
ON THE SPUM AND SUM-DIAMETER OF PATHS

ARYAN BORA, YUNSEO CHOI, AND LUCAS TANG

Abstract. In a sum graph, the vertices are labeled with distinct positive integers, and two
vertices are adjacent if the sum of their labels is equal to the label of another vertex. The
spum of a graph G is defined as the minimum difference between the largest and smallest
labels of a sum graph that consists of G in union with a minimum number of isolated vertices.
More recently, Li introduced the sum-diameter of a graph G, which modifies the definition
of spum by removing the requirement that the number of isolated vertices must be minimal.
In this paper, we settle conjectures by Singla, Tiwari, and Tripathi and a conjecture by Li
by evaluating the spum and the sum-diameter of paths.
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1. Introduction

In 1990, Harary [2] defined the sum graph G(V,E) of L ⊆ N to be given by V = L and
(u, v) ∈ E if u + v ∈ L (see for example, Figure 1). Not every graph G is a sum graph of
some set L; for example, no connected G is a sum graph, because in a sum graph, the vertex
with the largest label must be isolated. Yet, Harary showed [2] that any graph G in union
with at least a sum number σ(G) of isolated vertices is a sum graph of some set L.
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Figure 1. The sum graph of {1, 2, 3, 4, 5}

Shortly after, Goodell, Beveridge, Gallagher, Goodwin, Gyori, and Joseph [1] defined
the spum spum(G) of a graph G as the minimum difference between the largest and the
smallest labels in L, for which G ∪ Iσ(G) is a sum graph of L. In the same paper, Goodell
et al. [1] evaluated spum(Kn). More recently, in 2021, Singla, Tiwari, and Tripathi [5]
evaluated spum(K1,n) and spum(Kn,n). Our first main result is that we settle a conjecture
that was originally proposed by Singla, Tiwari, and Tripathi (see Conjecture 7.1 of [5]) and
subsequently modified by Li (see Conjecture 3.4 of [4]) on spum(Pn), where Pn is a path of
n vertices.
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Theorem 1.1. For n ≥ 3, it holds that

spum(Pn) =


2n− 3 if 3 ≤ n ≤ 6

2n− 2 if n = 7

2n− 1 if n ≥ 8 is even

2n+ 1 if n ≥ 9 is odd.

In 1994, Harary [3] extended the notion of a sum graph; he defined the integral sum graph
G(V,E) of L ⊆ Z to be given by V = L and (u, v) ∈ E if u + v ∈ L. He then defined
the integral sum number ζ(G) as the minimum number of vertices for which G ∪ Iζ(G) is an
integral sum graph. In 2021, Singla et al. [5] extended the notion of spum; they defined the
integral spum ispum(G) of a graph G as the minimum difference between the largest and the
smallest labels in L, for which G ∪ Iζ(G) is an integral sum graph of L. In the same paper,
Singla et al. [5] evaluated ispum(Kn), ispum(K1,n), and ispum(Kn,n). Our next result is
that we improve the best known lower bound on ispum(Pn).

Theorem 1.2. For n ≥ 7, it holds that

2n− 3 ≤ ispum(Pn) ≤

{
2n− 3 if n is even
5
2
(n− 3) if n is odd.

Last year, Li [4] introduced the more natural sum diameter sd(G) of a graph G as the
minimum difference between the largest and the smallest labels of L, for which G ∪ Im is a
sum graph of L for any m ≥ σ(G).

Remark. Although a priori, it is not clear that adding more vertices reduces the range of its
labels, there exist graphs G for which sd(G) < spum(G). For example, while spum(P8) = 15
by Theorem 1.1, Figure 2 shows that sd(P8) ≤ 14.
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Figure 2. A sum graph that demonstrates sd(P8) ≤ 14

Our next result is that we settle a conjecture by Li (see Conjecture 9.5 of [4]) on sd(Pn).

Theorem 1.3. For n ≥ 3, it holds that

sd(Pn) =

{
2n− 3 if 3 ≤ n ≤ 6

2n− 2 if n ≥ 7
.

Li [4] also introduced the integral sum diameter isd(G) of a graph G as the minimum
difference between the largest and the smallest labels of L, for which G ∪ Im is an integral
sum graph of L for any m ≥ ζ(G). Our last result is that we evaluate isd(Pn) for n ≥ 3.

Theorem 1.4. For n ≥ 3, it holds that

isd(Pn) =



2n− 3 if n = 3

2n− 4 if 4 ≤ n ≤ 7

2n− 3 if 8 ≤ n ≤ 9

2n− 3 if n ≥ 10 is even

2n− 2 if n ≥ 11 is odd.
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In Section 2, we establish preliminaries. In Section 3, we prove Theorem 1.1. In Section 4,
we prove Theorems 1.2 and 1.4. In Section 5, we prove Theorem 1.3.

2. Preliminaries

For L ⊆ Z, let L − a = {ℓ − a|ℓ ∈ L}, and L + a = {ℓ + a|ℓ ∈ L}. Next, let range(L) =
max(L)−min(L). Furthermore, let NL(ℓ) = {a ∈ L | a ̸= ℓ and ℓ+ a ∈ L}, and let Li ⊆ L
be the i smallest numbers in L. For L = {a1, a2, . . . , an} ⊆ Z such that a1 < a2 < · · · < an,
say that ai and ai+1 are consecutive in L.

Let the maximal and minimal degree of a graph G be ∆G and δG, respectively. We omit
the subscript when it is clear which G is being referred to.
In [2] and [3] respectively, Harary evaluated σ(Pn) and ζ(Pn).

Lemma 2.1 ([2]). For n ≥ 1, it holds that σ(Pn) = 1.

Lemma 2.2 (Theorem 3.1 of [3]). For n ≥ 1, it holds that ζ(Pn) = 0.

Finally, let a component of G be a connected subgraph of G that is not a subset of a larger
connected subgraph.

3. The Spum of Paths

For this section, let G∪ Iσ(G) be a sum graph of L that satisfies range(L) = spum(G). Let
S = {a1, a2, . . . , an} be labels of the vertices of G such that a1 < a2 < · · · < an. Next, let

T = [a1, an] \ S,
M = (S \ [a1, 2a1])− a1, and

J = (S \ [a1, 3a1])− 2a1.

We say that L is tight if T ⊆ M and k-tight if |T \ M | = k. Let m = a1 − |S ∩ [a1, 2a1]|.
Then, because |S ∩ [a1, 2a1]| = a1 −m and S ⊔ T = [a1, an], it follows that

(3.1) |T ∩ [a1, 2a1]| = |[a1, 2a1]| − (a1 −m) = m+ 1.

Finally, let ϵ = 1 if (a1, an) ∈ E, and ϵ = 0 otherwise.

3.1. The inequality spum(Pn) ≥ 2n − 2 for n ≥ 7. We first cite the best known bounds
on spum(Pn).

Theorem 3.1 (Theorem 3.1 of [4]). For n ≥ 7, it holds that

2n− 2 ≤ spum(Pn) ≤

{
2n+ 1 if n is odd

2n− 1 if n is even.

We first generalize and correct an error in the original presentation of Claim 2 in [5].

Lemma 3.2. If G ∪ Ii is a sum graph of L and {a1, 2a1} ⊆ L, then

range(L) ≥ 3n− a1 − 3 +m− 4∆ + δ + 2ϵ.

Proof. First, because |N(a1)| ≤ ∆, at most ∆− ϵ pairs of labels in S \ {a1} differ by a1. As
[a1, 2a1] ⊆ S ⊔ T = [a1, an], by Equation (3.1), it holds that

(3.2) |S ∩ [2a1 + 1, 3a1]| ≤ |T ∩ [a1 + 1, 2a1]|+∆− ϵ = ∆+m+ 1− ϵ.
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Because an /∈ M , we have that S ∩M ⊆ N(a1) \ an, so

(3.3) |S ∩M | ≤ |N(ar+1)| − ϵ ≤ ∆− ϵ.

Likewise, because M ∩ J ⊆ N(a1) \ an, it follows that

(3.4) |M ∩ J | ≤ |N(ar+1)| − ϵ ≤ ∆− ϵ.

Similarly, because S ∩ J ⊆ N(2a1) ∪ 2a1, it follows that

(3.5) |S ∩ J | ≤ |N(2a1)|+ 1 ≤ ∆+ 1.

Notice that because |M | = |S \ [a1, 2a1]|, it follows that

(3.6) |M | = |S| − |S ∩ [a1, 2a1]| = n− (a1 −m).

Because M ⊆ S ⊔ T = [a1, an], from Equations (3.3) and (3.6),

(3.7) |T ∩M | = |M | − |S ∩M | ≥ n− (a1 −m)− (∆− ϵ).

Now, from Equation (3.2),

|J | = |S| − |S ∩ [a1, 2a1]| − |S ∩ [2a1 + 1, 3a1]|
≥ n− (a1 −m)− (∆ +m+ 1− ϵ)(3.8)

= n− a1 − 1−∆+ ϵ.

As J ⊆ S ⊔ T = [a1, an], Equations (3.5) and (3.8) imply

|T ∩ J | = |J | − |S ∩ J |
≥ n− a1 − 1−∆+ ϵ− (∆ + 1)(3.9)

≥ n− a1 − 2− 2∆ + ϵ.

Lastly, from Equations (3.4), (3.7), and (3.9),

|T | ≥ |T ∩M |+ |T ∩ J | − |T ∩M ∩ J | ≥ |T ∩M |+ |T ∩ J | − |M ∩ J |(3.10)

= (n− a1 +m−∆+ ϵ) + (n− a1 − 2− 2∆ + ϵ)− (∆− ϵ)

= 2n− 4∆ + 3ϵ− 2a1 +m− 2.

Because |T | = (an − a1 + 1)− n, from Equation (3.10),

(3.11) an ≥ 3n− a1 − 3 +m− 4∆ + 3ϵ.

Now, because max(N(an)) ≥ a1 + δ − ϵ, from Equation (3.11),

□(3.12) range(L) ≥ (an + a1 + δ − ϵ)− a1 ≥ 3n− a1 − 3 +m− 4∆ + δ + 2ϵ.

Remark. The proof of Claim 2 in [5] claimed that |S ∩ J | ≤ ∆, but it is possible that
|S ∩ J | = ∆+ 1 if 2a1 ∈ S ∩ J .

By specifying G = Pn in Lemma 3.2, we arrive at the following corollary.

Corollary 3.3. If {a1, 2a1} ⊆ S, then spum(Pn) ≥ 3n− a1 − 11 + 2ϵ.
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3.2. The inequality spum(Pn) ≥ 2n − 1 for n ≥ 8. For the rest of Section 3, let G =
Pn∪ Iσ(Pn) = Pn∪ I1 from Lemma 2.1. In addition, let {an+1} = L \S. Let bi = ai+1− ai for
1 ≤ i ≤ n, and cℓ be the number of 1 ≤ i ≤ n such that bi = ℓ. We first generalize Lemma
2.5 by Li [4].

Lemma 3.4. If L is k-tight, then 2n− 3 +m+ k + ϵ ≤ an ≤ range(L).

Proof. By letting G = Pn in Equation (3.7),

(3.13) |T ∩M | ≥ n− a1 +m− 2 + ϵ.

Now, because |T \M | = k and |T | = (an − a1 + 1)− n, from Equation (3.13),

(3.14) (an − a1 + 1)− n = |T | = |T ∩M |+ k ≥ n− a1 +m− 2 + ϵ+ k.

The statement of the lower bound of an now follows from rearranging Equation (3.14). In
addition, because an+1 ≥ an + a1, it follows that an ≤ an+1 − a1 = range(L). □

An immediate corollary of Lemma 3.4 is a lower bound for range(L).

Corollary 3.5. If L is k-tight, then range(L) ≥ 2n− 2 +m+ k.

Proof. Because max(N(an)) ≥ a1 + 1− ϵ, from Lemma 3.4,

□(3.15) range(L) ≥ an + a1 + 1− ϵ− a1 ≥ 2n− 2 +m+ k.

Next, we give an upper bound on a1 for k−tight L.

Lemma 3.6. If L is k-tight, then a1 ≤ k + 2.

Proof. Suppose otherwise. If M ̸= ∅, then
(3.16) max(M) = an − a1 ≤ an − k − 3,

so regardless of whether or not M = ∅, it must hold that

(3.17) [an − k − 2, an] ∩M = ∅.
Now, from Equation (3.17),

(3.18) [an − k − 2, an] ∩ T ⊆ T \M.

Because S ⊔ T = [a1, an] and L is k−tight, it holds from Equation (3.18) that

|S ∩ [an − k − 2, an]| = |[an − k − 2, an]| − |[an − k − 2, an] ∩ T |
≥ |[an − k − 2, an]| − |T \M |(3.19)

= k + 3− k = 3.

Now, because σ(G) = 1 and a1 ≥ k+3, all vertices with labels in S ∩ [an − k− 2, an] have
one neighbor. However, exactly two vertices in Pn have one neighbor. Thus, a1 ≤ k+2. □

Next, we derive a upper bound for an. To do so, we define

X = (S \ a1)− a1,

Y = (S \ [a1, a2])− a2, and

Z = [1, an] \ S.
In addition, let µ = |N(a1) \X|+ |N(a2) \ Y |.

Lemma 3.7. If 2a1 /∈ L, then |Z \X|+ |Z \ Y | ≤ 2an − 4n+ 8− µ.
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Proof. First, because |N(a1)| ≤ 2 and 2a1 ̸∈ L,

(3.20) |X ∩ S| ≤ 2− |N(a1) \X|.
Furthermore, because |N(a2)| ≤ 2 and a2 ∈ S ∩ Y ,

(3.21) |Y ∩ S| ≤ 3− |N(a2) \ Y |.
Because X, Y ⊆ Z ⊔ S = [1, an], from Equations (3.20) and (3.21),

(3.22) |X ∩ Z| = |X| − |X ∩ S| ≥ (n− 1)− (2− |N(a1) \X|) = n− 3 + |N(a1) \X|,
and

(3.23) |Y ∩ Z| = |Y | − |Y ∩ S| ≥ (n− 2)− (3− |N(a2) \ Y |) = n− 5 + |N(a2) \ Y |.
Next, because |Z| = an − n, from Equations (3.22) and (3.23), it holds that

|Z \X| = |Z| − |Z ∩X| ≤ (an − n)− n+ 3− |N(a1) \X|,(3.24)

and

|Z \ Y | = |Z| − |Z ∩ Y | ≤ (an − n)− n+ 5− |N(a2) \ Y |.(3.25)

Finally, the statement of the lemma follows from adding Equations (3.24) and (3.25). □

Next, we use Lemma 3.7 to bound n from above when a1+1 = a2. In the following proof,
for some 1 ≤ i ≤ j ≤ n, we say that [ai, aj] is a run if [ai, aj] ⊆ S and {ai−1, aj+1}∩S = ∅.
Note that S =

⊔t
i=1Ri, where Ri are runs.

Lemma 3.8. If 2a1 ̸∈ S and a1 + 1 = a2, then n ≤ a1(an − 2n+ 7− µ) + 2− ϵ.

Proof. From Lemma 3.7,

2an − 4n+ 8− µ ≥ |Z \X|+ |Z \ Y |(3.26)

≥ |Z| − |X ∩ Y | = |Z| − |Y |+ |Y \X|.
Because |Y | = n− 2 and |Z| = an − n, it follows from Equation (3.26) that

|Y \X| ≤ |Y | − |Z|+ 2an − 4n+ 8− µ

= (n− 2)− (an − n) + 2an − 4n+ 8− µ(3.27)

= an − 2n+ 6− µ.

Note that y ∈ Y \X if and only if y + a2 = y + a1 + 1 ∈ S and y + a1 /∈ S. Now, for all
runs Ri, unless a1, a2 ∈ Ri, it holds that min(Ri)− a2 ∈ Y \X, because by the definition of
runs, min(Ri)− a2 + a1 = min(Ri)− 1 /∈ S. Thus, from Equation (3.27),

(3.28) t ≤ |Y \X|+ 1 ≤ an + 7− µ.

Next, because at most 2− ϵ pairs of labels in S differ by a1 and 2a1 ̸∈ S,

(3.29)
t∑

i=1

max(|Ri| − a1, 0) ≤ 2− ϵ,

from which it follows that

(3.30) |S| =
t∑

i=1

|Ri| ≤ t · a1 + 2− ϵ.

Therefore, from Equations (3.27) and (3.28), |S| = n ≤ a1(an − 2n+ 7− µ) + 2− ϵ. □
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Next, we use the labels not in S ∪ (T \M) to find labels in S.

Proposition 3.9. If t /∈ S and t /∈ T \ M , then t + a1 ∈ S. In addition, if t > 2a1 and
t− a1 /∈ T \M , then t− a1 ∈ S.

Proof. First, if t+a1 /∈ S, then t /∈ M , from which t ∈ T \M . Next, if t > 2a1 and t−a1 /∈ S,
then from S ⊔ T = [a1, an], it holds that t − a1 ∈ T . Now, because t /∈ S, it holds that
t− a1 /∈ M by the definition of M . Therefore, t− a1 ∈ T \M , a contradiction. □

Next, we show that if spum(Pn) = 2n− 2 and n ≥ 13, then {a1, 2a1} ⊆ L.

Lemma 3.10. If spum(Pn) = 2n− 2 for n ≥ 13, then {a1, 2a1} ⊆ L.

Proof. Suppose otherwise. From Corollary 3.5, m = k = 0. By Lemma 3.6, a1 ≤ 2. First,
if a1 = 2, then |S ∩ [2, 4]| = 2. Thus, because 2a1 = 4 /∈ S, we have a2 = 3. Then, because
an ≤ spum(Pn) = 2n− 2, by Lemma 3.8, n ≤ 12. Thus, a1 = 1.
Now, as m = 0, it holds that |S ∩ [1, 2]| = 1, so 2 ̸∈ S. As k = 0, it holds that T \M = ∅,

so by setting t = 2 in Proposition 3.9, a2 = 3. Next, from Lemma 3.4, 2n− 3 ≤ an ≤ 2n− 2.
However, if an = 2n− 3, then N(2n− 3) = ∅ as 2 ̸∈ S. Thus, an = 2n− 2.

Now, if 2n− 3 ∈ S, then because 2 ̸∈ S, the vertices {2n− 2, 1, 2n− 3} are a component
of G, so 2n− 3 ̸∈ S. Because k = 0, by setting t = 2n− 3 in Proposition 3.9, it holds that
2n−4 ∈ S. Now, if 4 or 2n−5 is in L, then {1, 3, 4, 2n−5, 2n−4, 2n−2}∩L is a component
of G, so {4, 2n − 5} ⊆ T . Now, by setting t = 4 (resp. 2n − 5) in Proposition 3.9, we have
5 ∈ S (resp. 2n− 6 ∈ S). Because {2, 4, 2n− 2, 2n− 4} ⊆ T , it holds that |N(2n− 6)| = 1.
However, the vertices 2n− 2 and 2n− 4 also have 1 neighbor. Thus, {a1, 2a1} ⊆ L. □

Now, from Lemma 3.10, we show that spum(Pn) ≥ 2n− 1.

Theorem 3.11. If n ≥ 8, then spum(Pn) ≥ 2n− 1.

Proof. Suppose otherwise. First, from Theorem 3.1, spum(Pn) = 2n−2. Then, by computer
search in Li [4] for odd 8 ≤ n ≤ 12, it follows that n ≥ 13. Now, as m ≥ −1, from
Corollary 3.5, k ≤ 1. By Lemma 3.6, a1 ≤ 3. However, from Lemma 3.10, 2a1 ∈ S. Thus,
2n− 2 = range(L) ≥ 3n− a1 − 11 by Corollary 3.3, which implies n ≤ a1 + 9 ≤ 12. □

3.3. The inequality spum(Pn) ≥ 2n for odd n ≥ 9. We now show that spum(Pn) ≥ 2n
for odd n ≥ 9. First, assign φ : [n] → {0, 1} such that

φ(i) =

{
1 if ai ≥ 8 and bi−1 = bi−2 = bi−3 = 2

0 otherwise.

Next, we define for labels ai in L

st(ai) = ai − 2
i−1∑
j=1

φ(j).

Note that st(ai) is weakly increasing in i. Next, we define the set st(L)

st(L) = {st(ai)|φ(i) = 0}.
Note that each st(ai) for i such that φ(i) = 0 are distinct. The following proposition follows
immediately from the definitions.

Proposition 3.12. If st(ai) < st(aj) are consecutive in st(L) for i ≥ 2, then st(aj)−st(ai) =
bj−1.
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Proof. If j = i + 1, it holds that st(aj) − st(ai) = ai+1 − ai − 2φ(i) = bi. Otherwise, if
j ̸= i + 1, then because st(aℓ) /∈ st(L) and φ(ℓ) = 1 for i ≤ ℓ − 1 ≤ j, we have bℓ = 2 for
i− 2 ≤ ℓ ≤ j − 2. In addition, because φ(i + 1) = 1 and φ(i) = 0, it follows that ai−3 ̸= 2.

Thus, φ(i− 1) = 0, and st(aj)− st(ai) = bj−1 + 2 · (j − i)− 2
∑j−1

ℓ=i−1 φ(ℓ) = bj−1. □

We now show that number of pairs of labels that differ by 3 in L is at least that of st(L).

Proposition 3.13. |NL(3)| ≥ |Nst(L)(3)|.

Proof. We show that if st(ai)− 3 ∈ Nst(L)(3), then ai− 3 ∈ NL(3). Suppose that there exists
some aj such that st(ai) = st(aj) + 3. First, from Proposition 3.12, if [st(aj) + 1, st(aj) +
2]∩ st(L) = ∅, then bi−1 = 3. Thus, ai − 3 ∈ NL(3). Next, if [st(aj) + 1, st(aj) + 2]∩ st(L) =
st(aj) + 1 = st(aν) with φ(ν) = 0, then bi−1 = 2 and bν−1 = 1 from Proposition 3.12. Now,
because bν−1 = 1, it holds that if i ̸= ν + 1, then φ(ν + 1) = 1. Thus, i = ν + 1, so
aν−1 = aj − 3.
Now, suppose [st(aj)+1, st(aj)+2]∩st(L) = st(aj)+2 = st(aν) with φ(ν) = 0. Then, from

Proposition 3.12, bi−1 = 1 and bν−1 = 2. If i = ν + 1, then either aν−1 = ai − 3 or bi−2 = 2
because φ(i − 1) = 1. Thus, ai−2 = aj − 3. Finally, suppose that [st(aj) + 1, st(aj) + 2] ⊆
st(L). If st(aj) + 1 = st(aν), and st(aj) + 2 = st(aℓ) with φ(ν) = φ(ℓ) = 0, then from
Proposition 3.12, bi−1 = bℓ−1 = bν−1 = 1. If i ̸= ℓ + 1, then φ(ℓ + 1) = 1 because bℓ−1 = 1.
Thus, i = ℓ + 1. Similarly, ℓ = ν + 1. Thus, because bi−1 = bℓ−1 = bν−1 = 1, we have
ai = aν−1 + 3. □

Next, we prove that if range(L) = 2n− 1 and a1 = 1, then 2 ∈ S.

Lemma 3.14. If range(L) = 2n− 1 for odd n ≥ 17 and a1 = 1, then [1, 2] ⊆ S.

Proof. Suppose otherwise. Thenm = 0. Now, from Corollary 3.5, k = |T \M | ≤ 1. If a2 ≥ 5,
then {2, 3, 4} ⊆ T , which implies that {2, 3} ⊆ T \M . It follows that a2 ∈ {3, 4}. Suppose
that a2 = 4. Then 2 ∈ T \M , so k = 1. From Lemma 3.4, an ∈ {2n− 2, 2n− 1}. Because
2 ∈ T and an+1 = 2n− 1+ a1 = 2n, if an = 2n− 2, then N(2n− 2) = ∅. Thus, an = 2n− 1.
Now, as 2 ̸∈ S and |N(1)| ≤ 2, if 2n − 2 ∈ S, then the labels {2n − 1, 1, 2n − 2} form a
component. Therefore, 2n − 2 ∈ T . By setting t = 2n − 2 in Proposition 3.9, 2n − 3 ∈ S.
However, if {2, 3, 2n− 2} ⊆ T , then N(2n− 3) = ∅. Thus, a2 = 3.

Now, from Lemma 3.4, an ≥ 2n − 3. Because 2 ∈ T and an+1 = range(L) + a1 = 2n, if
an = 2n − 2, then N(2n − 2) = ∅. Thus, an ∈ {2n − 3, 2n − 1}. Furthermore, if bi ≥ 3,
then [ai + 1, ai + 2] ⊆ T and ai + 1 ∈ T \ M . Therefore, bi ≥ 3 for at most one value of
i ∈ [1, n − 1]. In addition, because

∑n
i=1 bi = range(L) = 2n − 1, it follows that c1 = 2,

c2 = n − 3, and c3 = 1. Therefore, for n ≥ 10, there exists a sequence bi = bi+1 = bi+2 = 2
with ai+2 ≥ 8. Thus, |st(L)| ≤ 9. From Proposition 3.13, we must have Nst(L)(3) ≤ 2. In
addition, if {max(st(L))−2,max(st(L))−1} ⊆ st(L), then {1,max(L)−2,max(L)−1} ⊆ L
is a component. Thus, {max(st(L)) − 2,max(st(L)) − 1} ̸⊆ st(L). Now, Table 1 shows the
exhaustive list of the possible st(L) found by computer search given the constraints

(1) |st(L)| ≤ 9,
(2) Nst(L)(3) ≤ 2, and
(3) {max(st(L))− 2,max(st(L))− 1} ̸⊆ st(L)

and why each is not a sum graph labeling of Pn. Therefore, [1, 2] ⊆ S. □

Now, we prove the analog of Lemma 3.14 for a1 ̸= 1.
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st(L) Why Pn is not a sum graph of L
{1, 3, 5, 6, 7, 9, 11, 14} {1, 5, 6} is a cycle.
{1, 3, 6, 7, 9, 11, 12} N(2n− 5) = ∅
{1, 3, 4, 6, 8, 11, 12} {6, 8, 10} ⊆ N(4) for n ≥ 9.

{1, 3, 5, 6, 9, 11, 13, 14} {2n− 1, 1, 5, 2n− 5} is a component.
{1, 3, 5, 6, 8, 10, 13, 14} {1, 3, 2n− 6} ⊆ N(5)
{1, 3, 5, 7, 8, 9, 12} |N(n)| = |N(n− 2)| = |N(2n− 1)| = 1 for odd n.
{1, 3, 5, 7, 8, 11, 12} |N(n)| = |N(n− 2)| = |N(2n− 1)| = 1 for odd n.

Table 1. Remaining possible st(L) in the proof of Lemma 3.14

Lemma 3.15. If range(L) = 2n− 1 for odd n ≥ 17 and a1 ̸= 1, then 2a1 ∈ S.

Proof. Suppose otherwise. Then from Corollary 3.5, k ≤ 1. Thus, a1 ∈ {2, 3}. First,
suppose that a1 = 3. Then, 1 ≤ |[an − 2, an − 1]∪ (T \M)| ≤ k by the definition of k. Thus,
m = 0 from Corollary 3.5, and so [3, 5] ⊆ S. Because an ≥ 2n − 2 from Lemma 3.4 and
an+1 = range(L) + 3 = 2n+ 2, it follows that N(an) ∩ {3, 4} ≠ ∅, so µ ≥ 1. If an = 2n− 1,
then ϵ = 1, and from Lemma 3.8, n ≤ 16. Thus, an = 2n− 2, so from Lemma 3.8, n ≤ 14.
Next, suppose that a1 = 2. First, if m = 1, then because {3, 4} ⊆ T , max(L) = 2n+1 and

N(an) ̸= ∅, from Lemma 3.4, an = 2n−1. Now, because N(2n−2) = ∅, then 2n−2 ∈ T \M .
Now, from Corollary 3.5, k = 0. Thus, m = 0 and [2, 3] ⊆ S, so n ≤ 14 from Lemma 3.8. □

Now, from Lemma 3.15, we show that spum(Pn) ≥ 2n for odd n.

Theorem 3.16. For odd n ≥ 9, it holds that spum(Pn) ≥ 2n.

Proof. Suppose otherwise. First, from Theorem 3.11, spum(Pn) = 2n − 1. From computer
search by Li [4], n ≥ 17. Now, because m ≥ −1, from Corollary 3.5, k ≤ 2. Then, from
Lemma 3.6, a1 ≤ 4. Furthermore, from Lemmas 3.14 and 3.15, it holds that 2a1 ∈ S, and thus
from Corollary 3.3, 2n−1 = range(L) ≥ 3n−a1−11, which implies that n ≤ a1+10 ≤ 14. □

3.4. The inequality spum(Pn) ≥ 2n+1 for odd n ≥ 9. We first show that if range(L) = 2n
and a1 = 1, then a2 ≤ 4.

Lemma 3.17. If range(L) = 2n for odd n ≥ 17, and a1 = 1, then a2 ≤ 4,

Proof. Suppose otherwise. Then m = 0. From Corollary 3.5, k = |T \ M | ≤ 2. Now, if
a2 ≥ 6, then {2, 3, 4, 5} ⊆ T , and thus, {2, 3, 4} ⊆ T \M . Therefore, a2 = 5.

As a result, {2, 3} ⊆ T \ M , so k = 2. From Lemma 3.4, an ≥ 2n − 1. If an = 2n − 1,
then N(2n − 1) = ∅, because 2 ∈ T and an+1 = range(L) + a1 = 2n + 1. Thus, an = 2n.
Now, if 2n − 1 ∈ S, then because 1 ∈ S and 2 ̸∈ S and |N(1)| ≤ 2, the vertices with
labels {2n, 1, 2n − 1} form a component. Therefore, 2n − 1 ∈ T . By setting t = 2n − 1 in
Proposition 3.9, 2n− 2 ∈ S. However, because {2, 3, 2n− 1} ⊆ T , it holds that N(2n− 2) =
∅. □

We now show the analog of Lemma 3.17 for a2 = 4.

Lemma 3.18. If range(L) = 2n for odd n ≥ 17 and a1 = 1, then a2 ̸= 4.

Proof. Suppose otherwise. Then, 2 ∈ T \M , so k ≥ 1. Now, from Lemma 3.4, an ≥ 2n− 2.
If an ∈ {2n − 2, 2n − 1}, then N(an) = ∅, because {2, 3} ⊆ T and an+1 = 2n + 1. Thus,
an = 2n.
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First, if 2n−1 ∈ S, then because 1 ∈ S and 2 ̸∈ S and |N(1)| ≤ 2, the vertices with labels
{2n, 1, 2n− 1} form a component. Therefore, 2n− 1 ∈ T . Furthermore, if 2n− 2 ∈ S, then
because {2, 3, 2n−1} ⊆ T , we have N(2n−2) = ∅, so 2n−2 ∈ T . Then, from Corollary 3.5,
k ≤ 2, so {2n− 2, 2} = T \M . Then, by setting t = 2n− 2 in Proposition 3.9, 2n− 3 ∈ S.

Now, if {5, 2n− 4}∩L ̸= ∅, then the vertices with labels in {1, 4, 5, 2n− 4, 2n− 3, 2n}∩S
form a component because |N(1)|, |N(4)| ≤ 2. Thus, because n ≥ 17, it must hold that
{5, 2n− 4} ∩ S = ∅. Now, setting t = 5 (resp. t = 2n− 4) in Proposition 3.9, we have 6 ∈ S
(resp. 2n − 5 ∈ S). But then, because {2, 3, 5, 2n − 4, 2n − 2, 2n − 1} ⊆ T , it holds that
|N(2n − 5)| = 1. Therefore, the vertices with labels 2n, 2n − 3, and 2n − 5 all have degree
1, a contradiction to G = Pn. □

We now show the analog of Lemma 3.17 for a2 = 3.

Lemma 3.19. If range(L) = 2n for odd n ≥ 17, and a1 = 1, then a2 ̸= 3.

Proof. Suppose otherwise. Then from Lemma 3.4, an ≥ 2n − 3. First, because |N(1)| ≤ 2,
then c1 ≤ 2. Then because

∑n
i=1 bi = range(L) = 2n, either

• c2 = n,
• c1 = c3 = 2, and c2 = n− 4,
• c1 = 2, c4 = 1, and c2 = n− 3, or
• c1 = 1, c2 = n− 2, and c3 = 1.

First, if c2 = n, then labels in L are odd, so G = In ̸= Pn. Now, because 2 ∈ T , we have
bn ̸= 2 and b1 ̸= 2, otherwise N(an) = ∅ and a2 = 2, respectively. Next, we show that if
c1 = 2, c4 = 1, and c2 = n− 3, and bn = 1, then bn−1 = 4. Suppose otherwise.

First, bn−1 ̸= 1, otherwise {2n, 1, 2n − 1} is a component. In addition, if bn−1 = 2, then
{4, 2n − 3} ∩ L = ∅, otherwise {1, 3, 4, 2n − 3, 2n − 2, 2n} ∩ S form a component, because
2 ∈ T . In addition, 2n−4 /∈ S, because otherwise max(|N(2n−4)|, |N(2n)|, |N(2n−2)|) ≤ 1.
Thus, {2n − 4, 2n − 3} ⊆ T , and it follows that bn−2 = 4 and an−2 = 2n − 6. Because
max(|N(2n)|, |N(2n − 2)|) ≤ 1, it holds that |N(2n − 6)| = 2, and {6, 7} ⊆ S. However,
a2 = 3, {6, 7} ⊆ S, c3 = 0, and c1 = 1. Therefore, bn−1 = 4.
Therefore, for n ≥ 14, there exists i such that bi = bi+1 = bi+2 = 2 with ai+3 ≥ 8.

Thus, |st(L)| ≤ 13. From Proposition 3.13, Nst(L)(3) ≤ 2. In addition, {max(st(L)) −
2,max(st(L)) − 1} ̸⊆ st(L), otherwise {max(L) − 2,max(L) − 1, 1} ⊆ L is a component.
Now, Table 2 shows the exhaustive list of the possible st(L) found by computer search given
the constraints

(1) |st(L)| ≤ 13,
(2) Nst(L)(3) ≤ 2, and
(3) {max(st(L))− 2,max(st(L))− 1} ̸⊆ st(L)

and why each is not a sum graph labeling of Pn. Therefore, [1, 2] ⊆ S. □

Now, Lemmas 3.17, 3.18, and 3.19 give the following corollary.

Corollary 3.20. If range(L) = 2n for odd n ≥ 17 and a1 = 1, then 2 ∈ S.

Now, we show the analog of Corollary 3.20 for a1 = 2.

Lemma 3.21. If range(L) = 2n for odd n ≥ 17 and a1 = 2, then 4 ∈ S.

Proof. Suppose otherwise. Because m ≥ 0, from Corollary 3.5, k ≤ 2. If a2 ≥ 6, then
m = 1 and {2, 3} ⊆ T \ M . Then, from Corollary 3.5, range(L) ≥ 2n + 1. Thus, because
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st(L) Why Pn is not a sum graph of L.
{1, 3, 4, 5, 7, 9, 13} {1, 3, 5} ⊆ N(4)
{1, 3, 4, 6, 8, 9, 13} |N(2n− 6)| = |N(2n− 4)| = |N(2n− 3)| = 1
{1, 3, 4, 6, 8, 11} {1, 3, 2n− 2} is a component.

{1, 3, 5, 6, 8, 10, 13} {1, 5, 2n− 4} is a component.
{1, 3, 5, 7, 8, 11} {1, 2n− 3} is a component.

{1, 3, 6, 7, 8, 10, 12, 15} N(2n− 4) = ∅
{1, 3, 6, 8, 10, 11, 12, 15} |N(2n− 4)| = |N(2n− 3)| = |N(2n− 2)| = 1
{1, 3, 5, 6, 7, 10, 12, 14, 17} |N(2n− 6)| = |N(2n− 4)| = |N(2n− 2)| = 1
{1, 3, 5, 7, 10, 11, 12, 15} {2n− 9, 2n− 7, 2n− 4} ⊆ N(5) for n ≥ 9.
{1, 3, 4, 6, 8, 12, 13} {1, 3, 2n} is a component.

{1, 3, 5, 6, 8, 10, 14, 15} {1, 3, 2n− 4} ⊆ N(5)
{1, 3, 5, 7, 8, 10, 12, 16, 17} |N(2n− 6)| = |N(2n− 4)| = |N(2n)| = 1
{1, 3, 5, 7, 8, 10, 14, 15} |N(2n− 6)| = |N(2n− 4)| = |N(2n)| = 1
{1, 3, 5, 7, 8, 12, 13} |N(3)| = |N(2n− 4)| = |N(2n)| = 1

{1, 3, 6, 7, 10, 12, 14, 15} N(2n− 4) = ∅
{1, 3, 6, 7, 9, 11, 14, 15} {1, 6, 2n− 5, 2n} is a component.
{1, 3, 6, 8, 10, 11, 14, 15} {1, 2n− 4, 2n} is a component.
{1, 3, 5, 6, 9, 11, 13, 16, 17} {5, 6, 2n− 5} is a cycle.
{1, 3, 5, 7, 10, 11, 14, 15} |N(n)| = |N(n− 2)| = |N(2n− 1)| = 1 for odd n.

Table 2. Remaining possible st(L) in the proof of Lemma 3.19

2a1 = 4 ∈ T , it holds that a2 ∈ {3, 5}. First, if a2 = 3, then because an ≤ range(L), from
Lemma 3.8, n ≤ 16. Thus, a2 = 5.

Because a2 = 5, it follows that m = 1, and because 3 ∈ T \M , from Corollary 3.5, k = 1.
From Lemma 3.4, 2n − 1 ≤ an ≤ 2n. Because 3 ∈ T , if 2n − 1 ∈ S, then N(2n − 1) = ∅.
Thus, because {2n − 1, 2} ⊆ T \ M , it follows that k ≥ 2. Finally, from Corollary 3.5,
range(L) ≥ 2n+ 1. Thus, 2a1 ∈ S. □

Next, we show the analog of Corollary 3.20 for a1 = 3.

Lemma 3.22. If spum(Pn) = 2n for odd n ≥ 17, and a1 = 3, then 2a1 ∈ S.

Proof. Suppose otherwise. Then, as m ≥ 0, it follows from Corollary 3.5 that k ≤ 2. Next,
from Lemma 3.4, 2n − 3 ≤ an ≤ 2n. But, because N(an) ̸= ∅ and an+1 = a1 + range(L) =
2n + 3, it holds that an ̸= 2n − 3. Next, because 6 ∈ T and an+1 = 2n + 3, if an = 2n − 2,
then from Lemma 3.4, {2n − 3} = T \ M , and m = 0. Thus, [3, 5] ⊆ S. In addition, by
setting t = 6 (resp. t = 2n−3, 2n−1) in Proposition 3.9, 9 ∈ S (resp. {2n−4, 2n−6} ⊆ S).
Because N(2n− 4) ̸= ∅, it holds that 7 ∈ S. Thus, {3, 5, 2n− 6} ⊆ N(4), so an ̸= 2n− 2.

Now, if an = 2n− 1 then 4 ∈ S, otherwise N(2n− 1) = ∅. In addition, {2n− 3} = T \M ,
otherwise N(2n− 3) = ∅. Because N(2n− 2) ̸= ∅, if 2n− 2 ∈ S, then 5 ∈ S. Therefore, if
{9, 2n−6}∩S ̸= ∅, then {4, 5, 2n−6, 2n−2, 2n−1} is a component. Thus, {9, 2n−6} ⊆ T ,
and {6, 2n−6, 2n−3} ⊆ T \M . Because k ≤ 2 from Corollary 3.5, we have that 2n−2 ∈ T .
Then from Lemma 3.4, {2n − 3, 2n − 2} = T \ M , and m = 0. Therefore, [3, 5] ⊆ S, and
{6, 2n− 5} ∩ T \M = ∅. Thus, by setting t = 6 (resp. t = 2n− 2) in Proposition 3.9, 9 ∈ S
(resp. 2n− 5 ∈ S) which implies {5, 2n− 5, 2n− 1} ⊆ N(4). Therefore, an ̸= 2n− 1.
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Therefore, an = 2n. If an−1 = 2n−1 then 4 ∈ S, as otherwise N(2n−1) = ∅. Thus, µ = 2,
and ϵ = 1. Now, because n ≥ 17 and from Lemma 3.8, an−1 ≤ 2n − 2. If an−1 ≤ 2n − 3,
then from Lemma 3.4, {2n − 2, 2n − 1} = T \ M . Next, because m = 0, it follows that
[3, 5] ⊆ S. Thus, by setting t = 6 (resp. t = 2n − 2, 2n − 1) in Proposition 3.9, 9 ∈ S
(resp. {2n − 5, 2n − 4} ⊆ S). Now, if 7 ∈ S (resp. 8 ∈ S), then {3, 5, 2n − 4} ⊆ N(4)
(resp. {3, 4, 2n − 5} ⊆ N(5)). Therefore, {7, 8} ⊆ T , which implies {2n − 4, 4, 5, 2n − 5} is
a component, so an−1 = 2n− 2. Now, because N(2n− 2) ̸= ∅, it holds that 5 ∈ S. Next, if
2n−4 ∈ S, because |N(2n−2)| = |N(2n)| = 1, it follows that |N(2n−4)| = 2, which implies
{4, 7} ⊆ S. Now, because N(4) = {3, 2n − 4}, it holds that 9 ∈ T , and from Lemma 3.4,
{6, 2n− 1} = T \M . Thus, because 9 /∈ T \M , by setting t = 9 in Proposition 3.9, 12 ∈ S.
Now, because |N(2n − 2)| = |N(2n)| = 1, it holds that {3, 4, 5, 7, 2n − 4, 2n − 2, 2n} is a
component. Thus, 2n− 4 ∈ T , and from Lemma 3.4, {2n− 4, 2n− 1} = T \M , and m = 0,
so [3, 5] ⊆ S. Thus, because 6, 2n − 7 /∈ T \ M , by setting t = 6 (resp. t = 2n − 4) in
Proposition 3.9, 9 ∈ S (resp. 2n − 7 ∈ S). Therefore, {4, 2n − 7, 2n − 2} ⊆ N(5). Thus,
because ∆ = 2, it holds that 2a1 ∈ S. □

Now, we show the analog of Corollary 3.20 for a1 ≥ 4.

Lemma 3.23. If spum(Pn) = 2n and a1 ≥ 4, then 2a1 ∈ S.

Proof. Suppose otherwise. Then from Corollary 3.5 and Lemma 3.6, a1 = 4, k = 2 and
m = 0. Therefore, [4, 7] ⊆ S. Because |[an − 3, an − 1]∪ (T \M)| ≥ 2 by the definition of k,
it holds that T \M ⊆ [an − 3, an − 1]. Thus, by setting t = 8 /∈ T \M in Proposition 3.9,
12 ∈ S. In addition, an+1 = a1+spum(Pn) = 2n+4, and from Lemma 3.4, an ∈ {2n−1, 2n}.

If an = 2n − 1, then {7, 2n − 1} = N(5). If 2n − 3 ∈ S, then because 12 ∈ S, it follows
that {2n − 1, 5, 7, 2n − 3} is a component. If 2n − 4 ∈ S, then because 8 ∈ S, it follows
that N(2n− 4) = ∅. Thus, from Corollary 3.5, T \M = {2n− 4, 2n− 3}. Now, by setting
t = 2n+2 in Proposition 3.9, 2n−2 ∈ S. If 13 ∈ S, then {2n, 5, 7, 6, 2n−1} is a component.
Therefore, 13 ∈ T . Furthermore, because 4 /∈ N(5), it follows that 9 ∈ T \M , so an = 2n.
Now, by the definition of k, |[an − 3, an − 1] ∩ S| = 1. If 2n − 3 ∈ S, then 9 /∈ S as

otherwise, {2n, 4, 5, 7, 2n − 3} is a component. Thus, 9 ∈ T , and by setting t = 9 /∈ T \M
in Proposition 3.9, 13 ∈ S. Then, {5, 6, 2n− 3} ⊆ N(7), so 2n− 3 /∈ S. If 2n− 2 ∈ S, then
by setting t = 2n − 1 /∈ T \M in Proposition 3.9, an − 5 ∈ S. Thus, {7, 2n − 5} = N(5).
Because 4 ∈ S, but 4 /∈ N(5), it holds that 9 ∈ T . But then because {9, 2n − 1} ⊆ T , it
holds that |N(2n− 5)| = |N(2n− 2)| = |N(2n)| = 1, so 2n− 2 /∈ S. Therefore, 2n− 5 ∈ S,
and so |N(5)| = 2 implies that an−6 ∈ T \M , a contradiction with T \M ⊆ [an−3, an−1].
Thus, 2a1 ∈ S. □

Finally, from Corollary 3.20 and Lemmas 3.21, 3.22, and 3.23, we prove Theorem 1.1.

Proof of Theorem 1.1. The statement is true for n ≤ 15 from computer search by Li [4]. From
Theorem 3.16, spum(Pn) ≥ 2n for odd n ≥ 9. Now, assume for the sake of contradiction
that range(L) = 2n for odd n ≥ 17. First, because m ≥ −1, from Corollary 3.5, k ≤ 3.
Then from Lemma 3.6, a1 ≤ 5. Furthermore, from Corollary 3.20 and Lemmas 3.21, 3.22,
and 3.23, 2a1 ∈ S. Thus, from Corollary 3.3, 2n = range(L) ≥ 3n− a1 − 11, which implies
that n ≤ a1 + 11 ≤ 16. Lastly, from Theorem 3.1, spum(Pn) ≤ 2n+ 1. □
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4. The Integral Sum-Diameter of Paths

In this section, we prove Theorem 1.4, from which Theorem 1.2 follows. Currently, the
best known lower bound on isd(Pn) is by Singla, Tiwari, and Tripathi [5], and the best known
upper bound is by Li [4].

Theorem 4.1 (Theorem 2.2 of [5] and Proposition 9.6 of [4]). For n ≥ 3, it holds that

2n− 5 ≤ isd(Pn) ≤

{
2n− 2 if n is even

2n− 3 if n is odd
.

For the rest of this section, let G∪It be an integral sum graph of L that satisfies range(L) =
isd(G). Let L = {a1, a2, . . . , an+t} with a1 < · · · < ar−1 < 0 < ar < · · · < an+t, and let
S ⊆ L be the labels of the vertices of G. Additionally, because −L is still an integral sum
graph labeling of G∪ It, we assume without loss of generality that ar ≤ −ar−1. Now, define
bi = ai+1−ai for 1 ≤ i ≤ n+ t−1, and cℓ be the number of 1 ≤ i ≤ n+ t−1 such that bi = ℓ.
For each 1 ≤ i ≤ n + t, say that ai and ai+1 are consecutive. Finally, denote NL(ℓ) = N(ℓ)
unless otherwise specified.

Next, we borrow notations from [5], and let

S1 = {a1, a2, . . . , ar−1},
S2 = {ar, ar+2, . . . , an+t},

S3 = S1 + ar, and

S4 = S2 − ar.

In addition, for this section, let T = [a1, an+t] \ L and M = S3 ∪ S4. Finally, let η = 1 if
ar−1 = −ar, and η = 0 otherwise. Similarly, let ξ = 1 if 2ar ∈ L, and ξ = 0 otherwise.

4.1. The inequality isd(Pn) ≥ 2n− 4 for n ≥ 8. First, we set a lower bound on |T \M |.

Lemma 4.2. It holds that |([ar−1 − ar + 1,−ar − 1] ∪ [ar, 2ar − 1]) \ L| ≤ |T \M |.

Proof. First, because S3 = S1 + ar = M ∩ Z≤0,

|[ar−1 − ar + 1,−ar − 1] \ S1| = |[ar−1 + 1,−1] \ S3| = |[ar−1 + 1,−1] \M |.(4.1)

Next, because S4 = S2 − ar = M ∩ Z≥0,

|[ar, 2ar − 1] \ S2| = |[0, ar−1 − 1] \ S4| = |[0, ar] \M |.(4.2)

Now, from Equations (4.1) and (4.2), it holds that

|([ar−1 − ar + 1,−ar − 1] ∪ [ar, 2ar − 1]) \ L| ≤ |[−ar−1 + 1, ar − 1] \M |.(4.3)

Now, by the definitions of ar−1 and ar,

(4.4) [ar−1 + 1, ar − 1] \M ⊆ T \M.

It follows from Equation (4.3) that the lemma holds. □

Now, we generalize Theorem 2.2 of [5].

Proposition 4.3. It holds that |S1 ∩ S3|+ |S2 ∩ S4| = N(ar) + ξ.
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Proof. First, because ar + ar−1 ≤ 0,

(4.5) N(ar) ∩ S1 = S1 ∩ S3.

Similarly, it holds that

(4.6) N(ar) ∩ S2 = (S2 ∩ S4) \ {ar}.
Finally, as ar ∈ S2 ∩ S4 if and only if 2ar ∈ S2, it holds that

(4.7) |(S2 ∩ S4) \ {ar}| = |S2 ∩ S4| − ξ.

Now, because S1 ⊔ S2 = L, from Equations (4.5), (4.6), and (4.7),

□(4.8) |N(ar)| = |S1 ∩ S3|+ |S2 ∩ S4| − ξ.

Next, we strengthen Proposition 4.3.

Proposition 4.4. It holds that
4∑

i=1

|Si| − |
⋃4

i=1 Si| = |N(ar)|+ ξ + η.

Proof. First, S3 ∩ S4 = {0} if and only if ar−1 = −ar. Thus, it holds that

(4.9) |S3 ∩ S4| = η.

Next, because ar−1 + ar ≤ 0, it follows from the definitions of S1, S2, S3, S4 that

(4.10) S1 ∩ S4 = ∅, S2 ∩ S3 = ∅, S1 ∩ S2 = ∅.
Thus, from Proposition 4.3 and Equations (4.9) and (4.10),

□(4.11)
4∑

i=1

|Si| − |
4⋃

i=1

Si| = |S1 ∩ S3|+ |S2 ∩ S4|+ |S3 ∩ S4| = |N(ar)|+ ξ + η.

Now, we use Proposition 4.4 to refine Theorem 2.2 of [5] to isd(Pn).

Lemma 4.5. It holds that isd(Pn) = 2(n+ t) + |T \M | − |N(ar)| − ξ − η − 1.

Proof. First, because
⋃4

i=1 Si = (S1 ⊔ S2) ∪ (S3 ∪ S4) = L ∪M , it holds that

(4.12) [a1, an+t] \
4⋃

i=1

Si = [a1, an+t] \ (L ∪M) = T \M.

Now, because
⋃4

i=1 Si ⊆ [a1, an+t], from Equation (4.12),

(4.13) |[a1, an+t]| − |
4⋃

i=1

Si| = |T \M |.

Therefore, from Equation (4.13) and Proposition 4.4, it holds that

isd(Pn) = an+t − a1 = |[a1, an+t]| − 1 = |
4⋃

i=1

Si|+ |T \M | − 1

=
4∑

i=1

|Si|+ |T \M | − |N(ar)| − ξ − η − 1(4.14)

= 2(n+ t) + |T \M | − |N(ar)| − ξ − η − 1. □

If isd(Pn) = 2n− 5, then Lemma 4.5 results in the following corollary.
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Corollary 4.6. If isd(Pn) = 2n− 5, then t = 0, T ⊆ M , |N(ar)| = 2, and ξ = η = 1.

Next, we show that if [a, b] and [c, d] are disjoint intervals that share sufficiently many
elements with L, then another interval is disjoint from L. Let τ = |([a, b] ⊔ [c, d]) \ L|.

Lemma 4.7. If [a, b] and [c, d] are disjoint intervals such that min(b−a, d− c) ≥ 2+ τ , then

([2 + τ + a− d,−2− τ + b− c] ∪ [2 + τ + c− b, d− a− 2− τ ]) ∩ L = ∅.

Proof. We first show that [2 + τ + a− d,−2− τ + b− c]∩L = ∅. Suppose otherwise, and let
ℓ = 2 + τ + a− d+ k ∈ [2 + τ + a− d,−2− τ + b− c] ∩ L. Because ℓ ≤ −2− τ + b− c,

(4.15) 0 ≤ k ≤ d− c+ b− a− 4− 2τ.

Consider ([c, d] + ℓ) ∩ [a, b] = [c+ ℓ, d+ ℓ] ∩ [a, b]. From Equation (4.15),

c+ ℓ = 2 + τ + a+ c− d+ k ≤ b− 2− τ, and(4.16)

d+ ℓ = 2 + τ + a+ k ≥ a+ 2 + τ.(4.17)

Thus, from Equations 4.16 and 4.17, either [b−2−τ, b] ⊆ ([c, d]+ℓ), or [a, a+2+τ ] ⊆ [c, d]+ℓ,
or [c, d] + ℓ ⊆ [a, b]. Then

(4.18) |[a, b] ∩ ([c, d] + ℓ)| ≥ 3 + τ.

Now, because |([a, b] ∪ [c, d]) \ L| ≤ τ , and if {t, t + ℓ} ⊆ L then t ∈ N(ℓ) from Equa-
tion (4.18), it holds that N(ℓ) ≥ 3, a contradiction as G = Pn. Lastly, swapping [a, b] and
[c, d] gives [2 + τ + a− d,−2− τ + b− c] ∩ L = ∅. □

We now show that if T \M , and {−2ar,−ar, ar, 2ar} ⊆ L, then ar = 1.

Lemma 4.8. If T ⊆ M, ξ = η = 1, t ≤ 1, −2ar ∈ L, and n ≥ 9, then ar = 1.

Proof. Because Pn is a integral sum graph of −L, assume without loss of generality that
an+t ≥ −a1. Now, because T ⊆ M , −2ar ∈ L, and from Lemma 4.2,

(4.19) [−2ar,−ar] ∪ [ar, 2ar] ⊆ L.

Next, because t ≤ 1, we have {2ar − 1,−2ar + 1} ∩ S ≥ 1. Thus, because N(2ar − 1) ̸= ∅
or N(−2ar + 1) ̸= ∅, and an+t ≥ −a1, from Equation (4.19), an ≥ 3ar − 1.
Now, because an ≥ 3ar − 1 ≥ 4ar − 2 for ar ≥ 3, by applying Lemma 4.7 on intervals

[−2ar,−ar] and [ar, 2ar], it holds that

(4.20) [2ar + 2, 4ar − 2] ⊆ T.

Thus, if ar ≥ 4, then {2ar + 2, 3ar + 2} ⊆ T , so 2ar ∈ T \M . Thus, ar ≤ 3.
Now, if ar = 3, because an ≥ 3ar − 1 = 8, and setting ar = 3 in Equation (4.20) implies

[8, 10] ⊆ T , we have an ≥ 11. Thus, because {7, 8} ∩ T \M = ∅, and [8, 10] ⊆ T , we have
{7, 11} ⊆ L. But,by Equation (4.19), {−3,−4, 4} ⊆ N(7). Thus, ar ̸= 3.
Finally, if ar = 2, by applying Lemma 4.7 on intervals [−4,−2] and [2, 4], it follows that

{−6, 6} ∩ L = ∅. Now, because n ≥ 9, and an ≥ −a1, it follows that an ≥ 7. Thus,
6 ∈ T ⊆ M , which implies 8 ∈ L. Now, if 7 ∈ L then N(−4) = {2, 7, 8}. Thus, 7 ∈ T .
However, if 5 ∈ L, then {−3,−2, 3} ⊆ N(5). Thus, 5 ∈ T \M . Therefore, ar = 1. □

We now show that if isd(Pn) = 2n− 5 and n ≥ 11, then ar = 1.

Corollary 4.9. If isd(Pn) = 2n− 5 for n ≥ 9, then ar = 1.
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Proof. Because Pn is a integral sum graph of −L, by applying Corollary 4.6 to L and −L,
we have ξ = η = 1, T ⊆ M , t = 0, and −2ar ∈ L. Thus, by Lemma 4.8, ar = 1. □

Now, we bound isd(Pn) from below assuming ar = 1, ar−1 + ar = 0, and 2ar ∈ L.

Lemma 4.10. If T ⊆ M and ar = ξ = η = 1, then range(L) ≥ 3n− 12.

Proof. Because ar = ξ = 1, it follows that {1, 2} ⊆ L. Now, if i ̸= r, and bi = 1, then
ai ∈ N(1). Thus, c1 ≤ 3 because |N(1)| ≤ 2.
Likewise, if bi = 2 and i ̸= r + 1, then ai ∈ N(2). Thus, c2 ≤ 3, because |N(2)| ≤ 2.

Therefore,

□(4.21) range(L) =
n+t−1∑
i=1

bi ≥ c1 · 1 + c2 · 2 + (n+ t− 1− c1 − c2) · 3 ≥ 3n− 12.

We now use Lemmas 4.9 and 4.10 to show that isd(Pn) ≥ 2n− 4 when n ≥ 8.

Lemma 4.11. If n ≥ 8, then isd(Pn) ≥ 2n− 4.

Proof. Suppose otherwise. Then range(L) = 2n− 5 by Theorem 4.1. First, isd(Pn) ≥ 2n− 4
by exhaustive search for n = 8. Next, if n ≥ 9, then ar = ξ = η = 1 from Corollary 4.6 and
Corollary 4.9. Thus, range(L) ≥ 3n− 12 > 2n− 5 from Lemma 4.10. □

4.2. The inequality isd(Pn) ≥ 2n− 3 for n ≥ 8. Now, we state a corollary of Lemma 4.5
if isd(Pn) = 2n− 4.

Corollary 4.12. If isd(Pn) = 2n− 4 and n ≥ 9, then t = 0, and |T \M | = ξ + η − 1.

Proof. From Lemma 4.5, if isd(Pn) = 2n−4, then 2t+ |T \M | ≥ |N(ar)|+ξ+η−3. Because
max(ξ, η) ≤ 1, and |N(ar)| ≤ 2, it holds that t = 0. Now, if |N(ar)| ≤ 1, then T ⊆ M and
ξ = η = 1. Thus, from Lemma 4.8 and Lemma 4.10, ar = 1 and range(L) ≥ 3n−12 > 2n−4,
because n ≥ 9. Thus, |N(ar)| = 2, and |T \M | = ξ + η − 1 from Lemma 4.5. □

Now, let k = |([−2ar,−ar] ∪ [ar, 2ar]) ∩ T |. In addition, let

J1 = ([a1,−2ar − 1] ∩ L) + 2ar, and

J2 = ([2ar + 1, an+t] ∩ L)− 2ar.

We now prove the analog of of Corollary 3.3 for isd(Pn).

Lemma 4.13. If −2ar ∈ L or 2ar ∈ L, then range(L) ≥ 3n+ 3t+ k − 2ar − 11.

Proof. First, J1 ∩ J2 = ∅. Additionally, because S ⊔ T = [a1, an],

|J1 ∪ J2| = |([a1,−2ar − 1] ∪ [2ar + 1, an+t]) ∩ L|
= n+ t− |([−2ar,−ar] ∪ [ar, 2ar]) ∩ L|(4.22)

= n+ t− 2(ar + 1) + k.

Now, because (S3 ∩ S1)− ar ⊆ N(ar), and S4 ∩ S2 ⊆ N(ar) ∪ {ar}, but (S1 − ar) ∩ S2 = ∅,
(4.23) |(S3 ∩ S1)|+ |S4 ∩ S2| ≤ |N(ar) ∪ {ar}| ≤ 3.

First, if 2ar ∈ L, then (J1∩S1)−2ar ⊆ N(2ar)\{−ar} and J2∩S2 ⊆ N(2ar)∪{2ar}. Next,
because (S1 − 2ar) ∩ S2 ̸= ∅ and −ar ∈ N(2ar) if and only if η = 1,

(4.24) |(J1 ∩ S1)|+ |J2 ∩ S2| ≤ |N(ar) ∪ {2ar} \ {−ar}| ≤ 3− η.
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Equivalently, if −2ar ∈ L, then J1 ∩S1 ⊆ N(−2ar)∪ {−2ar} and J2 ∩S2 ⊆ N(−2ar) \ {ar},
but ar ∈ N(−2ar) if and only if η = 1. Thus, Equation (4.24) holds.
Now, because S1 ⊔ S2 ⊔ T = [a1, an+t], and S3 ∩ S4 ⊆ {0}, from Equation (4.23),

|T ∩ (S3 ∪ S4)| = |S3 ∪ S4| − |S ∩ (S3 ∪ S4)|
≥ (n+ t− η)− |(S3 ∩ S1)| − |(S4 ∩ S2)|(4.25)

≥ (n+ t− η)− 3.

Likewise, because S1⊔S2⊔T = [a1, an+t] and J1∩J2 = ∅, from Equations (4.22) and (4.24),

|T ∩ (J1 ∪ J2)| = |J1 ∪ J2| − |S ∩ (J1 ∪ J2)|
= n+ t− 2(ar + 1) + k − |S1 ∩ J1| − |S2 ∩ J2|(4.26)

≥ n+ t− 2ar + k − 5 + η.

Additionally, because (J1 ∩ S3) ⊔ (J2 ∩ S4) ⊆ N(ar), it follows that

(4.27) |J1 ∩ S3|+ |J2 ∩ S4| ≤ |N(ar)| ≤ 2.

Lastly, because (J1 ∩ S3) ∩ (J2 ∩ S4) = J1 ∩ J2 = ∅, from Equations (4.25), (4.26), and
(4.27),

|T | ≥ |T ∩ (S3 ∪ S4 ∪ J1 ∪ J2)|
= |T ∩ (S3 ∪ S4)|+ |T ∩ (J1 ∪ J2)| − |T ∩ (S3 ∪ S4) ∩ (J1 ∪ J2)|
≥ |T ∩ (S3 ∪ S4)|+ |T ∩ (J1 ∪ J2)| − |(S3 ∪ S4) ∩ (J1 ∪ J2)|(4.28)

≥ (n+ t− η − 3) + (n+ t− 2ar + k − 5 + η)− (|J1 ∩ S3|+ |J2 ∩ S4|)
≥ 2n+ 2t+ k − 8− 2ar − 2 = 2n+ 2t+ k − 2ar − 10.

Because |T | = range(L)+1−n−t, from Equation (4.28), range(L) ≥ 3n+3t+k−2ar−11. □

Now, we strengthen Corollary 4.12.

Lemma 4.14. If isd(Pn) = 2n− 4 and n ≥ 13, then T ⊆ M .

Proof. Suppose otherwise. Because Pn is a integral sum graph of −L, by applying Corol-
lary 4.12 on L and −L, we have |T \M | = ξ = η = 1, t = 0, and −2ar ∈ L. Additionally,
assume without loss of generality that an ≥ |a1|. First, from Lemma 4.2,

(4.29) |([−2ar,−ar] ∪ [ar, 2ar]) \ L| = k ≤ 1.

Thus, |{2ar−1,−2ar+1}∩S| ≥ 1. Without loss of generality, let 2ar−1 ∈ L. Therefore,
because N(2ar − 1) ̸= ∅, and an ≥ |a1|, we have an ≥ 3ar − 1.
Now, suppose that k = 0. Because an ≥ 3ar − 1 ≥ 2ar + 2 for ar ≥ 3, by setting

[a, b] = [−2ar,−ar] and [c, d] = [ar, 2ar] in Lemma 4.7,

(4.30) [2ar + 2, 4ar − 2] ⊆ T.

If ar ≥ 5, then from Equation (4.30), {2ar + 2, 2ar + 3} ⊆ T \M , so ar ≤ 4.
If ar = 4, from Equation (4.30), [10, 14] ⊆ T . Thus, T \M = {10} because |T \M | = 1.

Now, {9, 15} ⊆ L because {9, 11} ∩ T \M = ∅. Then {−8,−7,−6} ⊆ N(15). Thus, ar ≤ 3.
If ar = 3, from Equation (4.30), [8, 10] ⊆ T . First, if 7 ∈ L, then N(7) = {−3,−4} because

∆ = 2. Thus, [8, 13] ⊆ T because [4, 6] ∩ N(7) = ∅ and [8, 10] ⊆ T . Thus, {8, 9} ⊆ T \M .
So, 7 ∈ T . Now, because |T \ M | = 1 and 10 ∈ T , it follows that T \ M = {7}. Thus,
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[11, 13] ⊆ L because [8, 10] ∩ T \ M = ∅. As a result, {3, 11, 12} ⊆ N(−6). Thus, ar ≤ 2.
Now, because ξ = 1 and ar ≤ 2, from Lemma 4.13, range(L) = 2n− 4 ≥ 3n− 16, so n ≤ 12.

Next, suppose that k = 1. First, because |T \M | = 1, we have T \M ⊆ [−ar, ar]. Now, if
n ≥ 4, then because an ≥ 3ar − 1 ≥ 2ar +3, by Lemma 4.7 on [−2ar,−ar] and [ar, 2ar] with
τ = 1, we have [2ar+3, 4ar−3] ⊆ T . Now, because {ar+3, 2ar+3, 3ar−3, 4ar−3}∩T \M = ∅,
it must be that {ar +3, 3ar +3, 3ar − 3, 5ar − 3} ⊆ L, and {ar, 3ar +3, 5ar − 3} ⊆ N(−2ar).
Thus, n ≤ 3, and it follows that n ≤ 12 by Lemma 4.13, because k = ξ = 1. □

We now further strengthen Corollary 4.12 with the following result:

Lemma 4.15. If isd(Pn) = 2n− 4 for n ≥ 13, then η = 1 and ξ = 0.

Proof. Suppose otherwise. Then, from Corollary 4.12 and Lemma 4.14, T ⊆ M , ξ = 1, and
t = η = 0. Then ar−1 < −ar ≤ −1. Thus, −1 ∈ T ⊆ M , which implies ar−1 = −(ar + 1).
Therefore, as T ⊆ M , from Lemma 4.2,

(4.31) [−2ar,−ar − 1] ∪ [ar, 2ar] ⊆ L.

Because t = 0, it follows that N(2ar − 1) ̸= ∅. Therefore, a1 ≤ −3ar or an ≥ 3ar − 1
or both. First if an ≥ 3ar − 1, then from Equation (4.31) and Lemma 4.7 with intervals
[−2ar,−ar], and [ar, 2ar] and τ = 0, it holds that [2ar + 3, 4ar − 2] ∩ L = ∅.
Now, if ar ≥ 4, then an ≥ 3ar−1 ≥ 2ar+3, so [2ar+3, 4ar−2] ⊆ T . Then, because T ⊆ M ,

we have {ar+3, 3ar+3, 3ar−3, 5ar−3, 3ar−2, 5ar−2} ⊆ L. Thus, {ar+3, 3ar−3, 3ar−2} ⊆
N(2ar). Therefore, ar ≤ 3, so by Lemma 4.13, n ≤ 12 because k = 1 and ar−1 = −(ar + 1).
As a result, a1 ≤ −3ar.
Now, if ar ≥ 4 then a1 ≤ −3ar ≤ −2ar + 3, so from Equation (4.31) and Lemma 4.7 with

intervals [−2ar,−ar]∪ [ar, 2ar] and τ = 0, we have [−4ar +2,−2ar − 3] ⊆ T . Then, because
T ⊆ M , then {ar + 3, 3ar − 3, 3ar − 2} ⊆ N(2ar). Therefore, ar ≤ 3, so by Lemma 4.13,
n ≤ 12, because k = 1 and ar−1 = −(ar + 1). □

Lemmas 4.2, 4.14, and 4.15, result in the following corollary.

Corollary 4.16. If ξ = t = 0, η = 1, and T ⊆ M , then [−2ar + 1, ar] ∪ [ar, 2ar − 1] ⊆ L.

Now, we show that if isd(Pn) = 2n− 4, then ar ≤ 3.

Lemma 4.17. If ξ = t = 0, η = 1, and T ⊆ M for n ≥ 13, then ar ≤ 3.

Proof. Suppose otherwise. First, because Pn is a sum graph of −L, assume that an+t ≥ |a1|.
From Corollary 4.16, 2ar − 1 ∈ L. Then, because t = 0, it holds that N(2ar − 1) ̸= ∅.
Thus, since an ≥ |a1|, we have an ≥ 3ar − 1. As a result, because ar ≥ 4, we have
an ≥ 3ar − 1 ≥ 2ar + 2, and by setting intervals [−2ar + 1, ar] ∪ [ar, 2ar − 1] with τ = 0 in
Lemma 4.7, 3ar ∈ [2ar + 2, 4ar − 4] ⊆ T , which implies 2ar ∈ T \M because ξ = 0. Thus,
ar ≤ 3. □

Next, we show that if isd(Pn) = 2n− 4, then ar ≤ 2.

Lemma 4.18. If ξ = t = 0, η = 1, T ⊆ M , and −2ar /∈ L for n ≥ 13, then ar ≤ 2.

Proof. Suppose otherwise. Thus, from Corollary 4.16 and Lemma 4.18, ar = 3 and [−5,−3]∪
[3, 5] ⊆ L. Because t = 0 from Corollary 4.12, N(5) ̸= ∅. Then, because Pn is a integral sum
graph labeling of −L, assume an ≥ 8. Thus, because 6 ∈ T ⊆ M from Lemma 4.15, 9 ∈ L.
Now, by setting τ = 0 with intervals [−5,−3] ∪ [3, 5] in Lemma 4.7, 8 ∈ T ⊆ M , so 11 ∈ L.
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Next, because 9 ∈ L, it follows that {−4,−5} ⊆ N(9). Now, {−4,−5, 9} forms a cycle
if −9 ∈ L. Thus, −9 ̸∈ L but −2ar = 6 /∈ L. Thus, a1 = −5 because T ⊆ M . In
addition, because ∆ = 2, we have {−4,−5} = N(9), which implies [12, 14] ∩ L = ∅, because
[3, 5] ∩ N(9) = ∅. If an ≥ 15, then [12, 14] ⊆ T ⊆ M , so {10, 15, 16} ⊆ L. As a result,
{4, 10, 11} ⊆ N(5), so an < 15. Now, an = 11 because [12, 14] ∩ L = ∅. Thus, ar ≤ 2. □

Now, we show that if isd(Pn) = 2n− 4, then ar = 1.

Lemma 4.19. If ξ = t = 0, η = 1, and T ⊆ M for n ≥ 13, then ar ≤ 1.

Proof. Suppose otherwise. By Lemma 4.18, ar = 2. Then, from Corollary 4.16, T ⊆ M . For
1 ≤ i ≤ n − 2, if bi, bi+1 ̸= 1, then {ai+1 − 1, ai+1 + 1} ∩ T \M ̸= ∅. Thus, if bi = 2, then
bi+1 = 1 or bi−1 = 1 or both, {ai, ai−1}∩N(3) ̸= ∅. However, because 3 ∈ L, then c2+c3 ≤ 3.

Next, {ai + 1, ai + 3} ∩ T \M ̸= ∅ if bi = 4 and i ̸= r − 1. Therefore, because br−1 = 4,
we have c4 = 1. It follows that range(L) ≤ 4c4 + 3c3 + 2c2 + (n− 1− c2 − c3 − c4) ≤ n+ 8.
As a result, isd(Pn) = 2n− 4 ≤ n+ 8, which implies n ≤ 12 or ar = 1 or both. □

Now, we show that isd(Pn) ≥ 2n− 3 for n ≥ 8.

Lemma 4.20. If n ≥ 8, then isd(Pn) ≥ 2n− 3.

Proof. Suppose otherwise. From Lemma 4.11, isd(Pn) = 2n − 4. By exhaustive computer
search, isd(Pn) ≥ 2n − 3 if 8 ≤ n ≤ 12. Thus, n ≥ 13. Because Pn is a sum graph labeling
of −L, assume that an ≥ |a1|. In addition, from Lemmas 4.12 and 4.15 on L and −L, we
have ξ = t = 0, η = 1, T ⊆ M , |N(ar)| = 1, and −2ar /∈ L. Thus, from Lemmas 4.17, 4.18,
and 4.19, ar = 1 = |ar−1| for n ≥ 13. Because n ≥ 13 and an ≥ |a1|, it follows that an ≥ 11.
Now, if bi ≥ 3, then {ai + 1, ai + 2} ∩ T \ M ̸= ∅. Therefore, bi ≤ 2 for 1 ≤ i ≤ n − 1.

Furthermore, c1 = 2, because |N(1)| = 2. Thus, let bj = bk = 1 with j < k.
Now, because ξ = 0, it holds that 2 ∈ T ⊆ M . Then, because an ≥ 11, it holds that

3 ∈ L. If k ̸= n− 1 and k− j = 1, then {−3,−1, 1} ∈ N(aj + 1). However, if k ̸= n− 1 and
k − j ̸= 1, then {−1, aj + 1,−3, ak + 1} form a component. Therefore, k = n− 1.
Likewise, if −3 ∈ L, then j = 1. Thus, because an ≥ 11 and k = n − 1, it follows that

{1, 3, 5} ⊆ L. Because j = 1 and k = n − 1, it holds that {1, 3, 5} ⊆ N(a1). Therefore,
−3 /∈ L, so a1 = −1. As range(L) = 2n− 4 and k = n− 1, we have {2n− 5, 2n− 6} ⊆ L.
First, suppose that 2n− 7 ∈ L. Then N(2n− 5) = {−1}, and N(2n− 7) = {1} because

min(L) = a1 = −1 and 2 /∈ L. Thus, because ∆ = 2, and {−1, 1} ⊆ N(2n − 6), it follows
that {−1, 1, 2n− 7, 2n− 6, 2n− 5} forms a component. Therefore, 2n− 7 /∈ L. As a result,
2n − 8 ∈ L, otherwise 2n − 8 ∈ T \ M . Because min(L) = −1 and 2n − 7 /∈ L, we have
|N(2n−5)| = |N(2n−6)| = 1. Now, |N(2n−8)| = 2, because G = Pn. Therefore, j = n−3.
Then, {−1, 1, 3, 2n−9, 2n−8, 2n−6, 2n−5} forms a component. Thus, isd(Pn) ≥ 2n−3. □

Now, Lemma 4.20 is sufficient to proof Theorem 1.2

Proof of Theorem 1.2. From Proposition 7.2 of Li [4], it holds that isd(Pn) ≤ ispum(Pn).
Thus, the lower and upper bounds of Theorem 1.2 are shown by Lemma 4.20 and Theorem
7.3 of Singla, Tiwari, and Tripathi [5], respectively. □

4.3. The inequality isd(Pn) ≥ 2n+1 for n ≥ 27. Now, we show that for odd n, isd(Pn) ̸=
2n− 3. First, we state the following corollary of Lemma 4.5.

Corollary 4.21. If isd(Pn) = 2n− 3, then 2t+ |T \M |+ 2 = ξ + η + |N(ar)|.
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Next, we show that if isd(Pn) = 2n− 3, then L has no isolated vertices.

Lemma 4.22. If isd(Pn) = 2n− 3 for n ≥ 10, then t = 0.

Proof. Suppose otherwise. Then, as Pn is a integral sum graph of −L, by applying Corol-
lary 4.21 to L and −L, we have T ⊆ M, |N(ar)| = 2, ξ = η = t = 1, and −2ar ∈ L. Thus,
from Lemmas 4.8 and 4.10, ar = 1, and 2n− 3 = isd(Pn) ≥ 3n− 12, so n ≤ 9. □

We now further strengthen Corollary 4.21 by showing that ξ = 0.

Lemma 4.23. If isd(Pn) = 2n− 3 for n ≥ 27, then ξ = 0.

Proof. Suppose otherwise. First, if ar ≤ 9, from Lemma 4.13, n ≤ 26. Thus, ar ≥ 10, and
from Corollary 4.21, |T \M | ≤ 2. Then, from Lemma 4.2,

(4.32) |[ar−1 − ar + 1,−ar − 1] ∪ [ar, 2ar] \ L| ≤ 2.

From Equation (4.32), there exists ℓ ∈ {2ar − 1,−2ar + 1, 2ar − 2} in L. Then, because
t = 0, and N(ℓ) ̸= ∅, we have max(|a1|, an) ≥ 3ar − 2.
First suppose that equality holds in Equation (4.32). From Lemma 4.7, with τ = 2, and

intervals [ar−1 − ar + 1,−ar − 1] ∪ [ar, 2ar], and because max(|a1|, an) ≥ 3ar − 2 ≥ 2ar + 5,
we have [−3ar + ar−1 + 5,−2ar − 5] ⊆ T or [2ar + 5, 3ar − ar−1 − 5] ⊆ T or both. Then
2ar +5 ∈ T \M or −2ar − 5 ∈ T \M or both. But, |T \M ∩ [ar−1, ar]| = 2 and |T \M | ≤ 2.
Thus, |[ar−1 − ar + 1,−ar − 1] ∪ [ar, 2ar] \ L| ≤ 1.

Next, suppose |[ar−1 − ar + 1,−ar − 1] ∪ [ar, 2ar] \ L| = 1. From Lemma 4.7 with τ = 1,
and intervals [ar−1−ar+1,−ar−1]∪ [ar, 2ar], and because max(|a1|, an) ≥ 3ar−2 ≥ 2ar+4,
it must be that [−3ar + ar−1 +4,−2ar − 4] ⊆ T or [2ar +4, 3ar − ar−1 − 4] ⊆ T . As a result,
|{−2ar − 4,−2ar − 5, 2ar + 4, 2ar + 5} ∩ T \M | ≥ 2. However, |T \M ∩ [ar−1, ar]| = 1 and
|T \M | ≤ 2. Thus, [ar−1 − ar + 1,−ar − 1] ∪ [ar, 2ar] \ L = ∅.
Then, from Lemma 4.7, with τ = 0 and intervals [ar−1 − ar + 1,−ar − 1] ∪ [ar, 2ar], we

have ([−3ar + ar−1 + 3,−2ar − 3, ] ∪ [2ar + 3, 3ar − ar−1 − 3]) ∩ L = ∅. As a result, and also
because max(|a1|, an) ≥ 3ar − 2 ≥ 2ar + 4, it must be that [2ar + 3, 2ar + 5] ⊆ T \ M or
[−2ar − 3, 2ar − 5] ⊆ T \M or both. Therefore, ξ = 0. □

We now show if isd(Pn) = 2n− 3 then |N(ar)| = 2.

Lemma 4.24. If isd(Pn) = 2n− 3 for n ≥ 27, then |N(ar)| = 2.

Proof. Suppose otherwise. From Corollary 4.21, Lemmas 4.22 and 4.23, t = 0, |N(ar)| = 1,
T ⊆ M and η = 1. Now, because Pn is a sum graph labeling of −L, we have −2ar ∈ L from
Lemma 4.23 on −L. As a result, if n ≥ 13, then ar = 1 from Lemmas 4.17, 4.18, and 4.19.
Now, by applying Corollary 4.21 on −L, it holds that |N(ar−1)| = 1. Thus, because

G = Pn and t = 0, if ai /∈ {1,−1} then |N(ai)| = 2. In addition, because |N(ar)| = 1
and T ⊆ M , we have c1 = 1, and c2 = n − 2. Thus, one of a1, an is even. Without loss of
generality, let an be even. Since 1 ∈ L, all even labels are in S2, and all labels in S1 are odd.

However, as an = max(L), it follows that N(an) ⊆ S1. Let N(an) = {aj, ak} with j < k.
Then, because {aj, ak + an} ⊆ L, all odd labels between aj and ak + an must be in L. Thus,
because aj ≤ ak, it follows that {aj, aj +2, ak +2} ⊆ N(an − 2). As a result, an − 2 /∈ L and
an is the only even label. Then, |N(ai)| ≤ 1 for for 1 ≤ i ≤ n− 2, so |N(ar)| = 2. □

We now show that if isd(Pn) = 2n− 3 then |T \M | = η = 1.

Lemma 4.25. If isd(Pn) = 2n− 3 for n ≥ 27, then |T \M | = η = 1.
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Proof. Suppose otherwise. From Corollary 4.21 and Lemmas 4.22, 4.23, and 4.24, |T \M | =
η = 0. Thus, ar−1 = −(ar+1) because |ar−1| ≠ ar and −1 ∈ T ⊆ M . Now, from Lemma 4.2,

(4.33) ([−2ar,−1− ar] ∪ [ar, 2ar − 1]) ⊆ L.

Next, from Lemma 4.7 with τ = 0 and intervals [−2ar,−1− ar] ∪ [ar, 2ar − 1],

(4.34) ([−4ar + 3,−2ar − 3] ∪ [2ar + 3, 4ar − 3]) ∩ L = ∅.

First, because N(−2ar) ̸= ∅ from Lemma 4.22 and Equation (4.33), max(|a1|, an) ≥ 3ar.
Now, if ar ≥ 6, because max(|a1|, an) ≥ 3ar ≥ 2ar+3, it must be that [−4ar+3,−2ar−3] ⊆ T
or [2ar+3, 4ar−3] ⊆ T or both. Thus, |{−2ar−3, 2ar+3}∩T \M | ≥ 1. Therefore, ar ≤ 5.
Finally, because k ≥ 1 from −ar /∈ L, and −2ar ∈ L from Equation (4.33), it follows from
Lemma 4.13 that 2n− 3 = isd(Pn) ≥ 3n− 2ar − 10, so n ≤ 17. □

Now, we use Lemmas 4.22, 4.24, 4.23, and 4.25 to bound the value of ar.

Lemma 4.26. If isd(Pn) = 2n− 3 for n ≥ 27, then ar ≤ 4.

Proof. Suppose otherwise. From Lemma 4.25, |T \M | = η = 1. Thus, from Lemma 4.2,

(4.35) |([−2ar + 1,−ar] ∪ [ar, 2ar − 1]) \ L| ≤ 1.

As t = 0 by Lemma 4.22, and 2ar−1 ∈ S or −2ar+1 ∈ S or both, and because Pn is a sum
graph labeling of −L, assume without loss of generality that max(|a1|, an) = an ≥ 3ar−1. In
addition, because 3ar−1 > 2ar+3, from Equation (4.35) and by setting τ = 1, with intervals
[−2ar +1,−ar]∪ [ar, 2ar − 1] in Lemma 4.7, [2ar +3, 4ar − 5] ⊆ T . Thus, 3ar ∈ T . However,
from Lemmas 4.23 and 4.25, 2ar = T \M . Therefore, because [ar−1, ar] ∩ T \M = ∅,

(4.36) [−2ar + 1,−ar] ∪ [ar, 2ar − 1] ⊆ L,

so because an ≥ 3ar − 1 ≥ 2ar + 2, by setting τ = 0 and disjoint intervals [−2ar + 1,−ar] ∪
[ar, 2ar − 1] in Lemma 4.7, [2ar + 2, 4ar − 4] ⊆ T . For ar ≥ 6, it holds that {2ar, 2ar + 2} ⊆
T \M . Thus, ar = 5, so [2ar+2, 4ar−4] = [12, 16] ∈ T . Then because {11, 12}∩T \M = ∅,
we have 11, 17 ∈ L, and thus, {−5,−6, 6} ⊆ N(11). Therefore, ar ≤ 4. □

We now strengthen Lemma 4.26 by showing that ar ̸= 4.

Lemma 4.27. If isd(Pn) = 2n− 3 for n ≥ 27, then ar ≤ 3.

Proof. Suppose otherwise. Then by Lemmas 4.25 and 4.26, ar = 4, and |T \ M | = η =
1. Thus, from Lemma 4.2, |([−7,−4] ∪ [4, 7]) \ L| ≤ 1. From Lemma 4.22 and because
|{7,−7} ∩ L| ≥ 1, it follows that N(7) ̸= ∅ or N(−7) ̸= ∅ or both. Therefore, because Pn is
a sum graph labeling of −L, we have max(|a1|, an) = an ≥ 11.

First, suppose that [−7,−4] ∪ [4, 7] ⊆ L. Because an ≥ 11, by setting τ = 0 and dis-
joint intervals [−7,−4] and [4, 7] in Lemma 4.7, [10, 12] ⊆ T . Then, because 8 ∈ T from
Lemma 4.23, and |T \M | = 1, it holds that T \M = {8}. Thus, as {10, 11, 12}∩T \M = ∅,
we have {10, 11, 12} ⊆ M , so [14, 16] ⊆ L. Now, 9 /∈ L, otherwise {5, 6, 7} ⊆ N(9). Thus,
because 9 /∈ T \M , we have 13 ∈ L. Because |N(13)| ≤ 2 and {−7,−6} ⊆ N(13), we must
have −8 /∈ N(13), and thus −8 /∈ L. However, if −8 ∈ T , as −8 /∈ T \ M , we have that
−12 ∈ L, which implies that {5, 6, 7} ⊆ N(−12). Therefore, −8 /∈ T so a1 = −7, and as
n ≥ 27, we have that an ≥ 20. As [4, 7]∩N(13) = ∅ and an ≥ 20, it follows that [17, 20] ⊆ T .
Because 17 /∈ T \M , it holds that 21 ∈ L. However, then {−7,−6,−5} ⊆ N(21).
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Thus, [−7,−4] ∪ [4, 7] ̸⊆ L. Now, from Lemma 4.7 with τ = 1 and disjoint intervals
[−7,−4] and [4, 7], and because an ≥ 11, it holds that 11 ∈ T , so 15 ∈ L. Furthermore, from
Lemma 4.23, 8 ∈ T , and thus, 12 ∈ L. We now consider each of ([−7, 4] ∪ [4, 7]) \ L.
First, because η = 1, we have {−4, 4} ⊆ L. Now, 6 /∈ T , as otherwise 10 ∈ L, and

{−5,−6, 5} ⊆ N(10). Similarly, −6 /∈ T , as otherwise −10 ∈ L, so {5, 6, 15} ⊆ N(−10).
Next, suppose that 5 ∈ T . Then 9 ∈ L, so {9, 12} ⊆ N(−5). As N(−5) ≤ 2, we have
{14, 15}∩N(5) = ∅, so {10, 14} ⊆ T , and thus, 10 ∈ T \M . Thus, 5 /∈ T Now, suppose that
−5 ∈ T . Then, −9 ∈ L, which implies −8 ∈ T , because −8 /∈ L by applying Lemma 4.23
on −L. Thus, {−12,−9, 7} ⊆ N(5). Therefore, −5 /∈ T .
Additionally, if 7 ∈ T , because 11 ∈ T , we have 7 ∈ T \ M , a contradiction. Note

that −7 /∈ T as otherwise −11 ∈ L and {5, 6, 7} ⊆ N(−11). Therefore, if −7 /∈ L, then
a1 = −6. However, as {−4,−5, 6} ⊆ N(9) and {−4,−5,−6} ⊆ N(10), it follows that
{9, 10} ⊆ T , so {13, 14} ⊆ L. Then, because |N(7)| ≤ 2, and {5, 6} ⊆ N(7), it follows
that [12, 15] ∩ N(7) = ∅, so [19, 22] ∩ L = ∅. Now, as 15 ∈ L and [9, 11] ⊆ T , we have
{−4,−5,−6} ∩ N(15) = ∅. As N(15) ̸= ∅, it holds that min(N(15)) ≥ 4, so an ≥ 19.
However, because [19, 22] ∩ L = ∅, it holds that [19, 22] ⊆ T , and thus, [16, 18] ⊆ L, which
implies {7, 12, 13} ⊆ N(5). Thus, ar ≤ 3. □

Lemma 4.28. If isd(Pn) = 2n− 3 for n ≥ 27, then ar ≤ 2.

Proof. Suppose otherwise. Then, ar = 3 by Lemma 4.27. Now, from Lemma 4.25, |T \M | =
η = 1. Thus, from Lemma 4.2, |([−5,−3] ∪ [3, 5]) \ L| ≤ 1.

Then, because Pn is a sum graph labeling of −L, assume without loss of generality that
[3, 5] ⊆ L. First, if bi = 5, then |{ai + 1, ai + 4} ∩ T \M | ≥ 1. Because |T \M | = 1, it holds
that c5 ≤ 1. Similarly, if bi ≥ 6 but i ̸= r − 1, then ai + 1, ai + 4 ∈ T and ai + 2, ai + 5 ∈ T .
Thus, because |T \ M | = 1 and br−1 = 6, we have c6 = 1. Next, because [3, 5] ⊆ L, it
follows that 4, 8 are not consecutive. In addition, from Lemma 4.23, 6 /∈ L. Thus, because
|N(4)| ≤ 2 and |N(3)| ≤ 2, we have c4 ≤ 2, and c3 ≤ 2.
Finally, we bound c2. First, if b1 = 2 and bn−1 = 2, then {a1 + 1, an − 1} ⊆ T \ M , a

contradiction. Thus, assume that bn−1 ̸= 2. Now, if bi = 2 and bi+1 = 1, then ai ∈ N(3).
Next, if bi = 2 and bi+1 = 2, then ai ∈ N(4). In addition, if bi = 2 and bi+1 ≥ 3, then
{ai + 1, ai + 4} ∩ T \M ̸= ∅. Now, because |N(3)|, |N(4)| ≤ 2, and |T \M | = 1,

(4.37) c2 ≤ (2− c3) + (2− c4) + (1− c5) = 5− c3 − c4 − c5.

Thus, max(c3, c4) ≤ 2 and c5 ≤ 1, so from Equation (4.37), it holds that

range(L) =

max(bi)∑
ℓ=1

ℓ · cℓ = 6 + 5c5 + 4c4 + 3c3 + 2c2 + (n− 1−
max(bi)∑
ℓ=2

cℓ)

= n+ 4 + 4c5 + 3c4 + 2c3 + c2(4.38)

≤ n+ 4 + 4c5 + 3c4 + 2c3 + (5− c3 − c4 − c5) ≤ n+ 18.

Therefore, because 2n− 3 = range(L) ≤ n+ 18, it holds that n ≤ 21. □

We now show that ar = 1 if isd(Pn) = 2n− 3 for n ≥ 27.

Lemma 4.29. If isd(Pn) = 2n− 3 for n ≥ 27, then ar = 1.

Proof. Suppose otherwise. Then, by Lemma 4.28, ar = 2. First, if bi = 4, with i ̸= r − 1,
then {ai + 1, ai + 3} ⊆ T , which results in an element of T \M . Thus, because |T \M | ≤ 1,
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and br−1 = 4, we have c4 ≤ 2. In addition, |{−3, 3} ∩L| ≥ 1, as otherwise {−1, 1} ⊆ T \M ,
a contradiction to |T \ M | = 1. Thus, because N(±3) ≤ 2, we have c3 ≤ 3. Now, if
b1 = bn−1 = 2, then {a1 + 1, an − 1} ⊆ T \M , a contradiction. Thus, assume that bn−1 ̸= 2.
Then, if bi ̸= 1 and bi+1 ̸= 1, then {ai+1 − 1, ai+1 + 1} ⊆ T , which results in an element of
T \M . Therefore, for each bi = 2, either bi+1 = 1 or ai + 1 ∈ T \M .

Now, because |T \M | = 1, and |N(3)| ≤ 2, it holds that

(4.39) c2 ≤ (3− c3) + (1− c4) = 4− c3 − c4.

Therefore, because c3 ≤ 3 and c4 ≤ 2, it holds that

range(L) ≤ 4c4 + 3c3 + 2c2 + (n− 1− c4 − c3 − c2)

≤ n− 1 + 3c4 + 2c3 + (4− c3 − c4)(4.40)

= n+ 3 + 2c4 + c3 ≤ n+ 10.

Thus, isd(Pn) = 2n− 3 ≤ n+ 10, from which n ≤ 13, a contradiction. □

We now show our final result for odd n.

Lemma 4.30. For odd n ≥ 27, it holds that isd(Pn) ≥ 2n− 2.

Proof. Suppose otherwise. Then, by Lemmas 4.25 and 4.29, |ar−1| = ar = 1. In addition,
from Lemmas 4.23 and 4.24, because |N(1)| = 2 and 2 /∈ L, we have c1 = 2. Furthermore,
from Lemma 4.25, |T \M | = 1, so c3 = 1, and there is no i such that bi ≥ 4. Therefore, let
bf = 1, bg = 1, and bh = 3, where f < g. In addition, for every i /∈ {f, g, h}, we have bi = 2.
In addition, for n ≥ 14, there are at least 3 indices i for which bi = bi+1 = bi+2 = 2. Thus,

{4,−4, 6,−6} ∩ L = ∅, as otherwise |N(±6)|, |N(±4)| ≥ 2. It follows that either −3 ∈ L or
min(L) = −1, and either 3 ∈ L or max(L) = 1. In addition, because 6 /∈ L and bh = 3, there
is at most one index i such that {bi, bi+1} = {1, 2}, otherwise |N(3)| > 2 or |N(−3)| > 2.

First, we consider h /∈ [f, g]. Since −L is also a sum graph labeling of Pn, without loss of
generality let h > g. If g ̸= f +1, then {bf , bf+1} = {bg−1, bg} = {1, 2}. Therefore, g = f +1.
Now suppose that f ̸= 1. Then, because h > g, it holds that bf−1 = 2, which implies −3 /∈ L,
as otherwise {−1, 1,−3} ⊆ N(ag). Thus, it follows that min(L) = a1 = −1. Then because
t = 0 from Lemma 4.22, it holds that bn−1 = 1, because otherwise an would be isolated,
for min(L) = −1. However, h > g, which implies bn−1 ̸= 1. Thus, f = 1. Now, if 3 ∈ L,
then h = g + 1, as otherwise {−1, 1, 3} ⊆ N(ag). However, this forces |N(3)| = |N(−3)| =
|N(an)| = 1, a contradiction to G = Pn. Thus, 3 /∈ L and thus, 1 = max(L) = an, i.e., 1 is
the only positive label of L. It follows from f = g− 1 = 1 and 2 /∈ L that a3 = a1+2 and a1
have exactly one neighbor. Therefore, because |N(−1)| = |N(1)| = |N(a2)| = 2, it follows
that {−1, 1, a1, a2, a3} is a component.

Therefore, h ∈ [f, g]. First, if f ̸= 1 and g ̸= n−1, we have {bf−1, bf} = {1, 2} = {bg, bg+1},
a contradiction, because there is at most one i such that {bi, bi+1} = {1, 2}. Therefore, either
f = 1 or g = n − 1. Assume without loss of generality that g = n − 1. First, suppose that
f = 1. Then either h = g − 1 or h = f + 1, as otherwise, {bf+1, bf} = {1, 2} = {bg−1, bg}.
Assume without loss of generality that h = g − 1. Now, because {−6,−4, 4, 6} ∩ L = ∅,
we have |a1|, an ≥ 8. Thus, {1, 3, 5, a1 + 1, a1 + 3, a1 + 5} ⊆ L, so {1, 3, 5} ⊆ N(a1).
Therefore, f ̸= 1, which forces f +1 = h = g− 1, as otherwise {bf−1, bf} = {1, 2} and either
{bf , bf+1} = {1, 2} or {bg−1, bg} = {1, 2}. Because bn−4 = 2, we have −3 /∈ L, as otherwise
{−3,−1, 3} ⊆ N(an−2). Therefore, a1 = −1, and {f, g, h} = {n − 3, n − 2, n − 1}, which
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corresponds to the set of all odds from [−1, 2n−9], combined with {2n−8, 2n−5, 2n−4}. For
odd n, {n− 4, n− 2, 2n− 4} each have exactly one neighbor, which contradicts G = Pn. □

We now proceed to the proof of Theorem 1.4.

Proof of Theorem 1.4. We verify the case when n ≤ 26 through computer search. Now, the
lower bounds of the theorem are a result of Lemmas 4.20 and 4.30. The upper bounds are
a result of Theorem 4.1. □

5. The Sum-Diameter of Paths

We prove Theorem 1.3. The current best bound on sd(Pn) is by Li.

Theorem 5.1 (Proposition 9.4 of [4]). For n ≥ 3, it holds that

2n− 3 ≤ sd(Pn) ≤ 2n− 2.

For the rest of this section, let L be a sum graph labeling of a graph G∪ Im that satisfies
range(L) = sd(G). Let S = {a1, a2, . . . , an} ⊆ N be the labels of the vertices of G such that
a1 < a2 < · · · < an. We first cite Li [4] on the labels that must be in S if range(L) = 2n− 3.

Lemma 5.2 (Remark 7.8 of [4]). If range(L) = 2n− 3, then [a1, 2a1] ⊆ S.

In addition, following the proof of Lemma 3.2 directly after defining T,M, and N analo-
gously as Section 3 gives us the following lower bound on sd(G).

Corollary 5.3. If [a1, 2a1] ⊆ S, then sd(G) ≥ 3n− a1 − 4− 4∆ + δ.

Next, we give a lower bound on n with respect to a1 when range(L) = 2n−3 and n−a1 ≥ 4.

Lemma 5.4. If range(L) = 2n− 3 and n− a1 ≥ 4, then n ≥ 2a1.

Proof. By Lemma 5.2, it holds that [a1, 2a1] ⊆ S. Now, because range(L) = 2n− 3, it holds
that max(S) ≤ 2n− 3, otherwise max(S) would be isolated. Therefore,

(5.1) |S ∩ [2a1 + 1, 2n− 3]| = n− (a1 + 1) = n− a1 − 1.

As a result,

|S ∩ [2a1 + 1, n+ a1 + 1]| = |S ∩ [2a1 + 1, 2n− 3− (n− a1 − 4)]|(5.2)

≥ |S ∩ [2a1 + 1, 2n− 3]| − (n− a1 − 4) = 3.

Thus, if a1 + 2a1 ≥ n+ a1 + 1, then N(a1) ≥ 3. As a result, n ≥ 2a1. □

Next, we give an upper and lower bound on a1 when range(L) = 2n− 3.

Lemma 5.5. If range(L) = 2n− 3, then n− 2 ≥ a1 ≥ n− 8.

Proof. By Corollary 5.3, sd(Pn) = 2n−3 ≥ 3n−a1−11. Therefore, a1 ≥ n−8. In addition,
if a1 ≥ n− 1, then an ≥ a1 + (n− 1) = 2n− 2. Thus, range(L) ≥ 2n− 2+ a1 − a1 ≥ 2n− 2.
As a result, n− 2 ≥ a1. □

We now proceed to the proof of Theorem 1.3.
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Proof of Theorem 1.3. From Theorem 5.1, it suffices to show that sd(Pn) ̸= 2n − 3 when
n ≥ 7. Thus, suppose for the sake of contradiction that sd(Pn) = 2n − 3 and n ≥ 7. Then
by Lemma 5.5, it holds that n− 2 ≥ a1 ≥ n− 8.
Now, if n−4 ≥ a1 ≥ n−8, then it follows from Lemma 5.4 that n ≥ 2a1 ≥ 2n−16. Thus,

n ≤ 16. From exhaustive computer search, we check that the statement holds when n ≤ 16.
Now, if a1 = n−3, then max(L) = 3n−6. Because all s ∈ S must satisfy n−3+s ≤ 3n−6,

it must hold that s ≤ 2n− 3. In addition, because |S| = n, it must hold that

(5.3) |[n− 3, 2n− 3] \ S| = 1.

Now, if 2n−3 ∈ S, then {2n−3, n} ⊆ N(n−3). Therefore, {n−1, n−2}∩N(n−3) = ∅,
and thus, 2n−4, 2n−5 ̸∈ S. But if so, then |[n−3, 2n−3]\S| ≥ 2. Thus 2n−3 ̸∈ S. However,
from Equation (5.3), it holds that S = [n − 3, 2n − 4]. Then, N(n − 2) = {n − 3, 2n − 4},
and thus [n − 1, 2n − 3] /∈ N(n − 2). Therefore [2n − 3, 3n − 7] /∈ L. But then, since
|N(2n− 5)| = |N(2n− 4)| = 1, we have {2n− 4, n− 2, n− 3, n− 1, 2n− 5} is a component,
a contradiction as sought.

Finally, if a1 = n − 2, then because max(L) = 3n − 5, any s ∈ S should satisfy s ≤
3n − 5 − (n − 2) = 2n − 3. Because |S| = n, it must be that S = [n − 2, 2n − 3]. Then
N(n−2) = {n−1, 2n−3}, and thus [n, 2n−4] /∈ N(n−2), which implies [2n−2, 3n−6] /∈ L.
However, then {2n− 3, n− 2, n− 1, 2n− 4} is a component, a contradiction as sought. □
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