ARITHMETIC OF SEMISUBTRACTIVE SEMIDOMAINS
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ABSTRACT. A subset S of an integral domain is called a semidomain if the pairs (S, +)
and (5,-) are commutative and cancellative semigroups with identities. The multipli-
cation of S extends to the group of differences 4(S), turning ¢(S) into an integral
domain. In this paper, we study the arithmetic of semisubtractive semidomains (i.e.,
semidomains S for which either s € S or —s € S for every s € ¢4(S5)). Specifically,
we provide necessary and sufficient conditions for a semisubtractive semidomain to
satisfy the ascending chain condition on principals ideals, to be a bounded factoriza-
tion semidomain, and to be a finite factorization semidomain, which are subsequent
relaxations of the property of having unique factorizations. In addition, we present a
characterization of half-factorial semisubtractive semidomains. Throughout the article,
we present examples to provide insight into the arithmetic aspects of semisubtractive
semidomains.

1. INTRODUCTION

Factorization theory studies the decomposition of elements into irreducible factors
within various algebraic structures, including monoids [23,29], semirings [7,20], integral
domains [3,4], and modules [9,21]. A primary objective in this field is to gauge the extent
to which an object deviates from having unique factorizations.

Anderson, Anderson, and Zafrullah [3] conducted the first systematic study of fac-
torizations in the context of integral domains. In their paper, they introduced several
relaxations of the unique factorization property and studied their preservation under
algebraic constructions such as localization, polynomial extension, and the D + M con-
struction. Since then, several researchers have delved into the factorization properties
of integral domains, as seen in [6,18,31]. These subsequent studies reflect the sustained
interest in understanding the factorization properties of integral domains.

A positive semiring is a subset of R>( that contains the identities 0 and 1 and is closed
under the standard operations of addition and multiplication. Positive semirings have
generated much interest lately: Correa-Morris and Gotti [13] investigated factorizations
of positive algebraic valuations of Ny[z], and Albizu-Campos et al. [2] explored the fac-
torization properties of positive semirings generated by some of the powers of a rational
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number. Moreover, Baeth et al. [7] classified the additive and multiplicative factoriza-
tions of positive semirings. Finally, Baeth and Gotti [8] studied positive semirings in
connection with factorizations of matrices.

A subset S of an integral domain is called a semidomain if the pairs (S, +) and (S, -)
are commutative and cancellative semigroups with identities. The multiplication of S
extends to the group of differences ¢4(S), turning ¢4(S) into an integral domain ([20,
Lemma 2.2]). From now on, we refer to 4(5) as the domain of differences of S. Observe
that both integral domains and positive semirings belong to the class of semidomains,
thus establishing a common ground to understand the similarities among these mathe-
matical objects. In recent years, significant attention [10,12,15,26] has been devoted to
investigating the arithmetic of semidomains with polynomial-like structures.

In this paper, we study the factorization properties of semisubtractive semidomains
(i.e., semidomains S for which either s € S or —s € S for every s € ¢4(5)). Previ-
ous literature has explored the algebraic and factorization properties of semisubtractive
semidomains. In [20], Dulin and Mosher showed that semisubtractive semidomains S
share many algebraic properties with their domains of differences ¢(S), while in [19],
Dover and Stone introduced a generalization of the notion of semisubtractivity and, for
semirings satisfying this condition, provided analogues of Artin-Wedderburn and Goldie
structure theorems. Moreover, Stone [33] and Alarcén and Anderson [1] studied the
ideals of certain classes of semisubtractive semirings.

Following [16], a semidomain is called Furstenberg if every nonunit element is divisible
by an irreducible. Furstenberg semidomains have generated some interest lately [27,28,
32]. In Section 3, we examine semisubtractive semidomains that satisfy the Furstenberg
property. Specifically, we show that a semisubtractive semidomain is Furstenberg if and
only if ¢4(S) is Furstenberg.

In Section 4, we explore the conditions under which a semisubtractive semidomain is
a finite factorization semidomain (resp., a bounded factorization semidomain). Let S be
a semidomain. If every nonzero element of S has finitely many divisors up to associates,
then we call S a finite factorization semidomain, while S is a bounded factorization
semidomain provided that there exists a function ¢: S\ {0} — N satisfying that ¢(s) =0
if and only if s is a unit of S and ((ss’) > {(s)l(s") for elements s,s" € S. A finite
factorization semidomain is a bounded factorization semidomain.

The notion of half-factoriality was introduced in [11], where it was proved that an alge-
braic number field F is half-factorial (i.e., every nonzero element of F' have factorizations
of equal length) if and only if F' has class number at most two. Half-factorial domains
have been extensively investigated [17,34,35]. We conclude in Section 5, where we show
that the unique factorization property ascends from a semisubtractive semidomain S to
the integral domain ¢(S). Additionally, we present a characterization of half-factorial
semisubtractive semidomains.
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2. PRELIMINARIES

This section introduces the notation and terminology that will be used later. Readers
who seek a comprehensive background on factorization theory and semiring theory can
refer to [22] and [25], respectively.

2.1. General Notation. The standard notations used are Z, Q, R, and P, which rep-
resent the sets of integers, rational numbers, real numbers, and prime numbers, respec-
tively. Additionally, we use N to denote the set of positive integers and Ny to denote the
set of non-negative integers. Given r € R and a subset S C R, we use S, to denote the
set of elements in S that are greater than r. Similarly, S, is defined as the set of ele-
ments greater than or equal to r. For m,n € Ny, we use the notation [m,n] to represent
the discrete interval from m to n. That is, [m, n] is defined as {k € Z | m < k < n}.

2.2. Monoids and Factorizations. In this paper, we define a monoid! to be a cancella-
tive and commutative semigroup with identity. For convenience, we use multiplicative
notation for monoids, unless otherwise specified. Let M be a monoid with identity 1. A
subsemigroup of M containing 1 is called a submonoid. We write M* for the group of
units of M. We also use M,eq to denote the quotient M /M* which is also a monoid.
We say that M is reduced if M is the trivial group, in which case we identify M,.q with
M. The Grothendieck group of M is an abelian group ¥ (M) such that there exists a
monoid homomorphism ¢: M — ¥ (M) satisfying the following universal property: for
any monoid homomorphism f: M — G, where GG is an abelian group, there exists a
unique group homomorphism ¢: ¢ (M) — G such that f = g o«. The Grothendieck
group of a monoid is unique up to isomorphism. For a subset S of M, we let (S) denote
the smallest submonoid of M containing S, and S is a generating set of M if M = (S).

For elements b,c € M, it is said that b divides ¢ in M, denoted by b |y ¢, if there
exists ¢ € M such that ¢ = ¢/b. Two elements b,c € M are associates in M, which we
denote by b ~;; ¢, provided that b |y ¢ and ¢ | b. The notation established in this
paragraph omits the subscript whenever the monoid can be inferred from the context.

We define an atom in a monoid M as an element a € M \ M* such that for any
b,c € M, the equality a = bc implies that either b € M* or ¢ € M*. Let o/ (M) be the
set of all atoms of M. Following [16], we say that the monoid M is Furstenberg if every
nonunit element is divisible by an atom, while M is said to be atomic if every element
of M\ M* can be expressed as a (finite) product of atoms. Clearly, an atomic monoid
is Furstenberg. Moreover, one can easily verify that M is atomic if and only if M,.q is
atomic.

An ideal of a monoid M is a subset I C M satisfying IM C [ or, equivalently, IM = 1.
If I is an ideal of M such that I = bM for some b € M, then I is called a principal
ideal. The monoid M satisfies the ascending chain condition on principal ideals (ACCP)

INote that the standard definition of a monoid does not assume the cancellative and commutative
conditions.
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if every increasing sequence of principal ideals of M (under inclusion) becomes constant
from one point on. The ACCP is equivalent to the following condition:

If (b;):en is a sequence of elements of M such that b, | b; for every ¢ € N, then there
exists some k£ € N such that b,, ~ by, for all n > k.

It is well known that monoids satisfying the ACCP are atomic.

Assuming that M is an atomic monoid, let Z(M) denote the free commutative monoid
generated by the set of atoms o/ (M,eq). The elements of Z(M) are called factorizations,
and the length ¢ of a factorization z = a; - - - ay, where ay,...,ay € & (Meq), is denoted
by |z|. There is a unique monoid homomorphism 7 : Z(M) — M, that maps every
atom to itself. For each b € M, we define two sets that are essential for the study of
factorization theory:

Zy(b) = 77 (0% (M) C Z(M)  and Ly (b) = {|2] : 2 € Zps(b)} C Ny,

As usual, we drop the subscript M if there is no risk of ambiguity. We use the following
terminology: M is a finite factorization monoid (FFM) if Z(b) is finite for all b € M;
M is a bounded factorization monoid (BFM) if L(b) is finite for all b € M; M is a
half-factorial monoid (HFM) if |L(b)| = 1 for all b € M; and M is a unique factorization
monoid (UFM) if |Z(b)| =1 for all b € M. A unique factorization monoid is also called
factorial. 1t follows from the definitions that every FFM is a BFM, every BFM satisfies
ACCP, every UFM is an HFM, and every HFM is a BFM.

2.3. Semirings and Semidomains. A commutative semiring S is defined as a non-
empty set with two binary operations: addition denoted by “4” and multiplication
denoted by “”. The properties of a commutative semiring are:

(1) (S,+) forms a monoid with an identity element 0;
(2) (S,-) forms a commutative semigroup with an identity element 1, where 1 # 0;
(3) s1-(s2+83) =51+ 82+ 5183 for all s1,89,83 €.

If S is a commutative semiring, then the distributive law and the cancellative property
of addition in S imply that 0-s =0 for all s € S. In this paper, ss’ is used interchange-
ably with s - s’ unless it causes confusion. In this context, it is worth noting that the
conventional definition of a semiring does not necessarily require the semigroup (.5, +)
to be cancellative. However, in our particular case, the semirings of interest do possess
cancellative additive structures. Similarly, the general definition of a semiring S does
not impose the condition of commutativity on the semigroup (S, -). Nonetheless, for the
scope of this paper, we are primarily concerned with commutative semirings. Hence, we
will employ the term semiring to specifically refer to a commutative semiring, assuming
commutativity for both operations.

A subset S” of S is called a subsemiring if (S’,4) is a submonoid of (S,+) that is
closed under multiplication and contains 1. Every subsemiring of S is a semiring. A
semiring S is called a semidomain if it is a subsemiring of an integral domain. If S
is a semidomain, then (S\ 0,-) forms a monoid, denoted by S* and referred to as the
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multiplicative monoid of S. We use the term invertible elements of S to refer to the units
of the monoid (S, +) and simply units of S to refer to the units of the multiplicative
monoid S*, to avoid confusion. The group of units of S is denoted by S*, while the
additive group of invertible elements of S is denoted by % (S). We use 27 (S) instead of
2/ (S*) to refer to the set of atoms of the multiplicative monoid S*, and we write s |g s’
to indicate that s divides s’ in S*.

Lemma 2.1. For a semiring S, the following conditions are equivalent.

(a) S is a semidomain.
(b) The multiplication of S extends to the Grothendieck group 4(S) of (S, +) turning
4(S) into an integral domain.

Proof. (b) = (a): This is clear.

(a) = (b): Let S be a semidomain, and suppose that S is embedded into an integral
domain R. We can identify the Grothendieck group ¢(S) of (S,+) with the subgroup
{r —s | r,s € S} of the underlying additive group of R. Observe that 4(S) is closed
under the multiplication it inherits from R, and it contains the multiplicative identity
because 0,1 € S. Hence 4(S) is an integral domain having S as a subsemiring. O

A semidomain S is called Furstenberg provided that S* is a Furstenberg monoid. If the
multiplicative monoid S* of S satisfies atomicity or ACCP, we call S atomic or ACCP,
respectively. We refer to S as a BFS, an FFS, an HFS, or a UFS if S* is a BFM, an
FFM, an HFM, or a UFM, respectively. It is worth noting that if S is an integral domain,
then we recover the established notions of UFD, BFD, FFD, and HFD. However, even
though a semidomain S can be embedded in an integral domain R, S may not inherit
any atomic property from R since the integral domain Q[z] is a UFD, but its subring
Z + xQ|x] is not even atomic.

Definition 2.2. Let S be a semidomain. We say that S is semusubtractive if, for every
s € 4(9), we have that either s € S or —s € S.

2.4. Localization of Semidomains. Let S be a semidomain, and let D be a multi-
plicative subset of S (i.e., a submonoid of S*). Since D is also a multiplicative subset of
4(S), we can consider the localization of ¢(S) at D, which we denote by D~'4(S). Set
R = (Sx D)/ ~, where ~ is an equivalence relation on S x D defined by (s,d) ~ (s, d’) if
and only if sd’ = ds’. We let 5 denote the equivalence class of (s, d). Define the following
operations in R:

s s ss s s  sd+ds

S5 and St

a7 " dr M atTT
It is routine to verify that these operations are well defined and that (R, +,-) is a semir-
ing®. The semiring R is called the localization of S at D and is denoted by D™'S. Let

2The localization of semirings is presented in greater generality in [25, Chapter 11].
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¢: R — D7'9(S) be a function given by ¢(2) = 2, where £ represents the equiva-
lence class of (s,d) as an element of D™'4(S). Note that ¢ is a well-defined semiring

homomorphism. Since ¢ is injective, R is a semidomain.

lw|

Lemma 2.3. The localization of a semisubtractive semidomain is semisubtractive.

Proof. Suppose that S is a semisubtractive semidomain, and let D be a multiplicative
subset of S. Let £ € D7'¥(S) such that £ ¢ D~'S (which implies that s ¢ S). Since
S is semisubtractive, we have that —s € S. This implies that —* = -2 € D~1S, which
concludes our argument. O

3. FURSTENBERGNESS

In this section, we study semisubtractive semidomains that satisfy the Furstenberg
property. Specifically, we show that a semisubtractive semidomain is Furstenberg if and
only if 4(5) is Furstenberg. Before discussing the main result of this section, we establish
some lemmas concerning the units and irreducibles of a semisubtractive semidomain.

Lemma 3.1. Let S be a semisubtractive semidomain. Then S* = SNYG(S)*.

Proof. The inclusion S* C S N¥(S)* clearly holds. Now let u € S N¥(S)*. There
exists s € 4(5) such that us = 1. Without loss of generality, we may assume that s € .S,
which implies that —s € S as S is semisubtractive. Since u(—s) = —1 is an element of
S, we have S = ¥(S), which concludes our argument. O

Given a semisubtractive semidomain S, an atom of S is not necessarily an atom of
4 (S) as the following example illustrates.

Example 3.2. Consider the semidomain
S ={cpa" + -+ cx+cy € Z[z] | either ¢g > 0 or ¢; > ¢y = 0}.

It is worth noting that S is a semisubtractive semidomain such that ¥4(S) = Z|x].
Observe that —a? € &7(9) \ o (Z|x]).

Example 3.2 shows that, in contrast to units, atoms present a greater challenge when
it comes to their description.

Lemma 3.3. Let S be a semisubtractive semidomain. The following statements hold.
(1) SN (9(5)) € (5).
(2) If a € &/ (S)\ A (94(S)), then —a € S\ (S9).

Proof. The first part follows readily from Lemma 3.1. As for (2), let a € &7 (S)\ &/ (4(9)),
and write a = $1$5 for some nonunits s, s, € 4(.5). Note that there is no loss in assuming
that s; ¢ S which, in turn, implies that —s; € S. Consequently, we have that —ss & S
otherwise, we would have a = (—s;)(—s2) but neither —s; nor —s, is a unit of S by
Lemma 3.1. Since sy € S, we obtain that —a = (—s7)sy is also an element of S (that is
obviously not irreducible). O
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Now we are in a position to prove the main result of this section.

Theorem 3.4. Let S be a semisubtractive semidomain. Then S is Furstenberg if and
only if 4(S) is Furstenberg.

Proof. Suppose that S is Furstenberg. Let s be a nonzero nonunit element of ¢(S), and
assume that s € S. We claim that there exists a € &7 (¥4(S)) such that a |gs) s. Since
S is Furstenberg, there exists a € 7(S) such that a |g s. Without loss of generality,
assume that a ¢ o7 (4(5)). By Lemma 3.3, we have that —a € S\ &7(S). Again, since S
is Furstenberg, there exists a; € 27 (5) such that a; |¢ —a. Observe that if —a; € S, then
—ay |g @ and —ay %g a, but this contradicts that a € <7(S). We can then conclude that
—ay ¢ S. By Lemma 3.3, we have that a; € @7 (¥4(S)). Note that a; |(s) s, which proves
our claim. On the other hand, if s ¢ S, then —s € S and there exists a € &7 (¥4(S)) such
that a |¢(s) —s. This, in turn, implies that a |¢(s) s. Therefore, ¥(S) is Furstenberg.
To tackle the reverse implication, assume that ¢(S) is Furstenberg and pick a nonzero
nonunit element s € S. There is no loss in assuming that s is not an atom of S. Then
there exist nonzero nonunit elements sj,so € S such that s = sys9. Since ¢(5) is
Furstenberg, there exist a;,as € &/(¥4(5)) such that a; |¢(s) s1 and as |¢(s) s2. In other
words, there exist s}, s, € 4(S) such that s; = a1s] and sy = ags). If a;, s € S (resp.,
aj, sy ¢ S) or ag, sy € S (resp., ag, sy, ¢ S), then our argument concludes by virtue of
Lemma 3.3. Consequently, we may assume that —a;s] and —ass; are elements of S. If
a; € S, then —s| € S, which implies that a; |s s, where a; € SN & (4(S)) C F(S5)
(Lemma 3.3). On the other hand, if a; ¢ S, then —a; € S and s] € S, which implies
that —a; |s s, where —a; € SN (¥(S)) C &/(S). Either way, we can conclude that S
is Furstenberg. O

Using Theorem 3.4, we can now provide new instances of Furstenberg semidomains
that are not integral domains. Consider the following example.

Example 3.5. Consider the semidomain S = Ny + 2Q[z], which is not atomic. Indeed,
note that n |g « for every n € N; consequently, the element x € S cannot be factored
as a finite product of atoms. On the other hand, we have that ¢4(S) = Z + zQ|x],
which is Furstenberg by [32, Lemma 16]. Since S is a semisubtractive semidomain, S is
Furstenberg by Theorem 3.4.

4. ATOMICITY

We now explore the conditions under which a semisubtractive semidomain can be
classified as atomic. Furthermore, we provide necessary and sufficient conditions for a
semisubtractive semidomain to satisfy ACCP, be a BFS, and be an FFS.

Given a semidomain S, recall that % (S) denotes the (additive) group of invertible
elements of S.

Lemma 4.1. Let S be a semisubtractive semidomain. Then % (S) is a prime ideal of S
if and only if % (S) is a prime ideal of 9(S).
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Proof. Proving the reverse implication is straightforward, so we leave the details to the
reader. Now suppose that % (.S) is a prime ideal of S. Let s € ¢4(5), and let u € Z (.5).
Either s € S or —s € S, which implies that su € Z(S) as % (S) is an ideal of S. Hence
% (S) is an ideal of ¥(S). Let s; and sy be elements of ¥(.S) such that sjsy € % ().
If sy and sy are both in S, then either s; € Z(S) or so € Z(S) because Z(5) is a
prime ideal of S. Consequently, there is no loss in assuming that s ¢ S. Observe that
if s; ¢ S, then —s; and —sy are both elements of S such that (—s;)(—s2) € Z(S).
Again, since % (S) is a prime ideal of 5, either —s; € Z(S) or —so € % (S). In other
words, either s; € Z(S) or so € Z(S). So, we may further assume that s; € S. Since
s1 and —sq are both elements of S and —s;s9 € Z(5), we have that either s; € Z(95)
or —sy € 7(S), but this latter case is impossible. Therefore, s; € Z(S). We can then
conclude that % (S) is a prime ideal of ¢(.5). O

Proposition 4.2. Let S be a semisubtractive semidomain. The following statements
hold.

(1) If S is atomic, then 9(S) is atomic.
(2) If4(S) is atomic and % (S) is a prime ideal of S (resp., 4(S)), then S is atomic.

Proof. Suppose that S is atomic, and let a € &7 (S). If a € &/ (9(S5)), then —a € S\ (S5)
by Lemma 3.3. Since S is atomic, we have —a = a; - - - a,,, where n € No; and a; € &7(S)
for every i € [1,n]. By way of contradiction, assume that there exists j € [1, n] such that
a; € @/(¥4(S)). By Lemma 3.3, we have —a; = a} ---aj, with k € N5; and a} € &7(95)
for all ¢ € [1,k]. Thus,

!/ !/
a/:al...a]._l(al...ak)aj_"_l...an’

but this contradicts that a € &7(S) since k +n > 2. Hence if a € &/(5), then either
a € A (4(9)) or —a € (SN A(Y(S))). Now let s be a nonzero nonunit element of
G(S). If s €S, then s = ay---a, with a; € &7(S) for each i € [1,n]. By our previous
observation, either s € (&7(¥4(S5))) or —s € (& (¥(5))). In any case, we have that
s € ((9(5))). On the other hand, if s ¢ S, then —s € S, and we proceed similarly.
Therefore, 4(S) is atomic.

To tackle statement (2), pick an arbitrary nonzero nonunit element s € S. Since 4(.S)
is atomic, we can write s = ay - - - a,, where ay,...,a, are atoms of ¢(S). There exist
ki,...,k, € {0,1} such that (—1)*a; € &/(S) for every i € [1,n]. If s ¢ Z(S), then
ki +---+ k, is even. In other words, the element s factors as a finite product of atoms
of S. On the other hand, if s € % (5), then there exists j € [1,n] such that a; € % (5)
as 7 (S) is a prime ideal of 4(S). Without loss of generality, suppose that a; = a,. Let
e € N so that ky + -+ -+ k,_1 + e is even, and note that (—1)%a,, € &7(S) for every e € N.
Therefore, S is atomic. U

The reverse implication of part 2 of Proposition 4.2 does not hold. Consider the
following example.
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Example 4.3. Again, consider the semidomain
S={cpz" 4+ +cx+cy € Zlx] | either ¢g > 0 or ¢; > ¢y = 0}.

In Example 3.2, we pointed out that S is a semisubtractive semidomain satisfying that
4(S) = Z[z]. Moreover, S is atomic as the reader can verify. However, % (S) = 2*Z[x]
is not a prime ideal of Z[x]. By Lemma 4.1, we have that % (S) is not a prime ideal of

S either.

The rest of this section is devoted to the study of the ACCP and the bounded and
finite factorization properties in the context of semisubtractive semidomains. We start
by stating a well-known characterization of BFMs.

Definition 4.4. Given a monoid M, a function ¢: M — N is a length function of M if
it satisfies the following two properties:

(i) ¢(u) =0 if and only if u € M*;

(ii) €(bc) > £(b) + £(c) for every b,c € M.

As we mentioned before, the following result is well known.

Proposition 4.5 ([30], Theorem 1). A monoid M is a BFM if and only if there is a
length function €: M — Nj.

We can now provide necessary and sufficient conditions for a semisubtractive semido-
main to satisfy ACCP, be a BFS, and be an FFS.

Theorem 4.6. Let S be a semisubtractive semidomain. The following statements hold.

(1) S satisfies the ACCP if and only if 4(S) satisfies the ACCP.
(2) S is a BFS if and only if 4(S) is a BFD.
(8) S is an FFS if and only if 4(S) is an FFD.

Proof. The reverse implication of part (1) follows from Lemma 3.1. Suppose now that S
satisfies the ACCP. Let s, sq, ... be a sequence of elements of ¢(.S)* such that, for each
i € N, there exists s, € 4(5) satisfying that s; = s;115}, ;. There is no loss in assuming
that s; € S for every ¢ € N given that S is semisubtractive. Since S satisfies the ACCP
and the equality S* = SN ¥(S)* holds, we may further assume that for every k € N
there exists m € Ny such that s, ¢ S. Next we will define subsequences of (s,)nen
and (), )nen., recursively. Keep in mind that the latter subsequence will be obtained as
a byproduct of the former. Let s;, = s;. Suppose that, for some n € N, we already
defined sj, = s,, for some m € N. Let u,v € N5, be indices satisfying that u < v, the
elements s/, and s/ are not in S, and s}, € S for every t € [m + 1,v] \ {u,v}. Thus,

L= = s S Sh = u(—8)) (25 S

Set sk,,, = sy and sp = (=s5,) - (=8,) S,4q. Clearly, (sg, )nen is a sequence of
elements of S satisfying that s, ., |g s, for every n € N. Since S satisfies the ACCP,

there exists m € N such that s, ~g sy, for every n € Ns,,. This implies that (s,)nen

Sk
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(as a sequence of elements of ¢(5)) eventually stabilizes by Lemma 3.1. Hence ¥(5)
satisfies the ACCP.

Note that the reverse implication of part (2) follows from Lemma 3.1 and [22, Corol-
lary 1.3.3]. To tackle the forward implication, assume that S* is a BFM. By Proposi-
tion 4.5, there exists a length function £: S* — Njy. Consider the function ¢*: ¢(S)* —
Ny given by *(s) = {(s?), which is well defined because S is semisubtractive. For
u € 4(S)*, we have that u? € SNZ(S)*. By Lemma 3.1, we have that ¢?(u) = £(u?) = 0.
Conversely, let s € 4(5) such that £2(s) = 0. Thus, for some e € {0,1}, we have

0 =0%(s) = £(s”) = 20((—1)°s),

where (—1)¢s € S. This implies that ¢((—1)¢s) = 0. In other words, (—1)¢s is a unit of
S. We can then conclude that s € 4(S)*. Moreover, for si, sy € 4(S)*, we have

(*(s180) = £ (s7s3) > 0 (s7) + £ (s3) = (1) + P(s2).

As a consequence, we have that ¢2 is a length function. Then the domain ¢(S) is a BFD.

Without loss of generality, we can assume that S is not an integral domain; otherwise,
4(S)=2S5. Take u € ¥(5)*\ S*, and let s € ¢4(S)* such that us = 1. Note that —u € S
by virtue of Lemma 3.1, which implies that s ¢ S. This, in turn, implies that —s € S, so
—u € S*. Hence |¢(S5)* : S*| =2 < 00, and then the reverse implication of (3) follows
from [22, Theorem 1.5.6].

Conversely, suppose that ¢(S) is not an FFD. By [22, Proposition 1.5.5], there exists
s € 4(S)* such that s has infinitely many non-associated divisors in ¢(S)*. Let (s,)nen
be a sequence of non-associated divisors of s in ¥(S)*, i.e., for each n € N there exists
s, € 9(S)" such that s = s,s), and s, %gws) Sm for n # m. For every n € N, let
€n, kn € {0,1} such that (—1)°s,, and (—1)*»s’ are both elements of S. By possibly
taking a subsequence of (s,)nen, there is no loss in assuming that k; = k; and e; = e;
for i,j € N. Since s; %gs) s; for i # j, we have that (—1)%s; %g (—1)%s; for i # j
by Lemma 3.1. Hence the element s’ = (—1)%s;(—1)*s, € S has infinitely many non-
associated divisors in .S, namely (—1)%s; for each i € N. Therefore, S is not an FFS by
virtue of [22, Proposition 1.5.5]. O

We conclude this section by offering some examples that distinguish the properties
considered in Theorem 4.6.

Example 4.7. Let D = R + zClz]. It is known that D is a BFD (in fact, it is half-
factorial) that is not an FFD (see, for instance, [5, Example 4.10]). Let S = Rsq+2Clz],
which is clearly a semisubtractive semidomain satisfying that ¢ (S) = D. Therefore, the
semidomain S is a BFS that is not an FFS by Proposition 4.6.

Example 4.8. Let M = (1/p | p € P), and consider D = Q[M]. The integral domain D
satisfies the ACCP but it is not a BFD ([5, Example 4.8]). By virtue of Proposition 4.6,
the subtractive semidomain S = {f € Q[M] | f(0) > 0} satisfies the ACCP but is not a
BFS.
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5. FACTORIALITY

In Example 3.2, we consider the semisubtractive semidomain
S ={cpx" 4+ -+ cx+cy € Zlx] | either ¢g >0 or ¢; > ¢g =0}

whose Grothendieck group is a UFD, namely Z[z|. Note that, even though = € &7 (.5)
by Lemma 3.3, x is not a prime element of S. In fact, we have that x |g 2* but x {5 —z?.
Consequently, the semidomain S is not a UFS. So, in general, the unique factorization
property does not descend from ¥(S) to S.

Recall that a half-factorial semidomain S is an atomic semidomain satisfying that,
for every s € S* all factorizations of s share the same length (i.e., |L(s)| = 1 for all
s € S*). In this section, we show that the unique factorization property ascends from
a semisubtractive semidomain S to the integral domain ¥4(S). Moreover, we present a

characterization of half-factorial semisubtractive semidomains.

Lemma 5.1. Let S be a semisubtractive semidomain, and let p € S be a prime element.
Then p is a prime element of 4(S).

Proof. Suppose towards a contradiction that p is a prime element of S that is not prime
in ¢4(S5). So, there exist s,s" € ¥(S5) such that p |g(s) ss’ but p {y(s) s and p{g(s) s'. Let
s1,89 € S such that s? = s? and s3 = (s')?. Note that p fs s; and p {5 s». Since p is
prime in S and p |¢(s) s152, there is no loss in assuming that there exists —s3 € S such
that ps3 = s155. Thus,

sisy = p*(—s3)”.
Since p is a prime element of .S, we have that either p |g s1 or p |g s2, a contradiction. [

Proving that the unique factorization property ascends from a semisubtractive semido-
main S to the integral domain ¥(S) is now straightforward.

Proposition 5.2. Let S be a semisubtractive semidomain. If S is a UFS, then 4(S) is
a UFD.

Proof. Let s be a nonzero nonunit element of 4(S). Without loss of generality, assume

that s € S. Since S is a UFS, we can write s = py - - - p,,, where py, ..., p, are atoms, and
therefore prime elements, of S. By Lemma 5.1, we can write s as a product of finitely
many prime elements of ¢(S). Therefore, ¢(S) is a UFD. O

For the rest of the section, we focus on the half-factorial property. While UFSs are
clearly HFSs, the reverse inclusion does not hold as the following example illustrates.

Example 5.3. Given a semidomain S and a torsion-free monoid M written additively,
consider the set S[M] consisting of all maps f: M — S satisfying that the set {m € M |
f(m) # 0} is finite. Addition and multiplication in S[M] are defined as for polynomials
and, under these operations, S[M] is a semidomain (see [15] and [24] for more details
about this construction). Let D = Z[M], where M = {(1,n) | n € N) C N2. Clearly,
the (cancellative and commutative) monoid M is torsion-free, which implies that D is
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an integral domain by [24, Theorem 8.1]. Consider the semisubtractive semidomain
R={feD]| f(0) e N}, and let S = {f € R| f(0) > 0}. Since S is a multiplicative
subset of R (i.e., a submonoid of (R*,-)), we can consider the localization of R at S, which
we denote by S~!R. We already established that S~!'R is a semisubtractive semidomain
(Lemma 2.3). It is a known fact, as stated in [14, Example 4.23], that M is an HFM that
is not a UFM. As a result, the semidomain S™'R is not a UFS. In fact, if z = a; +- - - +a,,
and 2/ = a) + -+ + a}, are two distinct factorizations of m € M, then we have that

al an

m and m_l-..xm
1 1 1 1

are two distinct factorizations of the element # € S7'R. We now show that S7!'R is
an HFS. Since all the elements of M \ {(0,0)} that are not atoms are divisible by (1,1)
and (1Y /1 is irreducible in S~!'R, the semidomain S™'R is atomic. Now let f/g be a
nonzero nonunit element of S™*R. Since f/g ~g-1p f/1, there is no loss in assuming
that ¢ = 1. Write f = ¢a™ + -+ + c;2™, where my > --- > my > (0,0) in the
lexicographic order. Let

X

/ /
S A
g1 dn g1 9m,

be two distinct factorizations of f/1 in ST!'R, and suppose by way of contradiction that
n # m. Observe that if f'/¢’ is an atom of ST! R, then writing [’ = djz°+- - -+d,2°" with
o > -+ > 01 > (0,0) in the lexicographic order, we have that o; € o/ (M) because, again,
all the elements of M \ {(0,0)} that are not atoms are divisible by (1,1). Consequently,
the element m; € M has two factorizations of lengths n and m, which contradicts that
M is an HFM. Therefore, S™'R is a semisubtractive half-factorial semidomain that is
not factorial.

We are now in a position to describe the semisubtractive semidomains that are half-
factorial.

Theorem 5.4. Let S be a semisubtractive semidomain. Then S is an HFS if and only

if 9(S) is an HFD and </ (S) = SN (4(S)).

Proof. Proving the reverse implication is straightforward, so we leave the details to the
reader. Suppose now that S is an HFS. We already established that SN.e7(¥4(S)) C <7(S)
(Lemma 3.3). We now show that the reverse inclusion holds (given that S is an HFS).
Assume by way of contradiction that there exists a € 7(5) \ & (¥4(S)). By Lemma 3.3,
we have that —a € S\ &7(S). Consequently, the element a? has two factorizations of
different lengths in S, namely z = a - a and 2’ = (a;---a;)* (for some ¢ € Ny;) with
a---a; € Zg(—a). This contradicts the fact that S is half-factorial. Hence <7(S) =
SN (Y(9)).

Observe that ¢(S) is atomic (in fact, a BFS) by Theorem 4.6. Let s be a nonzero
nonunit element of 4(5), and let

z=ajy---apby---b, and ' =aj---aby---0
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be two factorizations of s in ¥(S) satisfying that ai,...,a,,a],...,a; € &/(S) and
by, ... by, by, ... b & Z(S) for some n,m,l,k € Ny (for the rest of the proof, we
proceed under the assumption that expressions such as a; ---ag represent the empty
product, which is equal to 1). Thus, we have that

F=ad @b (b and 7= () (a2 () e (b

are two factorizations in S of the element s?, which is not a unit of S by Lemma 3.1.
Since S is an HFS, we have that 2(m +n) = 2(I + k), which implies that m +n = [ + k.
We can then conclude that 4(S) is an HFD. O

In Theorem 5.4, the assumption that &7 (S) = SN .o/ (4(S5)) is not superfluous. Con-
sider the following example.

Example 5.5. As in Example 3.2, consider the semidomain
S={cya" +---+crx+cy € Zz] | either ¢g >0 or ¢; > ¢y = 0}.

We already established that S is a semisubtractive semidomain such that 4(S) = Z[x]
and —2? € (S) \ & (Z[x]). By virtue of Proposition 4.6, we have that S is atomic.
However, note that {2,4} C L(z*), which implies that S is not half-factorial.

We conclude this section providing a large class of proper half-factorial (i.e., half-
factorials that are not factorials) semisubtractive semidomains.

An integral domain (R, +,-) is called an ordered integral domain if there exists an
order relation < on R satisfying the following two conditions:

(i) a < bimplies a +r < b+ r for all r € R;
(ii)) @ < band r > 0 imply ar < br.

Given an ordered integral domain R, we denote by R™ the subset of R consisting of all
elements that are greater than or equal to 0.

Proposition 5.6. Let R be an ordered UFD. Then RT + xR|x] is a proper half-factorial
semisubtractive semidomain.

Proof. Consider the semisubtractive semidomain S = R + xR[x], and notice that
9(S) = R[z]. Let f be an irreducible of S satisfying that —f ¢ S (e.g.,  + 1). Since
R[z] is a UFD, we can write —f = a; ---a; with a; € o/ (R[z]) for every ¢ € [1,k]. As
—f &S, we have f = (—=1)"ay ---(—1)"ay, where each factor (—1)"a; € S for every
i € [1, k]; note that, by Lemma 3.1, none of these factors is a unit of S. Consequently, we
have that k£ = 1 which, in turn, implies that f € o/ (R[z]). Hence &7(S) = SN (4(9)).
By Theorem 5.4, it follows that S is half-factorial. Note that S is not factorial as = - x
and (—z) - (—z) are two factorizations of the same element of S; however, we have that
T Fs —x. O
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