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Abstract. A finite extension of global fields L/K satisfies the Hasse norm principle
if any nonzero element of K has the property that it is a norm locally if and only if it
is a norm globally. In 1931, Hasse proved that any cyclic extension satisfies the Hasse
norm principle, providing a novel approach to extending the local-global principle to
equations with degree greater than 2. In this paper, we introduce the projective Hasse
norm principle, generalizing the Hasse norm principle to multiple number fields and
asking whether a projective line that contains a norm locally in every number field
must also contain a norm globally in every number field. We show that the projective
Hasse norm principle is independent from the conjunction of Hasse norm principles
in all of the constituent number fields in the general case, but that the latter implies
the former when the fields are all Galois and independent. We also prove an analogue
of the Hasse norm theorem for the projective Hasse norm theorem, namely that the
projective Hasse norm principle holds in all cyclic extensions.
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1. Introduction

Nearly a century ago, mathematician Helmut Hasse first introduced his concept of the
local-global principle: the idea that, if a diophantine equation has a solution modulo
every positive integer n, i.e. it always has a solution locally, then it must have an
actual solution globally over the integers as well. Since then, the principle has been
carefully studied in a variety of spaces, and to great depths. It turns out that in most
cases, the principle actually fails: in [Sel51], Selmer’s famous counterexample is the
equation 3x3 + 4y3 + 5z3 = 0. It is not hard to show this equation has a solution
modulo every integer, and yet it has no solution over the rationals. However, in other
instances, the principle holds: for instance, the Hasse-Minkowski theorem proves that
the principle is true for all quadratic forms over the rationals: multivariable polynomial
expressions whose monomials all have degree two. Selmer’s example shows that we
cannot extend Hasse-Minkowski’s theorem into higher degrees, but there are many
approaches to extend the local-global principle into cases involving higher degrees.

One of the most prominent of these approaches is through the use of multiplicative
norms. In any field extension, we can assign each element a norm acting as a kind of
magnitude. For instance, in the Gaussian rationals over Q, the norm of an element
is the same as the square of its complex magnitude. In 1931, Hasse published his
acclaimed Hasse norm theorem [Has31]: given a cyclic extension of the rationals K/Q,
he proved that the norm of the number field K satisfies the local-global principle: given
any rational number q, if the equation NK/Q(x) = q has a solution locally then it has a
solution globally.

In our research, we put a projective twist on the problem. Instead of looking at
the local-global principle at specific points, we look at lines through the origin instead.
Given a space of several number fields, if a projective line always contains a local
solution, when must it also contain a global solution?

To address this question, in §2 we define the p-adic numbers, the Hasse norm prin-
ciple (HNP), the projective Hasse norm principle (PHNP), as well as our formalized
research problem. We fix standardized notations in §3 and introduce algebraic tori and
cohomology in §4.

In §5 we show a few preliminary results around simple cases of the projective Hasse
norm principle and its connection to the Hasse norm principle that do not require
cohomology. In §6 we derive a closed form for the character lattices of tori closely
related to the projective Hasse norm principle, which we use extensively to analyze our
research problem in later section.

In §7, we show that PHNP does not imply HNP by giving an explicit counterexample
with a composite quadratic extension. On the other hand, it is often true that when
HNP is true in all of the constituent number fields, then PHNP holds as well. To
concretely show this, we derive a simple sufficient condition for HNP =⇒ PHNP in §8
dependent solely on the Galois group of the composite field extension. We also derive an
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explicit construction isomorphic to the Tate-Shafarevich group that encodes the PHNP
condition in terms of the decomposition groups of the composite field extension, which
allows us to completely reframe the problem of PHNP in terms of discrete group theory.
Using these tools, we show that when all of the consituent number fields are Galois and
independent, then HNP =⇒ PHNP.

Using these techniques, in §9 we construct an explicit counterexample to HNP =⇒
PHNP using a non-Galois constituent number field. In §10 we further study the impli-
cation HNP −→ PHNP in the Galois case, and show that regardless of the choice of
the constituent number fields, when the Galois group of the composite group is abelian,
dihedral, or of order p3 for some prime p, then it follows that HNP −→ PHNP. We
hope that the sufficient conditions for this implication and the methods used in this
section will shed light on whether HNP implies PHNP in the general Galois case.

2. Background and Statement of the Problem

In this section, we list a few background concepts in number theory leading up to the
Hasse norm theorem. We also define the projective norm and introduce our research
problem.

Definition 2.1 (Norm). Let L/K be a field extension. Then the norm of an element
x ∈ L is defined to be NL/K(x) =

∏
σ∈Gal(L♯/K) σ(x) where L

♯ is the Galois closure of

L. Note that NL/K(x) is Galois invariant, and therefore always in K.

Example 2.2. Consider the number field Q(i)/Q. The norm of an element is given by
NQ(i)/Q(a+ bi) = (a+ bi)(a− bi) = a2 + b2, which in this case happens to be equivalent
to the square of the complex magnitude of the element, and lies in Q.

Our research revolves around analyzing the local-global properties of these norm
functions in the projective setting. Generally, for any equation to be true locally, it
must have at least one solution under taking arbitrarily high prime powers as moduli.
We introduce p-adics as a way to quantify this idea.

Definition 2.3 (p-adic integers). Let p be a fixed prime number. A p-adic integer is a
formal infinite series a0+ a1p+ a2p

2+ a3p
3+ · · · with integers 0 ≤ ai < p for all i ∈ N0.

We denote the ring of p-adic integers as Zp.

In our project we also work with rational numbers: in particular, the first k terms
of the p-adic expansion gives us all of the information regarding the residue of any
rational number modulo pk. Since any rational number whose reduced denominator is
not a multiple of p has a p-adic expansion, p-adic integers provide a convenient way
to encode this information. We can further extend the p-adic integers to include all
rational numbers by allowing for a finite division by a power of p.
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Definition 2.4 (p-adic numbers, [Neu99, p. 102]). Let p be a fixed prime number. A
p-adic number is a formal infinite series a0p

k + a1p
k+1 + a2p

k+2 + a3p
k+3 + · · · with

integers 0 ≤ ai < p for all i ∈ N0 and integer k.The p-adic numbers form a field Qp

with ring of integers Zp.

Up to isomorphism, the only completions of Q are R and the p-adic field Qp for each
prime p. To rigorously define the local-global principle, we are interested in a smaller
subring of the product of these completions that contains an embedding of Q.

Definition 2.5 (Adèles). We define the ring of Adèles A to be the subring of R×
∏

Qp

consisting of elements (r, a2, a3, a5, . . .) for which there exists a positive integer N such
that for all p > N , we have ap ∈ Zp.

Notice that having a solution to an equation over A is equivalent to both having a
solution in rational numbers modulo every positive integer and having a real solution.
Introducing the Adèle allows us to quantify the local-global principle. We can now
reintroduce our research problem in full rigor.

Definition 2.6 (Hasse norm principle). Let K be any number field. We define the
boolean HNP(K) to be the truth of the following statement: for any y ∈ Q, if there
exists x1 ∈ K ⊗ A such that NK/Q(x1) = y ⊗ 1, then there exists x2 ∈ K such that
NK/Q(x2) = y.

Theorem 2.7 (Hasse norm theorem, [Neu99, Corollary 4.5. p. 384]). Let K be a cyclic
extension of Q. Then HNP(K) is true.

The Hasse norm theorem is a classic theorem in class field theory and stands as
one of the strongest examples of extending the Hasse norm principle beyond degree 2
polynomials. We now introduce a more general version of this principle, extending it
to projective spaces.

Definition 2.8 (Projective norm). Let K1, K2, . . . , Kn be number fields. Let x ∈ Q×

and ki ∈ K×
i for all 1 ≤ i ≤ n. We define the projective norm PN(x, k1, k2, . . . , kn) =

(x−1NK1/Q(k1), x
−1NK2/Q(k2), . . . , x

−1NKn/Q(kn)) ∈ (Q×)n.

Now that the projective norm is defined, we can express the projective Hasse norm
principle in terms of Adèles.

Definition 2.9 (Projective Hasse norm principle). LetK1, K2, . . . , Kn be number fields,
and let K̃ = K1 ⊕K2 ⊕ · · · ⊕Kn. We define the boolean PHNP(K1, K2, . . . , Kn) to be
the truth of the following statement: for any y ∈ Qn, if there exists x1 ∈ (Q× K̃)⊗ A
such that PN(x1) = y ⊗ 1, then there exists x2 ∈ Q× K̃ such that PN(x2) = y.

Remark 2.10. Consider the canonical projection π : Qn → Pn−1
Q onto the (n − 1)-

dimensional projective space over Q. We can restate PHNP as follows: if x ∈ Pn−1
Q has

nonzero coordinates and is in the image of π◦(NK1/Q, . . . , NKn/Q) over every completion,
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then it lies in the image of π ◦ (NK1/Q, · · · , NKn/Q). In other words, if a line locally con-
tains an element in the image of the product of norms, then it also contains one globally.

Note the assumption that x has nonzero coordinates is necessary for x to lie in the
image of the map (Q×)n → Pn−1

Q . In practice, we always assume this holds, since if any
coordinate is zero, the problem reduces to a lower dimension.

Proposition 2.11. If n = 1, PHNP(K1) is trivially true.

Remark 2.12. If n = 2, PHNP(K1, K2) can be reformulated as the following statement:

for any fixed y ∈ Q, the equation y =
NK1/Q(x1)

NK2/Q(x2)
has a global solution if and only if it

has a local solution. In particular, if K1 = K2, the equation reduces to y = NK1/Q(
x1
x2
),

so it is equivalent to HNP(K1). Thus, the projective Hasse norm principle is a strict
generalization of the Hasse norm principle.

In this paper, we compare PHNP and HNP across many settings, mainly studying
whether it is true that PHNP(K1, K2, . . . , Kn) implies or is implied by

∧
iHNP(Ki) in

each setting of the problem. In particular, we show in Theorem 10.3 that
∧
iHNP(Ki)

implies PHNP(K1, K2, . . . , Kn) when each of the field extensions Ki/Q is Galois and
abelian, which in turn implies a projective analogue of the Hasse norm theorem. We
also show that this result holds when Gal((K1K2 · · ·Kn)

♯) is dihedral or has order p3

for some prime p. We also demonstrate in Proposition 8.9 that when K1, K2, . . . , Kn

are each Galois extensions of Q and have independent Galois groups, it is also true
that

∧
iHNP(Ki) =⇒ PHNP(K1, K2, . . . , Kn). We furthermore give counterexam-

ples to each direction of implication in the most general case without restrictions on
K1, K2, . . . , Kn.

Remark 2.13. In this paper, all of the methodology used is purely algebraic. Thus the
results of the paper also hold for any global base field in place of Q. One reason we
use Q in place of a general base field is to avoid introducing unnecessary complexity.
Furthermore, the original Hasse norm Theorem was introduced exclusively with the
rational numbers as its setting, and our use of Q is more in line with the historical
notation.

3. Notations

LetK1, K2, . . . , Kn be number fields. LetK = (K1K2 · · ·Kn)
♯ be the Galois closure of

the composite fieldK1K2 · · ·Kn. Let K̃ denote the étale algebraK1⊕K2⊕· · ·⊕Kn, and
let G denote Gal(K/Q). For simplicity, we let H i(M) denote H i(G,M) for any Z[G]-
module M . For any finite group A, we let A∨ = Hom(A,Q/Z) denote the Pontryagin
dual of A and let Aab = (A∨)∨ denote the abelianization of A. We furthermore let Ader

denote the derived or commutator subgroup of A.
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For each i, we define G(i) = Gal(K/Ki). If Ki/Q is a Galois extension, we define
Gi = Gal(Ki/Q) so that Gi

∼= G/G(i). IfK1, K2, . . . , Kn are all independent and Galois,
then we have G ∼=

∏
iGi and G

(i) ∼=
∏

j ̸=iGj for all i.

Lemma 3.1. We have that
⋂
iG

(i) = 0.

Proof. Suppose a nontrivial element g exists such that g ∈ G(i) for all i, then let
G′ = ⟨g⟩. Since |G/G′| < |G| is an automorphism group of K fixing each of the
subfields K1, K2, . . . , Kn and strictly smaller than Gal(K/Q), it follows that K is not
the minimal Galois closure of K1, K2, . . . , Kn, giving contradiction. □

4. Methodology

Classically, the Hasse norm theorem is related to the cohomology of specific algebraic
tori. We introduce the definition of algebraic tori alongside those of a few basic tori
which we use extensively in our research.

Definition 4.1 (Multiplicative Group). Let R be any unital ring. We define the mul-
tiplicative group Gm(R) to be the group of invertible elements in R.

Example 4.2. For K = Q(i)/Q, we have that Gm(Q(i)) = Q(i)×. This group is a
torus defined over Q(i). We later show in Example 4.5 that the same torus can be
defined over Q in a way that preserves its rational points. More generally for any ring
R, it is true that Gm(R) = R×.

Definition 4.3 (Algebraic Torus). Let K be a field with separable closure K. Let G
be an algebraic group over K. We say G is an algebraic torus if G(K) ∼= Gm(K)n for
some n ∈ N. The integer n is called the rank of the torus.

One important method central to reformulating the Hasse norm principle and the
projective Hasse norm principle into the language of Galois cohomology is the Weil
restriction of scalars. Generally, a norm is a function endowed on a number field K.
However, since K can be viewed as a finite-dimensional vector space over Q, it is
reasonable that algebraic expression of K such as the norm could be reparameterized
as algebraic expressions over Q.

Definition 4.4 (Weil restriction of scalars, [PR94, p. 49]). Let K be a number field.
Since K can be written as a vector space over Q, it follows that Gm can be written as
an algebraic torus RK/QGm over Q such that RK/QGm(Q) = Gm(K). This torus has

rank [K : Q]. In particular if K/Q is Galois then RK/QGm(K) ∼= (K×)[K:Q]. We call
this algebraic torus the Weil restriction of scalars of the multiplicative group.

Below, we give an explicit example deriving the Weil restriction of scalars for a simple
number field, continuing the extension in Example 4.2.



A. BU 7

Example 4.5. ForK = Q(i)/Q, notice thatGm(Q(i)) can be described by the solutions
in z1 to the equation z1z2 = 1. Substituting z1 = a+ bi and z2 = c+di for a, b, c, d ∈ Q,
the set of solutions can be described as an algebraic group over Q obeying ac− bd = 1
and ad + bc = 0. Now plugging in Q(i) instead of Q for each variable, the space of
solutions are solutions to (a+ bi)(c+ di) = 1 where a, b, c, d are in Q(i). We must have
(a2+ b2)(c2+d2) = 1 so (a+ bi)(a− bi)u = 1 for u = c2+d2 determined by a, b. Letting
z1 = a + bi and z2 = a − bi makes this equivalent to z1z2u = 1, which is the same as
the condition z1, z2 ̸= 0. Thus, this space is isomorphic to Q(i)× × Q(i)×, so it is an
algebraic torus. Notably, the Galois action on this space maps (z1, z2) = (a+ bi, a− bi)
to (a + bi, a − bi) = (a− bi, a+ bi) = (z2, z1). Notably, the fixed points of this action
can be represented as (z, z), where z ∈ Q(i)×. In particular, the norm map on Q(i)×

can be viewed as the restriction of the map (z1, z2) → z1z2 to the set of fixed points.

Notice that NK/Q gives an algebraic map from the torus RK/QGm to Gm. Using
the kernel of this map, we can construct another algebraic torus, whose cohomology is
central to the study of the Hasse norm principle.

Definition 4.6 (Norm 1 torus). Let K be a number field. The norm 1 torus R
(1)
K/QGm

is the kernel of the norm map NK/Q from RK/QGm to Gm.

Example 4.7. For K = Q(i)/Q, the norm 1 torus is the set of rational points satisfying

x2 + y2 = 1. More generally, for a number field K, we have R
(1)
K/QGm(Q) = {x ∈

K×|NK/Q(x) = 1}.

Notice that we have an exact sequence between abelian groups with Gal(K/Q)-action.

1 R
(1)
K/QGm(K) RK/QGm(K) Gm(K) 1.

NK/Q

One can use this sequence to relate HNP(K) to a problem on the Galois cohomology

of R
(1)
K/QGm.

Definition 4.8 (Galois cohomology, [GS17, Definition 3.1. p. 50]). For all abelian
groups A equipped with a left-action from G, let AG denote the elements of A fixed by
G. We can define abelian groups H i(G,A) for all i ≥ 0 such that H0(G,A) = AG and
for any short exact sequence:

1 A B C 1.

We have the long exact sequence:

1 H0(G,A) H0(G,B) H0(G,C) H1(G,A) H1(G,B) · · · .
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For the Hasse norm theorem, Galois cohomology is applied to obtain the following
commutative diagram:

1 R
(1)
K/QGm(Q) K× Q× H1(K/Q, R(1)

K/QGm(K))

1
∏
p

R
(1)
K/QGm(Qp)

∏
v|p

K×
v

∏
p

Q×
p

∏
v|p

H1(Kv/Qp, R
(1)
K/QGm(Kv)),

NK/Q

r

where v is taken over all primes in K dividing p. In the diagram, the Hasse norm
theorem is equivalent to injectivity of the map r. We can do something analogous for
the projective norm. Recall that the projective norm can be extended to a map between
algebraic tori Gm ×

∏
RKi/QGm → (Gm)

n. Let torus T be the kernel of this map. The
Galois cohomology of T(K) yields

1 T(Q) Q× ×
⊕n

i=1K
×
i (Q×)n H1(K/Q,T(K)).PN

In particular, T(Q) represents the set of elements (q, k1, k2, . . . , kn) ∈ Q× × K̃× such
that q = NK1/Q(k1) = NK2/Q(k2) = · · · = NKn/Q(kn). Now, taking the injections
Q → Qp yields the commutative diagram

1 T(Q) Q××
⊕n

i=1K
×
i (Q×)n H1(K/Q,T(K))

1
∏
p

T(Qp)
∏
v|p

Q×
p ×

n⊕
i=1

K×
i,v

∏
p

(Q×
p )

n
∏
v|p

H1(Kv/Qp,T(Kv))

PN δ

π

γ η

where the maps H1(K/Q,T(K)) → H1(Kv/Qp,T(Kv)) are restriction maps.

Proposition 4.9. PHNP(K1, K2, . . . , Kn) is true if and only if H1(K/Q,T(K)) →∏
H1(Kv/Qp,T(Kv)) is injective.

Proof. One can note that PHNP is equivalent to the statement: for all α ∈ (Q×)n,
α ∈ im(PN) ⇐⇒ π(α) ∈ im(γ). Using the exact sequences, this is equivalent to the
statement δ(α) = 1 ⇐⇒ α ∈ Ker(δ) ⇐⇒ π(α) ∈ Ker(η) ⇐⇒ η(π(α)) = 1 for all
α ∈ (Q×)n. Since the diagram is commutative, this is equivalent to the kernel of the
map H1(K/Q,T(K)) →

∏
H1(Kv/Qp,T(Kv)) being trivial, as desired. □

The map H1(K/Q,T(K)) →
∏
H1(Kv/Qp,T(Kv)) represents a localization from a

cohomology group to a product of all its p-adic completions. In general, the kernel of
such a localization is known as a Tate-Shafarevich group, and represents the failure
of the local-global principle over a space. A variety of tools have been developed to
analyze these Tate-Shafarevich groups, some of which we use.
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Definition 4.10 (Tate-Shafarevich group). Let A be an abelian group with an action of
Gal(K/Q). We define the Tate-Shafarevich groups for each i ≥ 0 to be Xi(K/Q, A) =
Ker(H i(K/Q, A) →

∏
H i(Kv/Qp, A)).

Therefore, the PHNP is true if and only if the Tate-Shafarevich groupX1(K/Q,T(K))
is trivial. It is known that this group is finite, but it is hard to compute the cohomology
of T(K) directly, so we make use of Tate-Nakayama duality.

Definition 4.11 (Character Lattice). Let K be a number field, and let T be an
Algebraic torus defined over K. We define the character lattice of T as X∗(T) =
Hom(T,Gm). We define a group action for each σ ∈ Gal(K/Q) mapping each element
α of the character lattice to the map (σ · α)(x) = σ(α(σ−1(x))).

The character lattice provides us an easier way to compute, both mathematically and
programmatically, the Tate-Shafarevich group of an algebraic tori thanks to the Tate-
Nakayama Theorem. The structure of these lattices are closely linked to the Galois
group of the field extension, and oftentimes can easily be expressed in a closed form in
terms of this Galois group. To demonstrate, we introduce the following example of a
character lattice, where the field extension is quadratic (and thus Galois).

Example 4.12. Suppose K = Q(
√
d) is a quadratic field extension of Q. Then the

character lattice of Gm is isomorphic to Z, corresponding to the maps x → xn for
integer n. The character lattice of RK/QGm is isomorphic to the group ring Z[Z/2Z],
corresponding to the maps x + y

√
d to (x + y

√
d)m(x − y

√
d)n for m,n ∈ Z. Notice

that the Galois-invariant elements of this character lattice are exactly the powers of
the norm map: (x+ y

√
d)m(x− y

√
d)m = (x2 − dy2)m. Finally, the character lattice of

R
(1)
K/QGm is isomorphic to Z, corresponding to the maps x → xn. The only map here

which is Galois invariant is x → 1. More generally, it is well known that the character
lattice of RK/QGm is isomorphic to the group ring Z[Gal(K/Q)], where the element∑

g∈Gal(K/Q) λgg corresponds to the homomorphism x→
∏

g g(x)
λg from [PR94, p. 54].

Theorem 4.13 (Tate-Nakayama theorem, [PR94, Theorem 6.2]). Let K be a number
field, let T be an algebraic torus defined over K, and let X∗(T) be its character lattice.
Then X1(K/Q,T) ∼= X2(K/Q,X∗(T)).

The Tate-Nakayama theorem allows us to evaluate the Tate-Shafarevich group of an
algebraic tori, such as the ones relevant to the HNP and PHNP, by instead analyzing
the finite character lattice over these respective tori. It will be invaluable to us to have a
closed form for the character lattice of the tori representing the PHNP. In the following
proposition, we give an example of such a closed form when K1, K2, . . . , Kn are each
Galois number fields.

Proposition 4.14. Suppose K1, K2, . . . , Kn are all Galois number fields. Let di =∑
g∈Gi

g ∈ Z[Gi] for all i. Then X∗(T) ∼= (
∏

i Z[Gi])/{(λ1d1, λ2d2, . . . , λndn) : λi ∈
Z,
∑

i λi = 0}.
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Proof. Notice that the space of homomorphisms from T to Gm is a quotient of the space
of homomorphisms from

∏
iRKi/QGm to Gm. Furthermore, Hom(

∏
iRKi/QGm,Gm) =∏

iHom(RKi/QGm,Gm) =
∏

i Z[Gi]. Each of these homomorphisms corresponds to an
element of the character lattice of T since we can restrict the domain of the homomor-
phism from

∏
iRKi/QGm to T, but it is possible for multiple homomorphisms to corre-

spond to the same element of the character lattice. Hence it suffices to determine the
kernel of the restriction map. Suppose a map χ is in this kernel. Thus χ is fixed under
each element of Gal(Ki/Q), so it follows that χ = (λ1d1, λ2d2, . . . , λndn) for integers λi.
Then χ corresponds to the homomorphism (k1, k2, . . . , kn) →

∏
i

∏
g∈Gal(Ki/Q) g(ki)

λi =∏
iNKi/Q(ki)

λi . By definition there exists q = NK1/Q(k1) = NK2/Q(k2) = · · · =
NKn/Q(kn), so as long as q is not −1, 0, 1, this implies that

∑
λi = 0. To show such an

element exists, simply take ki = 2
lcm([K1:Q],[K2:Q],...,[Kn:Q])

[Ki:Q] ∈ Z ⊆ Ki for every i to finish.
Furthermore, any such homomorphism constructed with

∑
λi = 0 is in the kernel since∏

iNKi/Q(ki)
λi = q

∑
i λi = q0 = 1, so the kernel of this restriction from X∗(

∏
iRKi/QGm)

to X∗(T) is exactly the set {(λ1d1, λ2d2, . . . , λndn) : λi ∈ Z,
∑

i λi = 0}. The result fol-
lows. □

To create the aforementioned lattice in the SageMath environment, we use the fol-
lowing function:
def MakeLattice(G, H1 , H2):

L1 = GLattice(H1, 1)
G = KleinFourGroup ()
H1 , H2 = [G.subgroups ()[1] , G.subgroups ()[2]]
IL1 = GLattice(H1 , 1). induced_lattice(G)
IL2 = GLattice(H2 , 1). induced_lattice(G)
IL = IL1.direct_sum(IL2)
a, b = IL.fixed_sublattice (). basis ()
HNPLattice = IL.quotient_lattice(IL.fixed_sublattice ())
PHNPLattice = IL.quotient_lattice(IL.sublattice ([a-b]))
return [PHNPLattice , HNPLattice]

5. Preliminary Results

Thought closely related, neither HNP nor PHNP directly imply one another, so
current results do not extend to the PHNP condition easily. Thus, we aim to draw
connections between the conditions. It turns out that in some cases, we can directly
construct a global solution from the local solutions of PHNP when HNP holds.

Definition 5.1. For a given n-tuple of rational numbers q1, q2, . . . , qn ∈ Qn, if there
exists xi ∈ Ki ⊗ Qp and a constant sp ∈ Qp such that NKi/Q(xi) = sp · qi. With-
out loss of generality, let us assume q1, q2, . . . , qn are integers. We call the n-tuple
(x1, x2, . . . , xn; sp) a p-local solution with scale factor sp.

Note that the PHNP is equivalent to the assertion that if there exists a p-local solution
for every p, then there exists a global solution.
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Proposition 5.2. If there exists a rational number s such that s is a scale factor of some
p-local solution for every p, then we have that HNP(K1)∧HNP(K2)∧· · ·∧HNP(Kn) =⇒
PHNP(K1, K2, . . . , Kn)

Proof. Suppose such an s exists, then we have that sqi is a norm in every Qp. Thus HNP
implies that there exists xi ∈ Q such that NKi/Q(xi) = sqi, so taking (sq1, sq2, . . . , sqn)
gives a global norm for the PHNP condition. □

The proposition below further shows that we can always reduce the projective Hasse
norm principle to the case where all of K1, K2, . . . , Kn are number fields with degree
greater than 1.

Proposition 5.3. Given number fields K1, K2, . . . Kn, we have that:

PHNP(K1, K2, . . . , Kn,Q) = PHNP(K1, K2, . . . , Kn).

Proof. Notice that a p-local solution (x1, x2, . . . , xn; sp) for the rationals q1, q2, . . . , qn
taking elements from K1, K2, . . . , Kn can be extended to a particular p-local solution
for q1, q2, . . . , qn+1 over K1, K2, . . . , Kn,Q simply by choosing (x1, x2, . . . , xn, qn+1sp; sp),
since NQ/Q(qn+1sp) = qn+1sp. Furthermore, we can restrict a p-local solution over
K1, K2, . . . , Kn,Q to K1, K2, . . . , Kn by simply removing xn+1 without changing the
value of sp, so there exists a p-local solution overK1, K2, . . . , Kn if and only if there exists
a p-local solution over K1, K2, . . . , Kn,Q. The same logic applies to taking a global
solution, so it follows that there exists a global solution to PHNP over K1, K2, . . . , Kn

if and only if there exists a global solution to K1, K2, . . . , Kn,Q. This finishes. □

Next, we introduce another reduction of PHNP to HNP when all of the number fields
K1, K2, . . . , Kn are identical.

Proposition 5.4. More generally, if K1 = K2 = · · · = Kn for n ≥ 2, then we must
have PHNP(K1, K2, . . . , Kn) = HNP(K1).

Proof. Suppose PHNP(K1, K2, . . . , Kn) is true. We know from PHNP, for any x ∈ Q,
there exists a global solution to PN(q, k1, k2, . . . , kn) = (x, 1, 1, . . . , 1) if and only if it has

a local solution. Thus for k1, k2 ranging in K1 the equation x =
NK1/Q(k1)

NK1/Q(k2)
= NK1/Q(

k1
k2
)

has local solutions if and only it has global solutions. Since k1
k2

ranges freely over all

elements of K1, it follows that HNP(K1) is true. For the other direction, if HNP(K1)
is true, then I claim that an element (a1, a2, . . . , an) ∈ (Q×)n is a projective norm if
and only if every ai

a1
is a norm in K1. Clearly, if PN(x, k1, k2, . . . , kn) = (a1, a2, . . . , an)

such that ki ∈ K1 for all i, then each ki
k1

has norm ai
a1
, proving the implication. As for

the other direction, suppose we have xi ∈ K1 such that the NK1/Q(xi) is ai
a1

for all i.

Then we have that PN(a−1
1 , 1, x2, x3, . . . , xn) = (a1, a2, . . . , an) is a global solution to

the PHNP equation. Notice that this construction remains valid if we instead choose
(a1, a2, . . . , an) ∈ (Q×

p )
n from a completion Qp of Q.
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Thus, in this example, over each completion ofQ and overQ, PHNP can be reduced to
a condition on whether a tuple of numbers satisfies the HNP condition. Since HNP(K1)
implies that an element satisfies the HNP condition if and only if it satisfies the condition
over all completions of Q, it follows that an element satisfies the PHNP condition if
and only if it satisfies the condition over all completions of Q as desired. Hence we are
done. □

Proposition 5.5. If K1, K2 are quadratic extensions, then PHNP(K1, K2) holds.

Proof. For the case where K1 ̸= K2, we run the following SageMath code:

sage: G = KleinFourGroup ()
sage: H1, H2 = [G.subgroups ()[1], G.subgroups ()[2]]
sage: PHNP = MakeLattice(G, H1, H2)[0]
sage: PHNP.Tate_Shafarevich_lattice (2)
[]

This demonstrates that PHNP holds for any pair of distinct quadratic extensions.
We also know from Proposition 5.4 that both PHNP and HNP hold if both quadratic
extensions are the same. □

Notably in the above proposition, all quadratic extensions are Galois and have abelian
Galois groups. In later sections, we generalize this result.

Remark 5.6. Although the previous proposition examines a very restricted setting, it
provides us with a very interesting application. In [AAG+22], the authors establish a
mass formula to count the size of isogeny classes of principally polarized abelian varieties
over finite fields, weighted by the size of their respective automorphism groups. This
extends to yield a similar formula for elliptic curves. The formula is very concrete,
except one constant: the Tamagawa number of a specific global torus, which can be
seen locally as the centralizer of the Frobenius element acting on the dual of Tate
groups.

This Tamagawa number can be written τ(T) = |H1(Q,X∗(T))|
|X1(T)| , and the real difficulty

in its calculation is to determine the denominator.

One can apply the work done in [AAG+22] and apply it to a product of elliptic
curves, and count either isogenous abelian surfaces, or modify the formula to restrict
the count to other products of elliptic curves. In both cases, the same Tamagawa
number computation arises. For one elliptic curve, the torus is a maximal torus of
GL2(Q) which is either split or a restriction of scalars and has a trivial Tamagawa
number. For two elliptic curves, however, we get a maximal torus of (GL2×GL2)

0(Q) ⊂
GSp4(Q) where (GL2 × GL2)

0 is the group of pairs of matrices (g1, g2) ∈ GL2 with
matching determinants. The most interesting case is when the torus is compact modulo
center (the elliptic case), and the corresponding Tate-Shafarevich group is exactly the
obstruction to PHNP(K1, K2) where Ki is generated by eigenvalues of gi.
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6. Description of Character Lattices

Recall that we have the following exact sequence between algebraic tori by mapping
each element of T to its shared norm under

∏
iNKi/Q:

1
∏

iR
(1)
Ki/QGm T Gm 1.

Let Λ := X∗(T) and Λ1 := X∗(
∏

iR
(1)
Ki/QGm). From this, we can obtain a short exact

sequence on the character lattice of each tori as in Example 5.1 by taking the dual of
the previous exact sequence:

(1) 0 Z Λ Λ1 0.

We proceed to generalize Proposition 4.14 to arbitrary number fields K1, K2, . . . , Kn

without the Galois condition.

Proposition 6.1. Let K1, K2, . . . , Kn be arbitrary number fields. For each i, let Si
denote the left coset space G/G(i) equipped with a left G-action. Let di =

∑
g∈Si

g ∈ Z[Si]
for each i. Then it follows that

X∗(T) ∼=

(∏
i

Z[Si]

)
/{(λ1d1, λ2d2, . . . , λndn) : λi ∈ Z,

∑
i

λi = 0}.

Proof. Recall that the space of homomorphisms from T to Gm is a quotient of the space
of homomorphisms from

∏
iRKi/QGm to Gm. More generally, the homomorphism can

be obtained from the space of homomorphisms from
∏

iRK/QGm to Gm by restricting to
the subfield Ki. Now, proceeding analogously to the proof of Proposition 4.14, we have
that Hom(

∏
iRK/QGm,Gm) =

∏
iHom(RK/QGm,Gm) =

∏
i Z[G], where the action of

σ ∈ G is determined by

σ

(∑
g∈G

agg

)
=
∑
g∈G

agσ(g)

where ag ∈ Z for each g ∈ G. The image of the restriction map from Hom(RK/QGm,Gm)
to Hom(RKi/QGm,Gm) depends solely on the action of the map on Ki, hence the kernel

of the restriction map is Z[G(i)], the set of elements which fix the subfield Ki entirely.
Taking the quotient, we obtain

Hom

(∏
i

RKi/QGm,Gm

)
∼=
∏
i

Z[G]/Z[G(i)] =
∏
i

Z[Si].

Each of these homomorphisms corresponds to an element of the character lattice of T
by restricting the domain of the homomorphism from

∏
iRKi/QGm to T, but multiple

homomorphisms may map to the same element of X∗(T), so it suffices to determine
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the kernel of this restriction map. If a map χ is in this kernel, then the ith element
of χ is fixed under all elements of Si. It follows that χ = (λ1d1, λ2d2, . . . , λndn) for
some integers λi. Furthermore, χ corresponds to the homomorphism (k1, k2, . . . , kn) →∏

i

∏
g∈Si

g(ki)
λi =

∏
iNKi/Q(ki)

λi for ki ∈ Ki.

To finish, if there exists some rational q = NK1/Q(k1) = · · · = NKn/Q(ki) such that
q ̸= −1, 0, 1, then this implies that

∑
i λi = 0. We can construct such a q by taking

ki = 2
lcm([K1:Q],[K2:Q],...,[Kn:Q])

[Ki:Q] ∈ Z ⊆ Ki for every i to finish. Furthermore, any such
homomorphism satisfying

∑
i λi = 0 must lie in the kernel since

∏
iNKi/Q(ki)

λi =

q
∑

i λi = 1, so it follows that the desired kernel is exactly the set {(λ1d1, λ2d2, . . . , λndn) :
λi ∈ Z,

∑
i λi = 0}. The result follows. □

7. Counterexample to PHNP =⇒ HNP

Though the two conditions may appear equivalent for lower degree choices of Ki,
once we choose extensions of degree 4 or higher, counterexamples appear quite often.
To find our counterexamples as well as calculate cohomology groups, we used SageMath
to compute the results using the code shown in Appendix A.

In this section, we assert that K1, K2 are Galois. Using our result and notations
from 4.14 and denoting the character lattice X∗(T) as Λ and the lattice {(λidi) | λi ∈
Z,
∑

i λi = 0} as L, we have the following short exact sequence:

1 L
∏

i Z[Gi] Λ 1.

Using Galois cohomology, we can obtain the long exact sequence

1 H0(G,L) H0(G,
∏

i Z[Gi]) H0(G,Λ) H1(G,L) · · · .

Example 7.1. In particular, we investigate the case where G = Z/2Z×Z/2Z, choosing
n = 2, G1 = Z/2Z, and G2 = Z/2Z × Z/2Z. Furthermore, define G = G2 and
N = Gal(K2/K1). We have that that L ∼= Z, and

∏
i Z[Gi] = Z[G] × Z[N ]. We can

then compute the cohomology groups in the sequence near H2(G,Λ) using Shapiro’s
lemma (see [Mil97], p.62):

H i(G,Z[G]× Z[N ]) = H i(G,Z[G])×H i(G,Z[N ]) = H i(G/N,Z) =

{
Z/2Z 2 | i
1 2 ∤ i.

It is well known that H2(G,Z) ∼= Gab and H3(G,Z) ∼= Z/2Z by Lyndon’s formula
(see [Lyn48]), giving us the following exact sequence:

1 H1(G,Λ) (Z/2Z)2 Z/2Z H2(G,Λ) Z/2Z 1.
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From this sequence, we know that we must have H1(G,Λ) ∈ {Z/2Z, (Z/2Z)2} and
H2(G,Λ) ∈ {Z/2Z, (Z/2Z)2,Z/4Z}. By computing these cohomology groups explicitly
in SageMath, we obtain that H1(G,Λ) ∼= H2(G,Λ) ∼= Z/2Z.
We can now repeat the same process to compute these cohomology groups for two

nontrivial subgroups N,H where H is a complement of N in G. For N , we obtain

1 H1(N,Λ) Z/2Z 1 H2(N,Λ) 1 1.

So we have that H1(N,Λ) ∼= Z/2Z and H2(N,Λ) ∼= 1. Similarly, for H, we obtain

1 H1(H,Λ) Z/2Z (Z/2Z)2 H2(H,Λ) 1 1.

Computing these cohomology groups in SageMath gives H1(H,Λ) ∼= 1, H2(H,Λ) ∼=
Z/2Z. Furthermore, the program tell us that Ker(H2(G,Λ) → H2(H,Λ)) ∼= 1. Hence
X2(G,Λ) ∼= 1, so X1(T) is trivial in this example if none of the decomposition groups
are equal to G. (It is well known that this can only happen over ramified primes in K.)

Now, choosing K1 = Q(
√
−3), K2 = Q(

√
−3,

√
13) gives exactly the desired selection

of Galois groups, so it follows that PHNP(K1, K2) holds in this case. However, it is
shown in [Has31] that Q(

√
−3,

√
13) does not satisfy the Hasse norm principle, hence

this example demonstrates that PHNP does not imply HNP in each of the constituent
fields.

Similarly, we can take K1 = Q(
√
p) and K = K2 = Q(

√
p,
√
q), where p, q are prime

numbers such that
(
p
q

)
= 1 and p, q ≡ 1 (mod 4), which ensures that the decomposition

groups of Gal(K/Q) are always cyclic. Such a pair verifies PHNP(K1, K2) however it

is well known that X1(K2/Q,R(1)
K2/QGm)) ∼= Z/2Z hence HNP(K2), and by extension

HNP(K1) ∧ HNP(K2), does not hold.

8. A Condition for HNP =⇒ PHNP

In contrast to PHNP =⇒ HNP, counterexamples to HNP =⇒ PHNP are far more
sparse. In this section, we find sufficient conditions for identifying cases where HNP in
all of the constituent fields implies PHNP based off work in [Rüd22] and [LOYY22].

Proposition 8.1. Suppose
∧
iHNP(Ki) holds. Let x be any element of X2(Λ) ⊆

H2(Λ), and let ι be the canonical map from H2(Λ) to H2(Λ1) defined from equation 1.
Then x ∈ Ker(ϕ).

Proof. We begin by taking the cohomology of the exact sequence in equation 1. At H2,
we have

· · · H2(Z) H2(Λ) H2(Λ1) · · · .
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Now from Definition 4.10, it follows that for any abelian group A with an action of
G,

0 X2(G,A) H2(G,A)
∏

DH
2(D,A)

is an exact sequence, where the product is taken over all decomposition groups D.
We can then combine these sequences into a commutative diagram, labelling maps
a, b, c, d, e in the diagram.

0 0 0

X2(Z) X2(Λ) X2(Λ1)

· · · H2(Z) H2(Λ) H2(Λ1) · · ·

· · ·
∏
H2(D,Z)

∏
H2(D,Λ)

∏
H2(D,Λ1) · · ·

ι

e ϕ

a d

b

Now, since we suppose that
∧
iHNP(Ki) holds, it follows that X2(Λ1) = 0. Hence

d is injective. Since Ker a = Im ι, we have b(a(ι(x))) = 0, so d(c(ι(x))) = 0. Since ι, d
are both injective, it follows that ι(x) ∈ Ker ϕ as desired. □

Notice furthermore that Im e = Ker ϕ. Therefore if HNP holds, equivalently if d is
injective, we have that Im ι ⊆ Im e. Note that if e is trivial, it follows that X2(Λ) is
trivial, so PHNP must hold with the assumption that

∧
iHNP(Ki) is true. Following

the notations of [LOYY22], let H2(Z)′ := {x ∈ H2(Z) : e(x) ∈ Im ι}. We can now
extract a set of sufficient conditions for when HNP implies PHNP using decomposition
groups.

Proposition 8.2. Suppose
∧
iHNP(Ki) holds. Let ψ be the map from

∏
H1(D,Λ1)

to
∏
H2(D,Z) in the commutative diagram from Proposition 8.1. Then |X2(Λ)| =

|H2(Z)′|
|Ker e| . In particular, if |Im ψ| = |Ker e| then PHNP holds.

Proof. First, we show that X2(Z) = 0. Suppose otherwise, then there exists a nonzero
map f ∈ H2(G,Z) ∼= G∨ in X2(Z). In particular, there exists some g ∈ G such that
f(g) ̸= 0. Then ⟨g⟩ ⊂ G is a cyclic subgroup of G, so by the Chebotarev density
theorem (see [Mil97], p.164), it follows that ⟨g⟩ is a decomposition group. However
f |⟨g⟩ ̸= 0, giving contradiction.

Now, we can redraw the commutative diagram from Proposition 8.1, shifting the
sequence one term to the left and labeling functions e, f, g, a, ξ as shown.
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0 0

X1(Λ1) 0 X2(Λ)

· · · H1(Λ1) H2(Z) H2(Λ) · · ·

· · ·
∏
H1(D,Λ1)

∏
H2(D,Z)

∏
H2(D,Λ) · · ·

ι

ξ e

f a

ψ g

In particular, since ι is injective, the image of H2(Z)′ under e is exactly Im ι. Thus

|X2(Λ)| = |Im ι| = |H2(Z)′|
| ker e| .

Furthermore, for any element x of H2(Z)′, e(x) ∈ Im ι so a(e(x)) = 0. Thus f(x) ∈
Ker g so f(x) ∈ Im ψ. Thus since f is injective, it follows that |H2(Z)′| ≤ |Im ψ so if

|Im ψ| = |Ker e| then 1 = |Im ψ|
|Ker e| ≥

|H2(Z)′|
|Ker e| = |X2(Λ)| as desired. □

Corollary 8.3. If Ker e = H2(Z) ∼= G∨, then
∧
iHNP(Ki) =⇒ PHNP(K1, K2, . . . , Kn).

Proof. It follows from Proposition 8.2 that 1 ≥ |H2(Z)′|
H2(Z) = |X2(Λ)|, so X2(Λ) = 0 as

desired. □

Now that we have a path to determining when PHNP holds in a given collection of
number fields, we hope to understand the map e so that we can explicitly compute its
kernel and H2(Z)′. We proceed by analyzing the map ξ.

Proposition 8.4. Let Λ1
i = IndGG(i)Z/⟨di⟩ for any i. It follows that H1(G,Λ1

i )
∼= {f :

G→ Q/Z : f |G(i) ≡ 0}.

Proof. Recall from Proposition 6.1 that

Λ1 =
n⊕
i=1

IndGG(i)Z/⟨di⟩

∼=
n⊕
i=1

Z[G/G(i)]/⟨
∑

g∈G/G(i)

g⟩.

Thus we have H i(G,Λ1) =
⊕

iH
i(G,Λ1

i ).
Letting diagi denote the map from k ∈ Z to kdi, we obtain the following short exact

sequence:

0 Z IndGG(i)Z Λ1
i 0.

diagi



A. BU 18

Computing the cohomology, we obtain:

· · · H1(G, IndGG(i)Z) H1(G,Λ1
i ) H2(G,Z) H2(G, IndGG(i)Z) · · · .

Note that H1(G, IndGG(i)Z) ∼= H1(G(i),Z) = 0 by Shapiro’s Lemma and Hilbert 90 (see

[Mil97], p.67), H2(G,Z) = G∨, and H2(G, IndGG(i)Z) ∼= H2(G(i),Z) = (G(i))∨. Rewriting
the cohomology, we have

0 H1(G,Λ1
i ) G∨ (G(i))∨ · · · .ri

It follows that H1(G,Λ1
i )

∼= Ker ri = {f : G→ Q/Z : f |G(i) ≡ 0} as desired. □

In particular, analogously to [LOYY22], it follows the map ξ is the sum map, obtained
by taking the fi such that H1(Λ1) =

⊕
iH

1(Λ1
i ) = (f1, f2, . . . , fn) and summing them

to obtain f = f1 + f2 + · · · + fn ∈ G∨ = H2(G,Z). Hence we obtain the following
proposition.

Proposition 8.5. We have

Ker e = Im ξ = {f ∈ G∨ : ∀i, ∃fi ∈ G∨, fi|G(i) ≡ 0, f =
∑
i

fi}

where f1, f2, . . . , fn ∈ G∨.

Remark 8.6. Both of Propositions 8.4 and 8.5 can be adapted for a different choice
of Galois group D ⊆ G. It suffices to replace G(i) with D(i) = G(i) ∩ D and redefine
Λ1
i = IndDD(i) throughout the proof. These changes yield the following proposition.

Proposition 8.7. Let eD denote the map H2(D,Z) → H2(D,Λ) given in the commu-
tative diagram. We have

Ker eD = {f ∈ D∨ : ∀i, ∃fi ∈ D∨, fi|D(i) ≡ 0, f =
∑
i

fi}

where f1, f2, . . . , fn ∈ D∨.

Using the above result, we can also deduce an explicit formulation for H2(Z)′ analo-
gous to that of Proposition 8.5 for Ker e.

Proposition 8.8. The set of H2(Z)′ ⊆ H2(Z) ∼= G∨ is exactly {f : G → Q/Z :
∀D, f |D ∈ Ker eD} where D is chosen over all decomposition groups of G.

Proof. Recall the following commutative diagram from the proof of Proposition 8.2.
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0 0

X1(Λ1) 0 X2(Λ)

· · · H1(Λ1) H2(Z) H2(Λ) · · ·

· · ·
∏
H1(D,Λ1)

∏
H2(D,Z)

∏
H2(D,Λ) · · ·

ι

ξ e

f a

ψ g

By definition, H2(Z)′ is exactly the set of elements x of H2(Z) such that a(e(x)) = 0.
Since this diagram is commutative, it follows that g(f(x)) = 0. However f is injective
and given by the restriction map to each decomposition group D. Thus H2(Z)′ is
exactly the set of maps f ∈ G∨ such that f |D ∈ Ker eD for every decomposition group
D, since g can be decomposed as a direct product of eD for each decomposition group
D of G. □

These tools gives us an explicit way to prove that PHNP holds in a given choice
of K1, K2, . . . , Kn by combining our formulation in Proposition 8.5 and the result in
Proposition 8.2. We apply these tools to the simple case when K1, K2, . . . , Kn are all
Galois and independent:

Proposition 8.9. If K1, K2, . . . , Kn are all Galois over Q and G ∼=
∏

iGi, then∧
iHNP(Ki) =⇒ PHNP(K1, K2, . . . , Kn). Equivalently, G

∨ ∼=
∏

iG
∨
i .

Proof. Since G =
∏

iGi, each element of G can be represented as (g1, g2, . . . , gn) such
that gi ∈ Gi for each i and Gi = {(g1, g2, . . . , gn) : ∀j ̸= i, gj = 0}. For any choice of
f ∈ G∨, choosing fi such that fi(g1, g2, . . . , gn) = f(0, . . . , 0, gi, 0, . . . , 0) satisfies the
conditions on fi and f =

∑
i fi given in Proposition 8.5.

Thus f ∈ Ker e. Hence H2(G,Z) ⊆ Ker e ⊆ H2(G,Z), so Ker e = H2(G,Z).
Applying Proposition 8.2, it follows that PHNP holds. □

9. Counterexample to HNP =⇒ PHNP

In this section, we construct a counterexample to the claim that
∧
iHNP(Ki) =⇒

PHNP(K1, K2, . . . , Kn), showing that neither PHNP or HNP directly implies the other.
We provide an explicit example.

Example 9.1. Let K be the extension of Q generated by the roots of x4 − x+ 1. It is
known that that Gal(K/Q) ∼= S4 (from [LMF24]). Let H1 = ⟨(12)⟩ and H2 = ⟨(1234)⟩
be subgroups of Gal(K/Q) and let K1, K2 be the subfields of K fixed by these two
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subgroups respectively. From LMFDB, we know that the only ramified prime of K is
229, whose decomposition group is Z/2Z.

Thus all decomposition groups of Gal(K/Q) are cyclic. It can be furthermore verified
that HNP is satisfied in K1 and K2 respectively.

Now, consider Proposition 8.2, which states that |X2(Λ)| = |H2(Z)′|
|Ker e| . The denomina-

tor Ker e can be computed through Proposition 8.5: for any g = aba−1b−1 ∈ Gder, we
have f(g) = f(a)f(b)f(a−1)f(b−1) = 0 for f : G→ Q/Z.

Since the commutator subgroup of S4 is A4, it follows that the only two maps f in
H2(Z) are f ≡ 0 and

f =

{
0 g ∈ A4

1
2

otherwise.

However, since G(1) = Gal(K/K1) = H1 and G(2) = Gal(K/K2) = H2, the latter
map is nonzero over both H1 and H2, so it follows that the only choice for f1 and f2 is
the trivial map. Thus, Ker e is trivial.

Next, we show that H2(Z)′ contains at least two elements, which would imply that
X2(Λ) is nontrivial and thus that PHNP(K1, K2) is false.

It suffices to show that f satisfies the conditions of Proposition 8.8. First, notice that
no cyclic subgroup of S4 intersects both ⟨(1234)⟩ and ⟨(12)⟩, so for each decomposition
group D, it follows that we can solve f |D = f1 + f2 by choosing {f1, f2} = {0, f |D}
depending on whether D(1) or D(2) is trivial. Hence f ∈ Ker eD for all decomposition
groups D so f ∈ H2(Z)′ as desired.

We now know that HNP =⇒ PHNP holds for independent Galois field extensions
but does not hold in the non-Galois case. It remains to be shown whether it is true that
HNP implies PHNP when K1, K2, . . . , Kn are non-independent Galois field extensions.
We give a few partial results in this direction.

10. Studying HNP =⇒ PHNP in the Galois Case

We proceed to derive a set of sufficient conditions that allow us to prove HNP =⇒
PHNP using only the Galois groups of the fields K1, K2, . . . , Kn. In this section, we
exclusively consider the case where each Ki/Q is a Galois extension.

Proposition 10.1. If for any f ∈ G∨, there exists functions fi ∈ G∨ for each i such
that fi|G(i) ≡ 0 and such that f =

∑
i fi, then

∧
iHNP(Ki) =⇒ PHNP(K1, K2, . . . , Kn).

Proof. First, recall from Proposition 8.5 that

Ker e = {f ∈ G∨ : ∀i,∃fi ∈ G∨, fi|G(i) ≡ 0, f =
∑
i

fi}.

If it is true that Ker e ∼= H2(Z), then Proposition 8.2 implies that |X2(Λ)| =
|H2(Z)′|
|Ker e| ≤ |H2(Z)|

|Ker e| = 1, so PHNP holds. □
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This weaker condition for PHNP allows us to study HNP =⇒ PHNP using only the
structure of the Galois group G. The following proposition gives us an algorithmic
approach to verify the conditions of Proposition 10.1 in G.

Proposition 10.2. If for any g ∈ G and 1 ≤ i ≤ n, we have that gG(i) ⊆ GderG(i) =⇒
g ∈ Gder, then it follows that

∧
iHNP(Ki) =⇒ PHNP(K1, K2, . . . , Kn). Equivalently, if⋂

iG
derG(i) = Gder, then it follows that

∧
iHNP(Ki) =⇒ PHNP(K1, K2, . . . , Kn).

Proof. Note that G(i) ⊴G for every i from the Galois condition. We have the equality
(G/G(i))der = GderG(i)/G(i) since for any g1, g2,∈ G,

g1G
(i)g2G

(i)(g1G
(i))−1(g2G

(i))−1 = (g1g2g
−1
1 g−1

2 )G(i).

Let α be the homomorphism from Gab to (G/G(1))ab × (G/G(2))ab × · · ·× (G/G(n))ab

obtained by mapping each g ∈ Gab to the coset of Gab/G(i) ∼= (G/G(i))ab containing it.
Here, GderG(i) is exactly the kernel of the abelianization map from G/G(i) to (G/G(i))ab.
Now, α is injective if and only if there does not exist a nonzero element g ∈ Gab such
that

α(g) = 0 ⇐⇒ ∀i, gG(i) ⊆ GderG(i).

Note that the existence of such an element is equivalent to the conditions given in
the proposition, so α is injective.

Since (Gab)∨ ∼= ((G∨)∨)∨ ∼= G∨, consider the dual map χ : (G/G(1) × G/G(2) ×
· · · × G/G(n))∨ ∼= (G/G(1))∨ × (G/G(2))∨ × · · · × (G/G(n))∨ → G∨ of α, where the
isomorphism is defined by mapping f(x1, x2, . . . , xn) ∈ (G/G(1)×G/G(2)×· · ·×G/G(n))∨

to (f1, f2, . . . , fn) such that fi = f(1, 1, . . . , xi, . . . , 1, 1) ∈ (G/G(i))∨ for each i. Since
(Gab)der = 0, χ is surjective if and only if α is injective.

Now, it follows for our description of the isomorphism that χ is the sum map, defined
by mapping (f1, f2, . . . , fn) ∈ (G/G(1))∨ × (G/G(2))∨ × · · · × (G/G(n))∨ to f ∈ G∨ such
that for every g ∈ G, we define f(g) =

∑
fi(gi) where (g1, g2, . . . , gn) = α(g).

Thus, it follows that Im χ is exactly Ker e, so since χ is surjective into G∨ ∼= H2(Z), it
follows from Proposition 10.1 that

∧
iHNP(Ki) =⇒ PHNP(K1, K2, . . . , Kn) as desired.

□

We use this result to prove that HNP =⇒ PHNP in several classes of G, including
when G is abelian or dihedral.

Theorem 10.3. If Ki/Q is Galois and abelian for each i, then
∧
iHNP(Ki) =⇒

PHNP(K1, K2, . . . , Kn).

Proof. For any abelian group A, we have Ader = 0 and Aab ∼= A. Since G directly
embeds into

∏
iG/G

(i), which must be abelian, it follows that G is abelian and thus
Gder = 0. Therefore by Proposition 10.2, it suffices to show that there is no nontrivial
g ∈ G such that g ∈

⋂
iG

(i). This follows from Lemma 3.1. □
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This result immediately gives us an analogue of the Hasse norm theorem for the
projective Hasse norm principle:

Corollary 10.4. If K1, K2, . . . , Kn are cyclic Galois number fields, then it follows that
PHNP(K1, K2, . . . , Kn) holds.

Proposition 10.2 can also be used to tackle many nonabelian cases. To demonstrate
this, we show below that this proposition is sufficient to address the case where G is
dihedral.

Theorem 10.5. If G is dihedral and Ki/Q is Galois for each i, then
∧
iHNP(Ki) =⇒

PHNP(K1, K2, . . . , Kn).

Proof. Let G = Dn = ⟨r, s : rn = s2 = (sr)2 = 1⟩, then we have that Gder = ⟨r2⟩. By
Proposition 10.2, it suffices to show that there does not exist g ∈

⋂
iG

derG(i) such that
g /∈ Gder.
Suppose such a g exists. If g = rm for some m then n is even and m is odd.

Furthermore, it follows that r = gr1−m ∈ G(i) for allm, however this gives contradiction
by Lemma 3.1.

Otherwise, if g = rms for some s. Then for each G(i), there exists k such that
rks ∈ G(i) Since each G(i) ⊴ G, it follows that rk+2s = rrksr−1 ∈ G(i), so r2 ∈ G(i) for
all i. This gives contradiction by Lemma 3.1 for all n ≥ 3. Otherwise, if n = 1, 2 then
G is abelian, so the result follows from Theorem 10.3 as desired. □

By running the Oscar code in Appendix B, we found that in the groups we investi-
gated, the conditions of Proposition 10.2 held in all groups G whose order is quarticfree.
We prove two theorems supporting this observation:

Theorem 10.6. If G has order p3 for some prime p, then we have
∧
iHNP(Ki) =⇒

PHNP(K1, K2, . . . , Kn).

Proof. If G is abelian, then the result follows immediately from Theorem 10.3. Other-
wise, it follows that Gder is a nontrivial normal subgroup of G. If any of G(i) are trivial,
it follows that Ki = Q and can be removed using Proposition 5.2. Now for each i, we
have that G(i) is a normal subgroup of G, so since |G/G(i)| ∈ {1, p, p2} for all i, so it
follows that G/G(i) is an abelian group. However by definition, Gder is the minimal
subgroup G′ of G such that G/G′ is abelian. Thus, it follows that Gder ⊆ G(i) for all i.
However, since Gder is nontrivial, this contradicts Lemma 3.1, finishing. □

Proposition 10.7. Suppose G ∼= Z/pZ × H where H is a nonabelian group of order
p3. Then there exists a choice of G(1), G(2) such that GderG(1) ∩GderG(2) ̸= Gder.

Proof. Any p-group has a nontrivial center (by the class equation), so H must have a
normal subgroup H ′ of order p. Since H/H ′ is abelian, it follows that, Hder = H ′ ∼=
Z/pZ. Suppose G is isomorphic to H×⟨α⟩ where α has order p, and let β be a generator
of Hder. Now, choose G(1) = ⟨α⟩, G(2) = ⟨αβ⟩. We have that G(1) ∩ G(2) is trivial and
GderG(1) = GderG(2) = ⟨α, β⟩. However, Gder = ⟨β⟩ ≁= ⟨α, β⟩, as desired. □
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The author hopes that determining the exact groups for which the conditions of
Proposition 10.2 hold may give further insight on whether HNP implies PHNP in the
general Galois case. In addition, a more general set of conditions utilizing Proposition
8.8 and Proposition 8.5 may suffice to show the implication.
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Appendix A. SageMath Code to Test for HNP and PHNP

def TestAll(G, check):
subg = G.normal_subgroups ()
subg.pop()
for i in range(len(subg )):

H1 = subg[i]
if H1.order () == G.order ():

continue
L1 = GLattice(H1, 1)
IL1 = L1.induced_lattice(G)
for j in range(i, len(subg )):

H2 = subg[j]
if H2.order () == G.order ():

continue
L2 = GLattice(H2, 1)
IL2 = L2.induced_lattice(G)

if check:
P1 = False
P2 = False
if len(prime_factors(IL1.rank ())) <= 1:

P1 = True
if len(prime_factors(IL2.rank ())) <= 1:

P2 = True
if P1 and P2:

continue

if H1.group_id () == H2.group_id ():
continue

IL = IL1.direct_sum(IL2)
SL = IL.fixed_sublattice ()
a, b = SL.basis ()
SSL = SL.sublattice ([a-b])

QL1 = IL.quotient_lattice(SSL)
QL2 = IL.quotient_lattice(SL)

TS1 = QL1.Tate_Shafarevich_lattice (2)
TS2 = QL2.Tate_Shafarevich_lattice (2)

if TS1 != TS2:
print(’FOUND!!’)
print(G)
print(H1)
print(H2)
print(TS1)
print(TS2)
print(’-------------’)

def HuntHNP(depth):
for i in range(1, depth):

print(i)
for j in range(1, TransitiveGroups(i). cardinality ()+1):

print(TransitiveGroup(i, j))
TestAll(TransitiveGroup(i, j), True)
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Appendix B. Oscar Code to Test for the Galois Case

function test(g,h1,h2)
d = derived_subgroup(g)[1]
h1d = sub(g,[gens(h1);gens(d)])[1]
h2d = sub(g,[gens(h2);gens(d)])[1]
i = intersect ([h1d ,h2d ])[1]
if order(i)>order(d)

true
else

false
end

end

function testall(g)
n = normal_subgroups(g)
for h1 in n

for h2 in n
if order(intersect ([h1,h2 ])[1]) == 1

if test(g,h1,h2)
print("FOUND")

end
end

end
end

end

function looptestall(n)
numb = number_small_groups(n)
for i in 1:numb

println(i)
testall(small_group(n,i))
println(" ")

end
end

function testv2(g,h1,h2)
d = derived_subgroup(g)[1]
q1, f1 = quo(g,h1)
q2, f2 = quo(g,h2)
d1 = derived_subgroup(q1)[1]
d2 = derived_subgroup(q2)[1]
for i in g

if !(i in d)
if (f1(i) in d1)&(f2(i) in d2)

return true
end

end
end
return false

end

function testallv2(g)
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n = normal_subgroups(g)
l = []
for h1 in n

for h2 in n
if order(intersect ([h1,h2 ])[1]) == 1

if testv2(g,h1,h2)
print("FOUND ")
append !(l, [[g,h1,h2]])

end
end

end
end

return l
end

function looptestallv2(n)
numb = number_small_groups(n)
for i in 1:numb

println(i)
s = testallv2(small_group(n,i))
for r in s

println(r)
end
println(" ")

end
end

References

[AAG+22] Jeff Achter, Salim Ali Altug, Luis Garcia, Julia Gordon, Wen-Wei Li, and Thomas Rüd,
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