining the edge weights
of a graph. We study an agent that follows an ϵ-greedy sampling strategy
because this model is widely used and has been successfully applied to many
problems. However, in recent years, numerous attacks have been devised
against graph learning algorithms, with some methods exploiting graph
structure and node features. To ultimately create a robust graph streaming
algorithm based on ϵ-annealing, we first construct, implement, and analyze
worst-case attacks against random-sampling and ϵ-greedy victim models.
Our adversarial strategy exploits path overlaps and stalls the victim to
effectively increase the corruption budget.

1 Introduction

1.1 Background

The use of online reinforcement learning to solve many classes of problems has skyrocketed
over the last decade and has achieved stellar results in several tasks and fields [14, 19, 23].
Online reinforcement learning (RL) is a branch of online learning distinct from both super-
vised and unsupervised learning, where an agent dynamically interacts with an environment
to garner information about it and learn a policy, which dictates its behavior. It does not
require the use of large, labeled data sets in the way supervised learning does; how could a
computer learn to play chess by shoveling chess game data through a giant neural network?
Instead, it simply needs access to the training environment (e.g. chess, Go, or Atari), and
the computer plays on its own and gradually builds up skill. The goal of the agent is to find
a policy that optimizes some objective, usually pertaining to the cumulative reward from
the environment. For example, an agent learning to play Atari games might try to learn a
policy that allows it to get the most points in the game before it dies [14].

Because the agent is simultaneously trying to gather information about the environment
while also maximizing reward, the agent is said to balance exploration with exploitation.
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In an often-used model termed ϵ-greedy, the parameter ϵ represents the relative weighting
between exploration and exploitation, as it is the probability that controls whether we choose
the best known action (exploitation) or choose a random action (exploration).

However, many online learning algorithms suffer from poor performance upon deployment,
owing to significant differences between training conditions and test conditions, which can
be caused by human biases, modeling errors, or actual adversaries. These problems can be
rectified by training the agent to be robust ; that is, maintain some degree of performance
despite a shift from initial conditions. To model such disturbances, many works introduce an
adversary, which aims to disrupt or degrade the victim agent’s performance by perturbing
various aspects of the learning environment such as the victim’s rewards [12, 29], the victim’s
observations [10], the victim’s memory, and the environment transition dynamics [27, 16].

Yet, the question of how myopic sampling strategies such as ϵ-greedy perform under such
adversarial corruptions remains unanswered. ϵ-greedy is one of the most popular sampling
strategies due to its simplicity and empirical success for many practical problems [5]. Study-
ing epsilon-greedy’s performance under adversarial conditions is vital to understanding the
robustness of these numerous implementations. What happens when an ϵ-greedy agent is
exposed to an adversary? How much can an adversary degrade an ϵ-greedy victim’s perfor-
mance by poisoning the training time data it learns from? These questions, in the context
of graph-structured environments, drive the motivation behind this paper.

In particular, we fill a gap in the field of graph streaming algorithms, where an agent has
access to a stream of graph data that it uses to make decisions. In our adversarial model,
the victim learns a behavior based on the stream of its previous graph trajectories, while
an adversary needs to select when and which edges to perturb, with the goal of degrading
the victim’s performance as much as possible. We provide analysis of maximum corruption
for both a random-sampling victim and the epsilon-greedy victim, along with theoretical
and experimental analysis of the corruption’s degradation over time. These investigations
are fundamental to understanding the robustness of a highly adaptive model in streaming
settings.

2 Related Work

2.1 Streaming Algorithms

In the typical streaming algorithm problem, the learning agent dynamically interacts with its
environment and utilizes the stream of data generated to adjust its behavior incrementally.
Some real-world examples include making trading decisions in financial markets and real-
time speech processing [15, 9].

Q-Learning

Q-Learning is one of the most popular online RL algorithms and the algorithm we imple-
mented empirically to test some of our attacks on. In this method, each pair of states and
actions is given a Q-value which prescribes which action to take next [21]. These Q-values
are updated according to the data stream generated as the agent navigates its environment.

Attacks on Streaming Algorithms. Previous works on attacking streaming algorithms
include Gong et al. [9] and Natali et al. [15]. The former of which uses partially observable
decision process concepts from reinforcement learning such as imitation learning, while the
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latter draws parallels to the k-secretary problem from optimal stopping theory. These works
consider adversaries which do not have access to the entire original data set and must learn
alongside the victim. Our setting considers a more specific and stronger adversarial model
which has access to the generator of the stream’s contents, the MDP’s structure and rewards,
along with whether the victim is currently sampling randomly or greedily, but it does not
have access to the victim’s current Q-values.

Moreover, we focus on a poisoning attack, in which the adversary corrupts the stream
during the lesser-explored training process instead of the evaluation phase. This is more
computationally difficult as the adversary needs to factor in the victim’s ever-changing policy
into its corruptions. Previous work on poisoning streaming algorithms include NETTACK,
which exploits graph structure and node features to attack deep learning models relying on
graph convolutions [30]. Our work also exploits graph structure, but for the different goal
of maximizing adversarial budget to manipulate the perceived reward of paths.

Zhang et al. [29] is one of the few adaptive poisoning attacks against an ϵ-greedy Q-learning
victim. This work investigates manipulating the victim to follow the target policy in some
number of important states, a subset of the environment’s state space. The paper imple-
ments a Fast Adaptive Attack that ranks each of these important states based on distance
from the start state. Instead of attacking all states at the same time like Xu et al. [27],
Zhang et al. [29] attacks each important state one at a time, allowing the target policy to
be preserved at each state. Although the paper proves that for its “Non-Adaptive Attack,”
the objective value and ϵ-greedy’s covering time is O(e|S|), so that attack is slow. We aim
to further investigate what exactly an optimal adversarial strategy looks like against an
ϵ-greedy victim.

2.2 Sampling Strategies

Ideally, an agent is able to operate well in stochastic settings, wherein the agent can sample
rewards that are not subject to adversarial corruption. The manner in which the agent
samples from the MDP is crucial to its performance, and this work considers ϵ-greedy as
the sampling strategy of focus.

Purely Random Sampling or Purely Greedy Sampling. One näıve sampling ap-
proach is to simply take a random action. While this strategy carries the advantage that no
single path will become excessively favored and the agent will get a fairly accurate picture
of the MDP given enough samples, it is not efficient because much time is wasted sampling
paths that are already known to be suboptimal.

In contrast to random sampling, the agent could instead always sample the path that,
according to its current knowledge, yields the most reward. This strategy is also primitive
because such an agent would continually choose the first path it samples without variation–it
would have no ability to test other paths to see if they are better.

Ultimately, neither strategy is robust. A victim operating under these strategies would be
easily susceptible to adversarial corruption.

Epsilon-Greedy. ϵ-greedy thus represents a balance between these two approaches. Al-
though it is one of the most popular sampling strategies, its theoretical guarantees are
underexplored. Simply stated, ϵ-greedy policy involves sampling a random suboptimal ac-
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tion1 ϵ fraction of the time, and sampling the highest-Q-value action 1 − ϵ fraction of the
time [21]. That is,

π(s) =

{
argmaxa∈A(s) Q(s, a) with probability 1− ϵ,

rand(A(s)− argmaxa∈A(s) Q(s, a)) with probability ϵ
.

Previous works about ϵ-greedy’s theoretical guarantees include Dann et al. [5]. In order to
categorize the kinds of problems ϵ-greedy performs well in, this paper proposes a complex-
ity measure, the myopic exploration gap, which correlates to MDP structure, exploration
policy, and value function. Moreover, the paper shows that sample-complexity of myopic
exploration strategies, such as ϵ-greedy, is proportional to the inverse square of the myopic
exploration gap.

Epsilon Annealing [21]. A slight variation on ϵ-greedy, annealing entails the gradual
decrease of ϵ’s value over time. The justification for such an approach is that as time goes
on, the agent is expected to attain a more precise picture of the MDP, and consequently,
there is less uncertainty in its decisions. Therefore, the chance with which it makes a random
and exploratory decision should decrease over time.

Upper Confidence Bound (UCB) Action Selection. An alternative to ϵ-greedy, UCB
weights actions according to their potential to actually be optimal [21], as per the equation

a(t) = argmax
a

[
Qt(a) + c

√
ln t

Nt(a)

]
.

The term being added to the Q-value represents an upper-bound on our uncertainty about
the action’s actual value. As time increases, that term approaches 0 (since lim

t→∞
ln t
t = 0), so

our uncertainty naturally decreases with time [21].

This work does not consider UCB, which is significantly more complex mathematically
speaking, opting instead to focus on ϵ-greedy strategies. After all, ϵ-greedy is well-known
and commonly used so there is practical benefit in focusing on it [5]

2.3 Adversarial Attacks and Defenses

An adversarial attack in the context of reinforcement learning is any protocol employed
against the agent, with the intent of negatively influencing its behavior [8]. That intent may
include coercing the victim into learning a specified target policy or degrading the victim’s
performance in test-time.

Previous work in Adversarial RL includes Rakhsha et al. [17], which aims to poison the
environment such that the target policy is optimal in this poisoned setting. Thus, the victim
ends up learning the target policy by optimizing its rewards in the poisoned environment.
This paper only considers a universal perturbation: a single, non-adaptive attack at the
very start of the training period. While we also consider a poisoning attack, our strategy is
online, meaning the adversary continues to attack throughout the training process.

1This work considers a victim who makes a decision exactly once per episode. Thus, if making a random
decision, it chooses uniformly from the set of all paths it can take through the MDP, other than the optimally
perceived path.
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Essentially, a basic approach to defense is to train an agent over a wide variety of environ-
ments with the goal of learning a policy that performs well when evaluated in an arbitrary
environment. However, policies that perform well in the average case may perform poorly
on a small fraction of particularly difficult environments and are therefore susceptible to
worst-case adversarial attacks [6].

Therefore, the Robust RL objective is to find a policy that performs optimally under the
worst-case environment scenario. The victim tries to maximize its reward by choosing an
optimal policy, while the adversary tries to force the victim to get lower reward by choosing
the worst environment drawn from some set of possible ones [8]. The Robust RL objective
is to find a policy π that satisfies:

max
π

min
p

Eπ,p

[∑
t

Rt

]
,

where p is the environment and Rt is the reward at time t.

There are several methods that satisfy the Robust RL objective [24, 13, 1] that all incor-
porate the maximin framework above in unique ways. For instance, Tessler, Efroni, and
Mannor [24] introduces an adversary with the ability to perturb the agent’s actions during
training time.

2.4 Our Focus

In our research, we want to tackle the following questions:

1. How can we identify the optimal adversarial strategy in this strongly adaptive model?

2. How well do stochastic online learning models perform under our adversarial strategy?

3. How does the structure of an MDP affect the performance of an adversarial strategy?

3 Model

3.1 MDPs

The environment in which the RL agent operates is often modeled as a Markov Decision
Process (MDP).

Definition 3.1 (Markov Decision Process). An MDP is characterized by the quadruple
(S,A, R,P), where:

• The state space S is the set of all possible states the agent may enter,

• The action space A is the set of all possible actions the agent may take,

• The reward function R: S ×A → R prescribes the reward attained by the victim upon
taking a given action in a given state,

• The transition dynamics function P : (s′|s, a) → [0, 1] denotes the probability of the
agent transitioning to a new state s′ given its presence in s and taking the action a.
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3.2 Adversarial Model

We consider an adversary that has access to all the rewards and transition probabilities in
the MDP. For every path traversal in the victim samples in the stream, the adversary has
probability p of corrupting the path by a maximum magnitude of δ. This style of corruption
suits the incremental nature of the online victim’s learning process.

3.3 Maze MDP

Although our theoretical and general results apply to a more general class of MDPs, a simpler
and more concrete way of conceiving of an MDP is a maze challenge situated in a grid. This
setting can be easily visualized and also can represent a generalized MDP with each open
slot in the maze representing a state. The action space is {RIGHT,LEFT,UP,DOWN}.
However, our maze is nondeterministic, so choosing the action right does not guarantee the
agent will take a step in that direction.

An example grid layout is depicted above. The agent must start at the green square and,
without ever visiting a previously traversed square, make its way to a red terminal state.
The reward it acquires is represented by numbers strewn across the maze; if the agent lands
in a given square, receives this reward. When no attack is supplied and p is deterministic,
the optimal policy is the one that leads the agent along the path highlighted by the blue
line.

A representation of the learned Q-values in this maze is depicted below. It was created by
coloring each square st with the average Q-value over all four actions that can be taken in
that square. Lighter values correspond to higher values, and the deep purple corresponds
with 0 value:
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4 Constructing Adversarial Strategies

The goal of the adversary is to manipulate the victim into returning a path with lowest
reward possible after N episodes. Thus, a naive strategy is to perturb the optimal path P ∗

downwards and the path P̂ with lowest reward possible upwards. The paths are corrupted
by the maximum of pδ each for a budget of 2pδ, meaning that R(P̂ ) < R(P ∗)− 2pδ.

A B

C

D

E

R(AD) =
3

R(AE) =
6

R(AC) =
12

2

12

1

4

(a) Without adversarial corrup-
tion, AC is optimal. pδ = 4

A B

C

D

E

R(AD) =
7

R(AE) = 6

R(AC) =
8

2

12− 4

1 + 4
4

(b) With the naive corruption
strategy, the adversary corrupts
edge BD upwards and AC down-
wards. However, there is not
enough corruption to trick the
victim into choosing AD.

A B

C

D

E

R(AD) =
9

R(AE) =
8

R(AC) =
8

2 + 4
2

12− 4

1 + 4
4

(c) By corrupting edge AB when
P2 is traversed, the adversary
adds free corruption of 2 to its
budget. Now, the adversary can
trick the victim into choosing
AD.

Figure 1: pδ = 4

The total amount of corruption on P̂ is Np ·pδ averaged among all of the samples. However,

not all the edges on P̂ are sampled the same number of times.For instance, in section 4,
edge AB is traversed 1

2N while BD is traversed 1
4N times. If the adversary were to corrupt

AB each time P1 is traversed, AD’s reward would only be perturbed by
pδ
4 N
1
2N

= pδ
2 . On

the contrary, if the adversary corrupted BD instead, AD’s reward would be perturbed by
pδ
4 N
1
4N

= pδ. Thus, it is more optimal for the adversary to corrupt the edge with smallest

degree, which is the disjoint edge BD. Additionally, the non-disjoint edge AB can be
corrupted when AE is traversed. This allows the adversary to perturb AE’s reward by
more than just pδ. We call this additional perturbation free corruption.

Definition 4.1 (Free Corruption). For edge es ∈ Es on path Ps ∈ Ss, corrupting es when

Ps is traversed will add a free corruption fPs,Pf
=

pδNPs

NePs,Pf

to the adversarial budget, where

Pf = P̂ ∨ P ∗.

Free corruption depends on the number of paths non-disjoint to P̂ and P ∗. As |Ss| increases,
so does the fraction of traversals in which shared edges are corrupted. Moreover, free
corruption depends on the victim’s sampling strategy. During the warm start, fPs,Pf

= pδ
ae

because each path is sampled equally. Therefore, the optimal adversarial strategy is: for
every path, corrupt the edge it has in common with either P̂ or P ∗ and is also on the least
number of paths.

For a small N − n, we provide an algorithm which outputs the lowest reward path that the
adversary can force the victim to choose at the end. The adversary calculates its budget for
each path. Then, it returns the path with least reward while still having sufficient budget
to trick the victim into choosing this path.
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Algorithm 1 Adversarial Attack For Small N

input: MDPM
1: P ← P ∗ ▷ Adversary finds the optimal path to trick victim into picking
2: for all Pi ∈M∧ Pi ̸= P ∗ do ▷ Iterate through suboptimal paths
3: bi ← 2pδ ▷ Default corruption budget is 2pδ
4: for all Ps ̸∈ {Pi, P

∗} do ▷ Iterate through other paths to calculate free corruption
5: fPs ← 0
6: for all e ∈ Ps do ▷ Iterate to find the edge with greatest free corruption
7: if (e ∈ P ∗ ⊕ e ∈ Pi) ∧ 1

ae
> fPs

then ▷ e is on exactly one of the paths we
wish to corrupt

8: fPs
← pδ

ae
▷ Calculate free corruption from corrupting e;

ae := |{P : e ∈ P}|
9: end if

10: end for
11: bi ← bi + fPs

▷ Add free corruption from Ps to budget
12: end for
13: if R(Pi) < R(P ) ∧R(P ∗)− bi < R(Pi) then
14: P ← Pi ▷ Compare current path to best path found thus far
15: end if
16: end for
17: output P, f

4.1 Proof of Optimality of Algorithm 1

We begin our proof by reducing the task of showing that this algorithm chooses the path with
lowest reward to the task of showing that this algorithm calculates the budget optimally.
For the sake of contradiction, suppose the algorithm did not pick the path with lowest
reward. This means the adversary could have found a higher budget for some other path
with a lower reward, meaning the adversary did not choose the edges to corrupt optimally.
Therefore, we prove this algorithm picks the set of corrupted edges optimally.

Lemma 1. There exists some edge such that if the adversary focuses all perturbation on
this edge, it will be more optimal than if the adversary distributes its perturbation.

Proof. Suppose that the adversary corrupts the edge e. In order for the adversary to increase
its effective corruption budget, it would have to sometimes corrupt an edge e′ which has a
higher corruption. In this case, corrupting just e′ is more optimal than the weighted sum
of e and e′. Thus, choosing multiple edges to corrupt in a traversal is not optimal, and it is
more favorable to always choose a single edge to corrupt.

Theorem 4.1. Algorithm 2 picks the set of corrupted edges optimally.

Proof. Suppose, for the sake of contradiction, that there is a set of corrupted edges that is
more optimal.

Each edge in this optimal set that differs from the algorithm’s chosen set is one of two cases:
either it is not on the two paths the adversary aims to swap, or it is. If the edge is not on
the two paths, it does not affect the budget because when corrupted, it does not contribute
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at all to switching those two paths. Otherwise, a differing edge indicates that there must
be some corruption replaced in the optimal set as the adversary only corrupts one edge per
path traversed by Lemma 1. However, we now prove that this substitution of edges will not
yield a greater corruption. Fundamentally, this is because the algorithm chooses the edge
on the least number of paths, which is optimal.

If the adversary corrupts an edge that is on h paths, including either the optimal or other
chosen path but not both, it will corrupt this edge p fraction of the N times it is traversed for
a total corruption of p ·N ·δ, and this perturbs the reward of the target path by p·N ·δ

h·N = p·δ
h .

This means that edges that are on a smaller number of paths will contribute a greater
corruption to the budget. As our algorithm picks the edge that is on the least number of
paths, it chooses the edge with the maximum corruption.

Thus, our algorithm is optimal, in that it calculates budget optimally and chooses to swap
the optimal path with the path with lowest possible reward.

4.2 Free Corruption for Larger N

While free corruption is effective for small N in the warm start, it is not stable once the
victim changes its sampling strategy for larger N . After the warm start, the victim follows
an ϵ-greedy sampling strategy. Let P1 be the path returned by the victim at the end of
warm start. The victim samples P1 a fraction of 1− ϵ times, compared to the ϵ

|S|−1 fraction

for which all other paths are sampled. Since paths other than P1 are traversed less often,
the adversary is unable to corrupt the edge set Es as frequently as before. As the fraction of
times the adversary corrupts Es decreases, the free corruption decreases as well. Therefore,
if the adversary maintains a fixed strategy, P1 will decrease in perceived reward. For a
sufficiently large number of samples N , P1’s reward may decrease enough so that the victim
ultimately chooses a different path where R(P̂ ) > R(P1).

5 Stable Paths

Free corruption is only effective for small N −n as it degrades when the number of samples
increases. Therefore, when N − n is large, the adversary uses a stable path to effectively
extend the warm start period and reduce the number of samples where P̂ is greedily sampled.
The adversary uses a stable path as an intermediate step before switching to P̂ .

Definition 5.1 (Stable Path). A stable path Pb’s reward must satisfy Rf (P̂ )− pδ < R(Pb)
in order for the victim to perceive it as the optimal path for large N .

Intuitively, R(Pb) is at most pδ away from the path with highest reward, so the adversary
doesn’t need any free corruption to make the victim believe Pb has the highest reward
instead. Thus, regardless of the victim’s sampling strategy, the adversary will be able to
corrupt Pb so that the victim chooses it. The adversary would corrupt ePb

upwards during
the warm start so the victim perceives Pb to be optimal. After the warm start, the adversary
continues corrupting Pb up by pδ until a path switch is needed.
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Figure 2: n = 100; Graph of free corruption from section 4 with respect to number of

samples after warm start. Free corruption is ϵ∗(N−n)+100
50+(1− ϵ

2 )(N−n) . For ϵ = 1,ϵ = 0.5,ϵ = 0.25,ϵ =

0.1,ϵ = 0.05,ϵ = 0.001
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(a) Without adversarial corrup-
tion. AJ is optimal.
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(b) Rewards right after warm start
for a stalling strategy. Stable path
AE is perceived as optimal.
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(c) Rewards some episodes after
warm start. Corruption degrades
on stable path AE so that path
AG is now perceived as optimal.

Figure 3: pδ = 4

5.1 Adversarial Strategy using Stable Paths

We provide an adversarial heuristic which we call a stalling strategy where the adversary
doesn’t switch to P̂ immediately. In this strategy, the adversary chooses to stall with a
stable path Pb. After the warm start, the adversary corrupts Pb so the victim always views
it as optimal, either corrupting ePb,P̂

or ePb
. Near the end of learning, it corrupts ePb

downwards to switch to P̂ .

In fig. 3, it’s possible to switch to AG, or first to AF and then to AG, during the warm
start. However, corruption would degrade on both paths, so it’s necessary to first trick the
victim into greedily sampling a stable path that can easily be switched with AG.
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Algorithm 2 Adversarial Attack Against ϵ-Greedy Victim

input: ϵ,MDPM
1: P ← P ∗ ▷ The final path we switch to
2: D,U ← ∅ ▷ Initialize final edge sets corresponding to corruptions down/up
3: for all P̂ ∈M∧ P̂ ̸= P ∗ do ▷ Choosing P
4: hasDown← true ▷ Some paths need to be corrupted down for P to be reachable
5: DP̂ , UP̂ ← ∅ ▷ Initialize edge sets corresponding to P̂

6: if warm(P̂ ) + (1−ϵ)pδ
1−(1−a)ϵ < R(P∗)−R(P̂ ) then ▷ Budget needed below upper bound

7: continue
8: end if
9: UP̂ ← GetUpwardsCorruptions(M, P̂ , UP̂ , DP̂ , n, N , ϵ) ▷ Corruptions on

low-reward paths
10: DP̂ ← GetDownwardsCorruptions(M, P̂ , DP̂ ) ▷ Corruptions on high-reward paths

11: hasDown ← Reachability(M, P̂ ,DP̂ ) ▷ Check viability of assigned corruptions

12: if hasDown ∧R(P̂ ) < R(P ) then
13: P ← P̂ ,D ← DP̂ , U ← UP̂

14: end if
15: end for
16: return: U , D

Algorithm 2 performs better than Algorithm 1 in several key cases, illustrated in the next
section. Currently, we are investigating a proof of optimality.

5.2 Stalling With Multiple Stable Paths

Let’s define a phase as a period of learning where the victim views the same path as optimal.
Adversarial corruption for an ϵ-greedy victim can be modeled as:

∑
e∈P̂

(warm(e)−
∑i

j=1 NjGe,j(1− ϵ)(warm(e)− pδCe,j)∑i
j=0(Ge,j(1− ϵ∑

P Ae,P
)) +

ϵ(1−Ge,j)∑
P Ae,P

)

where: i is the total number of phases,
Nj is the number of samples in the jth phase, warm(e) is the optimal amount of corruption
on edge e in the warm start period,

Ae,P =

{
1 e ∈ P

0 e /∈ P
,

Ce,j =

{
1 e corrupted upwards in phase j

0 else
,

Ge,j =

{
1 e ∈ jth greedily chosen path

0 else
,
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This quantity increases when the number of phases increases, indicating that a stalling
strategy utilizing multiple stable paths may be optimal. This is a direction we hope to
explore in the future.

6 Interfering Paths

While free corruption allows the adversary to switch to paths with lower reward, this tech-
nique comes with several negative implications. In small MDPs, the adversary is able to
successfully switch the optimal path P ∗ with a low reward path P̂ . In section 4 and fig. 3,
the rewards of the paths other than the optimal path are sufficiently low so they do not
affect the switching of P ∗ with P̂ . However, in most cases like fig. 4, there will be paths Pin

with reward R(Pin) ≥ Rf (P̂ ) which we call interfering paths. When such a path Pin exists,

the victim will ultimately choose this interfering path rather than the desired path P̂ .

Definition 6.1 (Interfering Path). A path Pin is an interfering path if Rf (Pin) > Rf (P̂ ).
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(a) Without adversarial corrup-
tion. AF is most optimal.
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(b) Interfering path AH is cho-
sen by victim.
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(c) Adversary tricks victim into
choosing AI

Figure 4: pδ = 2. b) Naive adversary corrupts AI and AF ’s disjoint edges and maximizes
free corruption with other paths. Final reward of AH is greater than that of AI. c) Adver-
sary recognizes that AH is an interfering path and corrupts it downward. The remaining
free corruption is enough to switch to AI

For instance, in fig. 4, if the adversary used Algorithm 2, it would attempt to switch P ∗

with AI. However, after corrupting these paths the reward of AH is greater than AI, so
the victim would choose AH.

Nevertheless, the existence of such interfering paths does not mean that AI is unreachable.
Instead, the adversary should corrupt AH downwards on its disjoint edge and corrupt all
other edges the same as before. With this strategy, AI has a higher perceived reward.

We can modify Algorithm 1 to better account for interfering paths. This heuristic is not op-
timal, but preliminary empirical testing show that it improves upon the baseline Algorithm
1. We plan on further refining and testing this heuristic.
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Algorithm 3 Heuristic for Interfering Paths

input: MDPM
1: P̂ , f ← Algorithm 2 ▷ Adversary corrupts P̂ and P ∗ optimally
2: R← (P̂ , f)
3: for all Pi ∈M∧ Pi ̸= P ∗ ∧R(Pi) > R do ▷ Iterate through interfering paths
4: fPi ← pδ ▷ Default corruption is pδ
5: for all Ps ̸∈ {Pi, P

∗, P̂} do ▷ Iterate other paths to calculate free corruption
6: fPs

← 0
7: if fPi

+R(Pi) > R ∨ f(Ps) ̸= 0 then ▷ if sufficient corruption or path used
8: break
9: end if

10: for all e ∈ Ps do ▷ Iterate to find the edge with greatest free corruption
11: if (e ∈ Pi ∧ e /∈ P̂ ) ∧ 1

ae
> fPs then ▷ e should be corrupted downwards

12: fPs
← pδ

ae
▷ Calculate free corruption from corrupting e;

ae := |{P : e ∈ P}|
13: end if
14: end for
15: end for
16: end for
17: output P, f

7 Experiment

7.1 Baseline Attacks

Aside from the adaptive attack, as a baseline, this work considers two primitive attacks, as
a means of comparing them to more sophisticated attacks.

Primitive Attack A. Under the first primitive attack, which we call A, when the victim
traverses path Pi of length ni, the rewards are perturbed by a normal distribution centered
at 0 and truncated between − δ

ni
and δ

ni
(the division is necessary to ensure that the total

perturbation in the sample does not exceed δ as mandated by our problem setting). The
probability density function of this distribution for a mean 0, standard deviation 3, and
bounded between −1 and 1 looks like

13



Essentially, the idea behind this attack is to introduce noise into the observed reward of the
MDP. It will be empirically demonstrated that in general, this methodology is far from the
adversary’s optimal strategy.

Primitive Attack B. Under the second primitive attack, which we call B, if the reward is
drawn from the optimal path P ∗ of length n∗, then the adversary perturbs it down by δ

n∗
;

conversely, if the reward is drawn from a suboptimal path Pi, then the adversary perturbs
it up by δ

ni
. This strategy is not optimal for the adversary because it blindly assigns equal

perturbation to all edges in a path, rather than singling out the best edge to perturb and
targeting it. It is shown below (and confirmed empirically) that for a random victim with
a warm start phase, neither strategies A nor B are optimal.

7.2 Preliminary Results

The following experiment2 was conducted in this MDP:

It included three paradigms: whether the adversary was absent, baseline (A & B), or dy-
namic (Algorithm 1); whether the victim was greedy or random during the main learning
phase; and whether there was a warm start. Performance was measured starting in the
post-warm-start phase, testing the learned Q-values with ϵ = 0 after every episode and
pδ = 13.

2Code is made available at https://github.com/Gerbil613/primes-rl-test.
3For the purposes of these experiments, we remove the assumption that the gap is sufficiently large

to prevent a path from remaining in between the optimal path and the path being switched. The code
implementation of Algorithm 1 is modified to account for such cases.
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Clearly, the baseline attacks were hardly effective at tampering with the learning of the
victim, because when there was no warm start, the victim’s learning curve was still able to
learn to achieve the optimal reward of 7. In contrast, the more sophisticated attack was
successful in meaningfully perturbing the victim, despite being subject to the same pδ = 1
constraint as the baseline adversaries. Moreover, it is apparent that when there is no warm
start under the dynamic adversary4, the ϵ-greedy victim maintains higher performance than
its random counterpart.

4One noteworthy feature of this graph is the sharp spike in performance in the beginning, if there is no
warm start. This spike can be attributed to the worst path in the MDP, of reward 3. When the victim
quickly learns to avoid this path, it shifts its strategy from sampling it 1

4
of the time to sampling it much

less frequently, owing to a large short-term increase in the victim’s reward.
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7.3 Random MDP Generation and General Analysis of their Struc-
ture

This work considers the following algorithm, which generates a random5 MDP given a set of
parameters. Such a procedure is quite useful in evaluating the efficacy of MDP algorithms
in general rather than focusing on one MDP, as before. Note that, because the class of
MDPs which this work considers is structurally equivalent to an acyclic directed graph, we
can guarantee acyclicity by assigning an integer to each state and only allowing transition
between a lower-numbered state to a higher-numbered one:

Algorithm 4 Random MDP Generation

input: ns, pe ▷ input number of states in MDP and likelihood of edge existing between
two given states

1: S ← {0, 1, . . . , ns}
2: while True do ▷ Keep on iterating until fully connected MDP is attained
3: A ← {}
4: for all s1 in S do
5: a← 0 ▷ Keep track of amount of actions in s1
6: for all s2 ∈ S such that s2 > s1 do ▷ Iterate through pairs of states
7: if random(0, 1) < pe then ▷ Do with probability pe
8: R(s1, s2)← random(−1, 1) ▷ Expected edge reward is 0, so that longer

paths do not have higher expected rewards
9: P(s1, a, s2)← 1 ▷ Draw edge between s1 and s2

10: a← a+ 1 ▷ There is now one more possible action in s1
11: end if
12: end for
13: if a > |{A}| then ▷ We use a to ensure that our action space contains the right

number of actions
14: A ← {0, 1, . . . , a}
15: end if
16: end for
17: if ∀s ∈ S : (∃P : s ∈ P ) ∧ |{P : P ∈M}| > 1 then ▷ Verify that MDP is fully

connected and not trivial; otherwise, reject and start over
18: return M(S,A,R,P)
19: end if
20: end while

First, we use this generation algorithm to verify that in the general case, for a victim with a
random warm start phase, Algorithm 1 achieves the greatest difference between the optimal
reward and the victim’s returned reward:

5We ignore trivial MDPs in which the gap between the optimal path and all other paths is so large that
the adversary cannot corrupt the victim into switching to any path at all. Thus, we also ignore MDPs that
have only one path.
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Attack A shows effectively no difference at all between optimal reward and returned reward.
This is because Attack A randomly assigns noise to the observations of MDPs, so in the
general case, averaged over many iterations, it imposes no meaningful corruption.

However, the fact that Algorithm 1 experiences a general trend of decreasing the difference
between optimal and returned reward is of great interest. It demonstrates that for denser and
denser MDPs (that is, MDPs with more chances at free corruption), the ability to maintain
warm-start corruption wanes, as evidenced by the returned reward becoming closer to the
optimal reward. This is due to the fact that when the victim enters the ϵ-greedy phase, it
focuses more on a single path to exploit, so as it traverses other paths less and less, less
free corruption may be derived from them. Thus, Algorithm 1’s overall ability to maintain
corruption through an ϵ-greedy phase wanes for denser MDPs. Additionally, it is clear that
Algorithm 2 is much more optimal than either primitive baseline attacks A or B, because it
still manages to sustain a higher discrepancy between optimal reward and victim-returned
reward than either baseline.

Next, we establish a relationship between the depth of an MDP (which we compute as the
average number of states in each path) and its density (which we measure by pe):
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Indeed, denser MDPs are likely to have longer (deeper) paths. This is because a denser
MDP has more edges, and is therefore more likely to possess longer, consecutive chains of
edges; i.e. longer paths.

Moreover, below is a graph detailing the number of greedy episodes for which warm start
corruption can be maintained. Note that for some randomly generated MDPs, the warm
start corruption can be maintained perpetually since it is sufficiently unreliant on free cor-
ruption. In these cases, we manually set the number of episodes in which corruption is
perpetually maintained to be a very high number (1000), since the mathematically accurate
data point would be infinite.

Evidently, for denser MDPs, the number of episodes for which warm start corruption can be
maintained drops. This reinforces the notion from previous data and reasoning that denser
MDPs have more free corruption and therefore struggle to hold onto all of it against an
ϵ-greedy victim.

18



Below, the “amount” of free corruption allowed to the adversary is parameterized along the
x-axis. Specifically, when the adversary is determining the path to perturb in Algorithm 1,
with a probability pf , it is allowed to take into consideration budget present on paths that
are neither the optimal one nor the one being switched. In this way, pf = 1 corresponds to
the usual Algorithm 1, whereas pf = 0 corresponds to a situation in which the adversary
may only perturb edges on the optimal path and the path being switched. The number
of episodes for which warm start corruption is preserved in a subsequent ϵ-greedy stage is
depicted below:

In short, in an intuitive sense, the more the adversary is permitted to make use of free
corruption, the less easily it can hold on to corruption. This, as before, is because free
corruption relies on the adversary consistently sampling a wide variety of paths. But under ϵ-
greedy behavior, it focuses on just one path, losing all the free corruption, so the adversary’s
strategy falls apart.

8 Conclusion

8.1 Future Work

The main task ahead is to generalize the victim sampling strategy from ϵ-greedy to an
arbitrary strategy. We aim to devise a method of constructing an optimal adversarial attack
against any sampling strategy. Our current work in this direction includes modeling the
sampling and attack processes as a matrix multiplication. We are solving the optimization
problem to find a fixed adversarial strategy.

Another line of work is to further investigate the optimality of our stalling heuristic and to
test it empirically. Moreover, we aim to improve upon this algorithm to balance correctness
with computational complexity.

One approach to achieve complete optimality may be establishing a recursive strategy to
determine the sequence of path switches. With this sequence, the adversary could construct
edge sets to corrupt up and down accordingly. However, the computational complexity
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required for the adversary to deploy this strategy is most likely exponential. Thus, a future
direction may be approximating this recursive strategy to make it more practical.

Moreover, on the experimental side, it would be interesting to gain even more insight about
how the general structure of an MDP reacts with the strategy of the adversary (e.g. how
much it relies on free corruption) to affect the performance of the victim and adversary.
For instance, when fixing the number of samples during which the adversary can maintain
warm start corruption, what is the relationship between the density of the MDP and the
distance between optimal reward and post-greedy-phase returned reward?
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neural networks for graph data”. In: Proceedings of the 24th ACM SIGKDD interna-
tional conference on knowledge discovery & data mining. 2018, pp. 2847–2856.

9 Appendix

Helper Functions for Algorithm 2

Algorithm 5 GetUpwardsCorruptions: Find which edges to corrupt upwards to stall
the victim and gain greater corruption

input: MDPM, optimal path P∗; the path we want to switch to P̂ ; U and D, edge sets to
corrupt up/down; n number of warm start samples; N number of samples after warm start;
ϵ

1: Rf (P̂ )← R(P∗)− warm(P∗) ▷ Calculate final reward of P̂

2: if warm(P̂ ) < R(P∗)−R(P̂ ) then ▷ Find path which shares edge with P̂
3: Let e ∈ P̂ satisfy e = argmaxe ae ▷ on more paths, bigger difference during greedy
4: for all Pe do ▷ paths containing e
5: if R(Pe) + pδ +warm(Pe) > Rf (P̂ ) then

6: Solve for NPe with
(1−ϵ)(warm(Pe)−pδ)(NPe )
((1−ϵ)NPe+ϵ(N−NPe ))

= R(Pe)−Rf (P )

7: U ← U + (e, Pe, N −NPe
) ▷ Start corrupting at sample N −NPe

8: Find Pstall where Pstall = argmaxP R(P ) and R(Pstall) < Rf (P̂ )
9: U ← U + (ed, Pstall, 0) ▷ Corrupt Pstall upwards to stall victim

10: if R(Pe) + pδ > Rf (P̂ ) then
11: U ← U + (e, Pe) ▷ Corrupt Pe’s common edge up
12: NPe

← (R(Pe)−R(P̂ ))((1− ϵ)N + n)− n ▷ Samples to switch Pe and P̂
13: D ← D + (e, Pe, N −NPe

) ▷ Corrupt disjoint edge down to switch to P̂
14: break ▷ Prefer initializing U and D here, there’s no degradation estimate
15: end if
16: end if
17: end for
18: end if
19: if warm(P̂ ) > R(P∗)−R(P̂ ) then ▷ Determine a path to stall with
20: Find Pstall where Pstall = argmaxP R(P ) and R(Pstall) < Rf (P̂ )
21: U ← U + (ed, Pstall, 0) ▷ Corrupt Pstall upwards to stall victim

22: NPe
← (R(P̂ )−R(Pstall))((1−ϵ)N+n)

2pδ − n
2 + (1− ϵ)N2 ▷ samples to switch Pstall and P̂

23: D ← D + (e, Pstall, NPstall
) ▷ Corrupt disjoint edge down to switch to P̂

24: end if
25: return: U , D
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Algorithm 6 GetDownwardsCorruptions: Find which edges to corrupt downwards to
ensure the victim doesn’t switch to an unintended high-reward path

input: MDP M, optimal path P∗; the path we want to switch to P̂ ; D, the edge set to
corrupt down

1: Rf (P̂ )← R(P∗)− warm(P∗) ▷ Calculate final reward of P̂

2: for all Ṗ ∈M∧R(Ṗ ) > Rf (P̂ ) do ▷ Track edges that need to be corrupted

3: D ← D + (ed, Ṗ ) ▷ add the disjoint edge to the set
4: end for
5: e∗ ← ∅, be ← 0 ▷ Edge to perturb and corresponding value
6: for all P̃ ∈M∧R(P̃ ) < Rf (P̂ )∧ ̸∈ Pp do ▷ We corrupt remaining paths as needed

7: for all Ṗ ∈M∧R(Ṗ ) > Rf (P̂ ) do

8: e← P̃ ∩ Ṗ
9: if 1

ae
> be then ▷ Updating best edge to perturb

10: e∗ ← e, be ← 1
ae

11: end if
12: end for
13: D ← D + (e∗, P̃ )
14: end for
15: return: D

Algorithm 7 Reachability: Determine if the assigned corruptions will ensure that the
victim doesn’t switch to an unintended high-reward path

input: MDP M, optimal path P∗; the path we want to switch to P̂ ; D, the edge set to
corrupt down

1: Rf (P̂ )← R(P∗)− warm(P∗) ▷ Calculate final reward of P̂
2: hasDown← True
3: for all Ṗ ∈M∧R(Ṗ ) > Rf (P̂ ) do
4: b← 0 ▷ Initialize budget
5: for all e ∈ D ∧ e ∈ Ṗ do
6: b← b+ 1

ae
▷ Update budget

7: end for
8: if b < R(Ṗ )−Rf (P ) then ▷ Ensure sufficient budget to corrupt Ṗ downwards
9: hasDown← False

10: end if
11: end for
12: return: hasDown
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