Valiant’s Theorem

Emmy Huang
Hume’s Problem of Induction

Q: If you observe 500 black ravens, what basis do you have for supposing that the next one you observe will also be black?
Thoughts?

- **Bayes' Theorem**
 - Assumes all ravens are drawn from same distribution

- **Computational Learning Theory**
 - Learning does happen but how?
 - Not equal footing.
 - Why does this work?
PAC-learning (Probably Approximately Correct)

- High probability → mostly correct predictions
- \(S \): sample space
- \(f \): concept
- \(C \): concept class
- \(D \): probability distribution
- Goal: given \(m \) examples \(x_i \) drawn independently from \(D \), we know \(f(x_i) \) → output hypothesis language \(h \) such that \(h \) disagrees with \(f \) no more than \(\varepsilon \) of the time
Equation and Visualization

- $\text{error}(h) = P(h(x) \neq f(x) \mid x \text{ drawn from } D) \leq \varepsilon$

Instance space X

Where c and h disagree
Valiant’s Theorem

- In order for the output hypothesis h to agree with $1 - \varepsilon$ of the future data drawn from D with probability $1 - \delta$ over the choice of samples, it suffices to find any hypothesis h that agrees with:

$$m \geq \frac{1}{\varepsilon} \log \left(\frac{|C|}{\delta} \right)$$

samples chosen independently from D.
Proof

- Bad hypothesis h
 - Disagrees with f for at least \(\epsilon \) fraction of data
- Thus: \(\Pr[h(x_1) = f(x_1), \ldots, h(x_m) = f(x_m)] < (1 - \epsilon)^m \)
- Probability that there exists a bad hypothesis h in C that agrees with sample data?
- \(\Pr[\text{there exists a bad h that agrees with f for all samples}] < |C| (1 - \epsilon)^m \)
- Set equal to \(\delta \) and solve for \(m \):
 - \(m = \frac{1}{\epsilon} \log \left(\frac{|C|}{\delta} \right) \)
Further Exploration

- Infinite concept classes? Rectangle in plane?
- Shattering, VC Dimension
Thank you!