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Abstract

A translation surface is a surface formed by identifying edges of a
collection of polygons in the complex plane that are parallel and of equal
length using only translations. We determined that the same circle packing
can be realized on varying translation surfaces in a certain stratum. We
also determined possible complexities of contacts graphs and provide a
bound on this complexity in some low-genus strata. Finally, we established
the possibility of certain contacts graphs’ complexities in strata with genus
greater than 2.

1 Introduction

Translation surfaces are very common and important types of Riemann surfaces,
and can be defined through gluing together a collection of polygons in the
complex plane without applying any rotations or reflections [9]. For example, a
torus is a translation surface, formed by identifying opposite sides of a square.
Translation surfaces have applications in billiards on rational polygons ([10])
and geodesic flow ([2]). The introduction of Veech surfaces in 1989 (see [8]) has
increased research on translation surfaces, and they have since been extensively
studied (see [1, 3, 4, 5, 9, 10]).

Before we elaborate any further, we will describe a few topological and
geometric properties that will be freely discussed throughout the paper. We
define the genus of a surface as the maximal number of cuts along simple closed
curves that can be made without making the surface disconnected. Translation
surfaces of genus greater than 2 also contain singular points, whose geometry is
different from that of other points on the surface.

The results presented in this paper mainly concern circle packings on different
translation surfaces with similar properties. We give more background on these
objects in Section 2. We then settle questions regarding both the existence of
packings on distinct surfaces in Section 3 and the simplest packings that can
be realized on certain families of translation surfaces in Section 4. Finally, we
outline directions that future research may take in Section 5.
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2 Background

2.1 Definition and Basic Properties of Translation Surfaces

We begin by defining translation surfaces, the geometry of which will be the
main subject of the paper.

Definition 2.1. A translation surface is formed by identifying opposite sides
of polygons from P, where P is a collection of several polygons in the complex
plane such that P has an even number of sides and opposite sides of P are
parallel and of equal length.

A particular family of translation surfaces, the square-tiled surfaces, will be
of importance.

Definition 2.2. A square-tiled surface is a translation surface for which P is
formed by joining together opposite sides of congruent squares.

Multiple polygons may define the same translation surface:

Remark 2.3. Let P be a collection of polygons in the complex plane. Cut
polygons in P along straight lines and translate the resulting polygons so that
newly-created edges are identified to create a new collection of polygons P1.
After identification of opposite edges, P and P1 define the same surface (see
Wright [9]).

We now introduce singular points:

Definition 2.4. A singular point is a point with at which the angle is greater
than 2π to which multiple vertices of P get mapped.

Definition 2.5. The cone angle of a singular point is the total angle measure at
this point. It is the sum of the angles of all the vertices of P which get mapped
to the singular point.

It is a well-known result, outlined by Zorich in [10], that the total angle at
any point on a translation surface will always be a multiple of 2π.

Definition 2.6. The order, represented by δ, of a singular point v with cone
angle 2kπ is δ(v) = k − 1.

Example 2.7. Consider a square in the complex plane, and identify its opposite
sides. This yields a torus, a surface of genus 1. All 4 vertices of the square will
be mapped to a single point, with angle 4 · π

2 = 2π. Since this point’s angle is
not greater than 2π, it is not a singular point.

2.2 Genus and Stratum of Translation Surfaces

We begin by introducing a well-known theorem that relates the genus of a
translation surface to the order of its singular points (see Massart [2]).
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Theorem 2.1. (Gauss-Bonnet Theorem). Let X be a translation surface with k
singular points vi each of order δ(vi), and let χ(X) be the Euler characteristic
of X. Then the following is true:

k∑
i=1

δ(vi) + χ(X) = 0.

Theorem 2.1 will be useful for calculating the genus, g, of X by recalling the
well-known formula

χ(X) = 2− 2g.

Example 2.8. Consider the square-tiled surface with 3 squares shown in Figure
1. All of the vertices of each of the 3 squares will be mapped to a single singular
point v of angle 12 · π

2 = 6π. So, δ(v) = 2, and since χ(X) = −
∑

δ(vi), the
Euler characteristic in this case is −2. We now see that the genus is g = 2.

1 2

3

Figure 1: Genus 2 3-squared surface.

One more important topic related to the genus of a translation surface is the
surface’s stratum.

Definition 2.9. A stratum, denoted by H(κ) where κ is a partition of χ(X), is
the set of all translation surfaces with singular point orders equal to the parts of
κ.

Example 2.10. The surface in Example 2.8 has 1 singular point of order 2 and
no other singular points of nonzero order, so it is a member of H(2). Meanwhile,
the surface in Figure 2 is a member of H(1, 1), having 2 singular points each of
order 1.

Because (1, 1) and (2) are the only partitions of 2, all genus 2 translation
surfaces are either in H(1, 1) or in H(2).

Example 2.11. All of the regular octagon’s vertices are mapped to a single
point, so its angle is π(8− 2) = 6π. Hence, this point is a singular point of order
2 and the regular octagon is in H(2).

We now make the following important observation, which will be useful in
Section 4, about polygons which are mapped to H(2) surfaces.
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Figure 2: Translation surface in H(1, 1).

Remark 2.12. It follows from Proposition 1.16 of Wright [9] and Remark 2.3
that every H(2) surface results from gluing opposite edges of a rotationally
symmetric octagon in the plane. This is because any polygon forming a cylinder
and a slit torus upon identification of opposite edges can be cut and reglued into
an octagon with rotational symmetry, and a cutting and regluing in the other
direction is also possible for every octagon. This is illustrated in Figure 3 below:

Figure 3: The 2 polygons above are identified to the same H(2) surface.

2.3 Circle Packings

Of particular interest are circle packings, popularized by Thurston (see [7]), on
translation surfaces.

Definition 2.13. A circle packing is a collection of circles with disjoint interiors
with a contacts graph G so that each vertex of G corresponds to a circle and 2
circles are tangent if and only if their corresponding vertices on G are connected
by an edge.

In Definition 2.13, note that the radii and placement of the circles is not
determined by G.

Example 2.14. Figure 4 contains a possible circle-packing on the 3-squared
surface from Figure 1, along with the corresponding contacts graph in Figure 5.
We will denote this particular packing as C3 throughout.

Remark 2.15. The metric on a translation surface is not a flat smooth metric
near singular points of nonzero order (see Wright [9]). Hence, circles containing
singular points do not correspond with circles in the complex plane.
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Figure 4: A circle packing C3 on a surface in the complex plane.

Figure 5: Contacts graph for C3.

Example 2.16. Figure 6 depicts a collection of circular sectors on a 3-squared
P in the complex plane which, when opposite sides of P are identified, yield a
circle with radius less than 1

2 centered at a singular point.

Figure 6: Visualizing a circle centered at a singular point.

We now introduce a concept that will be useful in defining circle packing
equivalence.

Definition 2.17. A tangency pattern is the pattern of intersection of segments
connecting tangency points between pairs of circles. Consider 2 circle packings
C1 and C2 with the same contacts graph GC and 2 quadruplets of not necessarily
distinct circles (t1, u1, v1, w1) and (t2, u2, v2, w2) in C1 and C2, respectively so
that:

1. (ti, ui) and (vi, wi) are pairs of tangent circles for i ≤ 2.
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2. t1 and t2 correspond to the same vertex of GC , and likewise for ui, vi, and
wi.

Let t1u1 represent the segment connecting tangency points of t1 and u1, and
likewise define v1w1, t2u2, and v2, w2. The tangency patterns of C1 and C2 are
the same if and only if, for all (ti, ui, vi, wi) in Ci, t1u1 intersects v1w1 if and
only if t2u2 intersects v2w2.

Example 2.18. In Figure 7, 2 circle packings on 2 different translation surfaces
of the same stratum have the same contact graph and tangency patterns:

(a) 3-squared surface. (b) 4-squared surface.

Figure 7: Equivalence of trivial circle packings.

The following theorem (see Stephenson [6]) is instrumental in studying circle
packings, and provides motivation for our explorations in Section 3.

Theorem 2.2. (Koebe-Andreev-Thurston Theorem) Given a Riemann sphere
with a graph G, there exists a collection of circles on the surface whose contacts
graph is G such that the circles form a circle packing of the surface that is unique
up to a Möbius transformation.

We now establish equivalence conditions for circle packings on translation
surfaces. These conditions are not the same as those defined by the Koebe-
Andreev-Thurston Theorem for spheres:

Remark 2.19. Unlike in the case of a sphere, equality of contacts graphs is
not sufficient for the equality of circle packings up to a Möbius transform on
translation surfaces, as 2 circle packings with different tangency patterns are
not equivalent on surfaces with genus greater than 0. We call 2 circle packings
equivalent if they have the same contacts graph and the same tangency patterns.

Example 2.20. The circle packing in Figure 8 has the same contacts graph as
C3 on a surface of the same stratum, but has a different tangency pattern. Thus,
these 2 packings are not equivalent.
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Figure 8: Illustration of non-intersecting tangency segments.

3 Existence of Equivalent Circle Packings on
Distinct Surfaces

Consider a circle packing on a translation surface and its contacts graph G. One
interesting question is whether, for all G, there exists a circle packing, unique
up to a Möbius transformation, on a different translation surface of the same
stratum with the same contacts graph and tangency patterns. In other words, do
questions of existence of equivalent circle packings answered by Koebe-Andreev-
Thurston Theorem on spheres hold for non-zero genus strata? We answered this
question in the negative for specific surfaces in the H(2) stratum.

Theorem 3.1. An equivalent packing to C3 cannot be realized on any 4-squared
translation surface in H(2) without applying an affine transformation.

Proof. We start by noting that having any of the circles contain a singular point
cannot yield an equivalent packing to C3 on a 4-squared surface, as shown in
Figure 9. Due to the equivalence outlined in Remark 2.3, we can, without loss
of generality, only consider 4-squared surfaces formed by joining 3 squares in a
horizontal strip, and then vertically identifying a fourth square to the left-most
square in the strip, as in Figure 9.

Figure 9: Packing on a 4-squared surface with the same contacts graph as C3.

While the contacts graph in Figure 9 is the same as that of C3, the 2 packings
have differing tangency patterns, since the segment connecting the self-tangency
point of the red circle does not intersect the segment connecting the mutual
tangency points between the red and orange circles. Since the corresponding
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segments do intersect in C3, the packing in Figure 9 and C3 are therefore not
equivalent. Observe that it was not necessary to center the orange circle at the
singular point as was done above.

It remains to observe the effect of not allowing any circles to contain singular
points in their interiors.

Figure 10: Configuration with no circles containing singular points.

In Figure 10, the red and blue circles must have radius 1
2 , due to the self-

tangency conditions. The orange circle is tangent to both circles, with the
tangency patterns preserved for the red circle. In fact, this is the only unique
configuration that satisfies the tangency patterns with no circles containing
singular points.

However, the blue circle is not tangent to the orange circle a second time, as
it should be in order to have the given contacts graph. In fact, the orange circle
cannot possibly meet this tangency criterion. The largest possible radius for the
orange circle is 1√

2
, depicted as a dashed line in Figure 10. Even then, the sums

of the diameters of the dashed orange circle and the blue circle are
√
2 + 1 < 3,

so there will only be 1 tangency point even with maximal circle radii.
So, it is impossible to realize an equivalent packing to C3 on a 4-squared

surface of H(2) if an affine transformation is not applied to this surface.

Remark 3.1. In fact, stretching out the 4-squared surface in H(2) vertically by a
factor of 4

3 allows for an equivalent packing to C3, shown in Figure 11.

4 Simplest Achievable Contacts Graphs

Consider the stratum H(2) and a contacts graph on a translation surface in that
stratum. One question of particular interest is how simple this contacts graph
can be. We will now answer 2 fundamental questions: first, how many loops
can a single vertex of the graph have, and second, how many edges can possibly
connect 2 vertices.

Theorems 4.1 and 4.2 provide strict bounds on the amount of possible edges
between 2 vertices (multi-edges) and loops on a single vertex (multi-loops) in
contacts graphs on H(2) surfaces:
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Figure 11: Note that the tangency patterns are the same as in C3.

Theorem 4.1. A maximum of 8 multi-edges can be realized on any contacts
graph in H(2).

Proof. The maximal configuration with 8 multi-edges is achieved on Figure 12
below. The vertices of the contacts graph corresponding to the red and blue
circles of the circle packing have 8 edges connecting them.

Figure 12: The configuration with maximum multi-edges before gluing of opposite
sides.

We now demonstrate that no more than 8 multi-edges can be realized. By
Remark 2.12, the only polygons on which we must analyze circle packings are
octagons with at least 1 axis of rotational symmetry. Having 1 of the circles
contain a singular point cannot produce more than 8 multi-edges, as the second
circle can only be tangent to each of the 8 circular sectors in the complex plane
once. If neither circle contains a singular point, there can be a maximum of
5 multi-edges: 1 in the interior, and 1 along each pair of opposite sides of the
octagon.

Thus, at most 8 multi-edges can be realized on any contacts graph in H(2),
as desired.
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Theorem 4.2. A maximum of 9 multi-loops can be realized on any contacts
graph in H(2).

Proof. Figure 13 displays a packing that, when opposite sides are identified,
yields the maximum amount of realizable multi-loops in the H(2) stratum.

Figure 13: The configuration with maximum multi-loops before gluing of opposite
sides.

To demonstrate that 10 multi-loops are not realizable, we examine circular
sectors on rotationally symmetric octagons in the plane which are mapped to
circle packings on H(2) surfaces. As in the proof of Theorem 4.1, only packings
resulting from gluing of such octagons need to be analyzed by Remark 2.12.

We now perform casework based on the number of vertices of the octagon
whose interior angles are greater than π, which we call concavities throughout
the proof. There can only be an even number of these, as opposite sides must
be parallel. There can also be no more than 4 concavities, as the sum of the
interior angles of an octagon with 6 concavities is greater than 6π.

1. If there are no concavities, there are only 4 possible multi-loops correspond-
ing to 4 pairs of opposite sides of the octagon.

2. If there are 2 concavities, the vertices with angles greater than π must be
opposite each other. A circle that does not contain the singular point can
only have at most 4 multi-loops by the argument in the previous case. If
the circle contains a singular point, there can be at most 1 self-tangency in
the interior of the octagon and 4 self-tangencies on the edges, which again
correspond to 4 pairs of opposite sides, for a maximum of 5 multi-loops in
this case.

3. Finally, if there are 4 concavities, we again maximize the amount of multi-
loops with a circle containing the singular point. There can be a maximum
of 4 self-tangencies on the edges of the polygon and 5 in the interior, since
it is well-known that 4 circles with the same radius in the plane can have a
maximum of 5 mutual tangency points. In fact, the only such configuration
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(unique up to an affine transformation in the plane) is pictured in Figure
14, and placing alternating vertices of the octagon at the centers of these
circles yields the configuration shown in Figure 13. This case therefore
yields a maximum of 9 multi-loops.

Figure 14: Configuration of 4 circles in the plane with 5 mutual tangencies.

To conclude, 9 is the maximum possible number of multi-loops of any circle
packing on any surface in H(2).

Theorems 4.3 and 4.4 demonstrate that certain numbers of multi-edges and
multi-loops can be realized on contacts graphs of packings on general genus g
translation surfaces with 1 singular point.

Theorem 4.3. It is possible to realize 4g multi-loops on a contacts graph on at
least 1 surface of the genus g stratum H(2g − 2).

Proof. Consider the regular polygon Q0 = A2A4 · · ·A4g with 2g vertices in
the complex plane. For each side Q0 A2iA2i+2, construct the equilateral
triangle A2iA2i+1A2i+2 so that A2i+1 is not in the interior of Q0. Let Q =
A1A2 · · ·A4g−1A4g.

For each 2i + 1, center a circular sector C2i+1 contained in Q0 with angle
measure π

3 and radius A1A2

2 at A2i+1, and for each 2i, center a circular sector

C2i contained in Q0 with angle measure
(

2g−2
2g + 2

3

)
π and radius A1A2

2 at A2i.

Observe that members of the set {Cn|1 ≤ n ≤ 4g} have 2 mutual tangency
points for each of the 2g pairs of opposite sides of Q, as well as 2g mutual
tangency points at the midpoints of the 2g sides of Q0.

Now, we identify the opposite sides of Q to form a surface XQ in the H(2g−2)
stratum: XQ will have exactly 1 singular point of cone angle (4g − 2)π and,
consequently, of order 2g − 2. Note that all sectors Cn get mapped to a single
circle C centered at the singular point of XQ. The number of self-tangencies
of C is equal to the number of unique tangency points between members of
{Cn|1 ≤ n ≤ 4g}. Note that each of the 2g pairs of tangency points in the
complex plane that are at midpoints of pairs of opposite sides of Q get identified
to 1 point on the surface, contributing 2g to the number of self-tangencies of C.
The tangency points at midpoints of the 2g sides of Q0 are in the interior of Q,

11



and so contribute another 2g to C’s self-tangencies. Thus, it is possible for a
circle packing realized on a surface in H(2g − 2) to have 4g self-tangencies, as
desired.

Theorem 4.4. It is possible to realize 4g multi-edges on a contacts graph on at
least 1 surface of the genus g stratum H(2g − 2).

Proof. Consider the regular 4g-gon Qreg = A1A2 · · ·A4g. Identification of oppo-
site sides of Qreg yields a genus g surface in H(2g − 2). At each vertex Ai of
Qreg, center a circular sector of angle measure 2g−1

2g π and radius r < A1A2

2 . Next,

center a circle C1 with radius A1A2

2 sin( π
4g )

− r at the center of Qreg.

After identification of opposite side lengths, each circle centered at a ver-
tex of Qreg gets mapped to a single circle C2, and there will be 4g tangency
points between C1 and C2 corresponding to 4g vertices of Qreg. Thus, we have
constructed a packing whose contacts graph has 4g multi-edges on a surface in
H(2g − 2).

Similarly, on genus g translation surfaces with 2 singular points of equal order,
the possibility of certain packing complexities is demonstrated in Theorems 4.5
and 4.6.

Theorem 4.5. It is possible to realize 2g+ 1 multi-loops on a contacts graph on
at least 1 surface of the genus g stratum H(g − 1, g − 1).

Proof. First, note that the surface formed by identifying opposite edges of a
regular polygon Qreg = A1A2 · · ·A4g+2 is in H(g − 1, g − 1). Now, center 2g + 1

circular sectors with radii A1A2 · sin
(

g
2g+1π

)
at each even-numbered vertex A2i.

This will yield 2g + 1 tangency points in the interior Qreg, which correspond
to 2g + 1 multi-loops on the contacts graph of the H(g − 1, g − 1) surface, as
desired.

Theorem 4.6. It is possible to realize 2g + 2 multi-edges on a contacts graph
on at least 1 surface of the genus g stratum H(g − 1, g − 1).

Proof. Consider 2 regular (2g + 2)-sided polygons, Q1 and Q2. Choose a side of
each (2g+2)-gon, glue Q1 and Q2 together along those 2 sides, and then remove
the edge along which they were glued. The result is a (4g + 2)-gon Q, which,
as discussed in the proof of Theorem 4.5, becomes a surface in H(g − 1, g − 1)
upon identification of opposite edges.

Now, center a circle C1 at the center of Q1, and likewise center a circle C2 at
the center of Q2. Identifying opposite edges of Q yields 2g+2 mutual tangencies
between C1 and C2, corresponding to the 2g+2 edges of Q1. Thus, the contacts
graph of the packing consisting of C1 and C2 on the surface formed by identifying
opposite sides of Q has 2g + 2 multi-edges, satisfying the desired condition.

Corollary 4.7. Up to 5 multi-loops and 6 multi-edges can be realized on a
contacts graph on at least 1 surface in H(1, 1).

Proof. Substitute g = 2 in Theorems 4.5 and 4.6.

12



5 Research Directions

Theorems 4.1 and 4.2 provide a bound on the complexity of contacts graphs in
H(2), while no such bound is presented for contacts graphs on H(1, 1) surfaces
in Corollary 4.7. A natural research direction is therefore establishing such a
bound in order to complete our results on complexity in the genus 2 stratum.
Progress can also be made in bounding the numbers of possible multi-loops and
multi-edges on surfaces in the genus g strata H(2g − 2) and H(g − 1, g − 1),
continuing the progress made in Theorems 4.3, 4.4, 4.5, and 4.6.

Additionally, only partial progress was made towards describing equivalent
packings that can be realized on distinct, same-stratum surfaces. It would be
particularly interesting to investigate the existence of packings that can be
realized on any surface in certain strata, and to give the most complex such
packings in H(2), H(1, 1), and potentially higher-genus strata.
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