ON THE SPUM AND SUM-DIAMETER OF PATHS

ARYAN BORA, YUNSEO CHOI, AND LUCAS TANG

Abstract

In a sum graph, the vertices are labeled with distinct positive integers, and two vertices are adjacent if the sum of their labels is equal to the label of another vertex. The spum of a graph G is defined as the minimum difference between the largest and smallest labels of a sum graph that consists of G in union with a minimum number of isolated vertices. More recently, Li introduced the sum-diameter of a graph G, which modifies the definition of spum by removing the requirement that the number of isolated vertices must be minimal. In this paper, we settle conjectures by Singla, Tiwari, and Tripathi and a conjecture by Li by evaluating the spum and the sum-diameter of paths.

Keywords. Sum graph, Spum, Sum-diameter, Graph labeling, Path

1. Introduction

In 1990, Harary [2] defined the sum graph $G(V, E)$ of $L \subseteq \mathbb{N}$ to be given by $V=L$ and $(u, v) \in E$ if $u+v \in L$ (see for example, Figure 1). Not every graph G is a sum graph of some set L; for example, no connected G is a sum graph, because in a sum graph, the vertex with the largest label must be isolated. Yet, Harary showed [2] that any graph G in union with at least a sum number $\sigma(G)$ of isolated vertices is a sum graph of some set L.

Figure 1. The sum graph of $\{1,2,3,4,5\}$

Shortly after, Goodell, Beveridge, Gallagher, Goodwin, Gyori, and Joseph [1] defined the spum $\operatorname{spum}(G)$ of a graph G as the minimum difference between the largest and the smallest labels in L, for which $G \cup I_{\sigma(G)}$ is a sum graph of L. In the same paper, Goodell et al. [1] evaluated $\operatorname{spum}\left(K_{n}\right)$. More recently, in 2021, Singla, Tiwari, and Tripathi [5] evaluated $\operatorname{spum}\left(K_{1, n}\right)$ and $\operatorname{spum}\left(K_{n, n}\right)$. Our first main result is that we settle a conjecture that was originally proposed by Singla, Tiwari, and Tripathi (see Conjecture 7.1 of [5]) and subsequently modified by Li (see Conjecture 3.4 of [4]) on $\operatorname{spum}\left(P_{n}\right)$, where P_{n} is a path of n vertices.

Theorem 1.1. For $n \geq 3$, it holds that

$$
\operatorname{spum}\left(P_{n}\right)= \begin{cases}2 n-3 & \text { if } 3 \leq n \leq 6 \\ 2 n-2 & \text { if } n=7 \\ 2 n-1 & \text { if } n \geq 8 \text { is even } \\ 2 n+1 & \text { if } n \geq 9 \text { is odd. }\end{cases}
$$

In 1994, Harary [3] extended the notion of a sum graph; he defined the integral sum graph $G(V, E)$ of $L \subseteq \mathbb{Z}$ to be given by $V=L$ and $(u, v) \in E$ if $u+v \in L$. He then defined the integral sum number $\zeta(G)$ as the minimum number of vertices for which $G \cup I_{\zeta(G)}$ is an integral sum graph. In 2021, Singla et al. [5] extended the notion of spum; they defined the integral spum ispum (G) of a graph G as the minimum difference between the largest and the smallest labels in L, for which $G \cup I_{\zeta(G)}$ is an integral sum graph of L. In the same paper, Singla et al. 5] evaluated ispum $\left(K_{n}\right)$, ispum $\left(K_{1, n}\right)$, and ispum $\left(K_{n, n}\right)$. Our next result is that we improve the best known lower bound on ispum $\left(P_{n}\right)$.
Theorem 1.2. For $n \geq 7$, it holds that

$$
2 n-3 \leq \operatorname{ispum}\left(P_{n}\right) \leq \begin{cases}2 n-3 & \text { if } n \text { is even } \\ \frac{5}{2}(n-3) & \text { if } n \text { is odd }\end{cases}
$$

Last year, Li [4] introduced the more natural sum diameter $\operatorname{sd}(G)$ of a graph G as the minimum difference between the largest and the smallest labels of L, for which $G \cup I_{m}$ is a sum graph of L for any $m \geq \sigma(G)$.
Remark. Although a priori, it is not clear that adding more vertices reduces the range of its labels, there exist graphs G for which $\operatorname{sd}(G)<\operatorname{spum}(G)$. For example, while $\operatorname{spum}\left(P_{8}\right)=15$ by Theorem 1.1, Figure 2 shows that $\operatorname{sd}\left(P_{8}\right) \leq 14$.

Figure 2. A sum graph that demonstrates $\operatorname{sd}\left(P_{8}\right) \leq 14$
Our next result is that we settle a conjecture by Li (see Conjecture 9.5 of [4]) on $\operatorname{sd}\left(P_{n}\right)$.
Theorem 1.3. For $n \geq 3$, it holds that

$$
\operatorname{sd}\left(P_{n}\right)= \begin{cases}2 n-3 & \text { if } 3 \leq n \leq 6 \\ 2 n-2 & \text { if } n \geq 7\end{cases}
$$

Li [4] also introduced the integral sum diameter isd (G) of a graph G as the minimum difference between the largest and the smallest labels of L, for which $G \cup I_{m}$ is an integral sum graph of L for any $m \geq \zeta(G)$. Our last result is that we evaluate isd $\left(P_{n}\right)$ for $n \geq 3$.
Theorem 1.4. For $n \geq 3$, it holds that

$$
\operatorname{isd}\left(P_{n}\right)= \begin{cases}2 n-3 & \text { if } n=3 \\ 2 n-4 & \text { if } 4 \leq n \leq 7 \\ 2 n-3 & \text { if } 8 \leq n \leq 9 \\ 2 n-3 & \text { if } n \geq 10 \text { is even } \\ 2 n-2 & \text { if } n \geq 11 \text { is odd. }\end{cases}
$$

In Section 2, we establish preliminaries. In Section 3, we prove Theorem 1.1. In Section 4 , we prove Theorems 1.2 and 1.4 . In Section 5, we prove Theorem 1.3 .

2. Preliminaries

For $L \subseteq \mathbb{Z}$, let $L-a=\{\ell-a \mid \ell \in L\}$, and $L+a=\{\ell+a \mid \ell \in L\}$. Next, let range $(L)=$ $\max (L)-\min (L)$. Furthermore, let $N_{L}(\ell)=\{a \in L \mid a \neq \ell$ and $\ell+a \in L\}$, and let $L_{i} \subseteq L$ be the i smallest numbers in L. For $L=\left\{a_{1}, a_{2}, \ldots, a_{n}\right\} \subseteq \mathbb{Z}$ such that $a_{1}<a_{2}<\cdots<a_{n}$, say that a_{i} and a_{i+1} are consecutive in L.

Let the maximal and minimal degree of a graph G be Δ_{G} and δ_{G}, respectively. We omit the subscript when it is clear which G is being referred to.

In [2] and [3] respectively, Harary evaluated $\sigma\left(P_{n}\right)$ and $\zeta\left(P_{n}\right)$.
Lemma 2.1 ([2]). For $n \geq 1$, it holds that $\sigma\left(P_{n}\right)=1$.
Lemma 2.2 (Theorem 3.1 of [3]). For $n \geq 1$, it holds that $\zeta\left(P_{n}\right)=0$.
Finally, let a component of G be a connected subgraph of G that is not a subset of a larger connected subgraph.

3. The Spum of Paths

For this section, let $G \cup I_{\sigma(G)}$ be a sum graph of L that satisfies range $(L)=\operatorname{spum}(G)$. Let $S=\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}$ be labels of the vertices of G such that $a_{1}<a_{2}<\cdots<a_{n}$. Next, let

$$
\begin{aligned}
& T=\left[a_{1}, a_{n}\right] \backslash S, \\
& M=\left(S \backslash\left[a_{1}, 2 a_{1}\right]\right)-a_{1}, \text { and } \\
& J=\left(S \backslash\left[a_{1}, 3 a_{1}\right]\right)-2 a_{1} .
\end{aligned}
$$

We say that L is tight if $T \subseteq M$ and k-tight if $|T \backslash M|=k$. Let $m=a_{1}-\left|S \cap\left[a_{1}, 2 a_{1}\right]\right|$. Then, because $\left|S \cap\left[a_{1}, 2 a_{1}\right]\right|=a_{1}-m$ and $S \sqcup T=\left[a_{1}, a_{n}\right]$, it follows that

$$
\begin{equation*}
\left|T \cap\left[a_{1}, 2 a_{1}\right]\right|=\left|\left[a_{1}, 2 a_{1}\right]\right|-\left(a_{1}-m\right)=m+1 \tag{3.1}
\end{equation*}
$$

Finally, let $\epsilon=1$ if $\left(a_{1}, a_{n}\right) \in E$, and $\epsilon=0$ otherwise.
3.1. The inequality $\operatorname{spum}\left(P_{n}\right) \geq 2 n-2$ for $n \geq 7$. We first cite the best known bounds on $\operatorname{spum}\left(P_{n}\right)$.

Theorem 3.1 (Theorem 3.1 of [4]). For $n \geq 7$, it holds that

$$
2 n-2 \leq \operatorname{spum}\left(P_{n}\right) \leq \begin{cases}2 n+1 & \text { if } n \text { is odd } \\ 2 n-1 & \text { if } n \text { is even } .\end{cases}
$$

We first generalize and correct an error in the original presentation of Claim 2 in [5].
Lemma 3.2. If $G \cup I_{i}$ is a sum graph of L and $\left\{a_{1}, 2 a_{1}\right\} \subseteq L$, then

$$
\text { range }(L) \geq 3 n-a_{1}-3+m-4 \Delta+\delta+2 \epsilon
$$

Proof. First, because $\left|N\left(a_{1}\right)\right| \leq \Delta$, at most $\Delta-\epsilon$ pairs of labels in $S \backslash\left\{a_{1}\right\}$ differ by a_{1}. As $\left[a_{1}, 2 a_{1}\right] \subseteq S \sqcup T=\left[a_{1}, a_{n}\right]$, by Equation (3.1), it holds that

$$
\begin{equation*}
\left|S \cap\left[2 a_{1}+1,3 a_{1}\right]\right| \leq\left|T \cap\left[a_{1}+1,2 a_{1}\right]\right|+\Delta-\epsilon=\Delta+m+1-\epsilon \tag{3.2}
\end{equation*}
$$

Because $a_{n} \notin M$, we have that $S \cap M \subseteq N\left(a_{1}\right) \backslash a_{n}$, so

$$
\begin{equation*}
|S \cap M| \leq\left|N\left(a_{r+1}\right)\right|-\epsilon \leq \Delta-\epsilon . \tag{3.3}
\end{equation*}
$$

Likewise, because $M \cap J \subseteq N\left(a_{1}\right) \backslash a_{n}$, it follows that

$$
\begin{equation*}
|M \cap J| \leq\left|N\left(a_{r+1}\right)\right|-\epsilon \leq \Delta-\epsilon \tag{3.4}
\end{equation*}
$$

Similarly, because $S \cap J \subseteq N\left(2 a_{1}\right) \cup 2 a_{1}$, it follows that

$$
\begin{equation*}
|S \cap J| \leq\left|N\left(2 a_{1}\right)\right|+1 \leq \Delta+1 . \tag{3.5}
\end{equation*}
$$

Notice that because $|M|=\left|S \backslash\left[a_{1}, 2 a_{1}\right]\right|$, it follows that

$$
\begin{equation*}
|M|=|S|-\left|S \cap\left[a_{1}, 2 a_{1}\right]\right|=n-\left(a_{1}-m\right) . \tag{3.6}
\end{equation*}
$$

Because $M \subseteq S \sqcup T=\left[a_{1}, a_{n}\right]$, from Equations (3.3) and (3.6),

$$
\begin{equation*}
|T \cap M|=|M|-|S \cap M| \geq n-\left(a_{1}-m\right)-(\Delta-\epsilon) \tag{3.7}
\end{equation*}
$$

Now, from Equation (3.2),

$$
\begin{align*}
|J| & =|S|-\left|S \cap\left[a_{1}, 2 a_{1}\right]\right|-\left|S \cap\left[2 a_{1}+1,3 a_{1}\right]\right| \\
& \geq n-\left(a_{1}-m\right)-(\Delta+m+1-\epsilon) \tag{3.8}\\
& =n-a_{1}-1-\Delta+\epsilon .
\end{align*}
$$

As $J \subseteq S \sqcup T=\left[a_{1}, a_{n}\right]$, Equations (3.5) and (3.8) imply

$$
\begin{align*}
|T \cap J| & =|J|-|S \cap J| \\
& \geq n-a_{1}-1-\Delta+\epsilon-(\Delta+1) \tag{3.9}\\
& \geq n-a_{1}-2-2 \Delta+\epsilon .
\end{align*}
$$

Lastly, from Equations (3.4), (3.7), and (3.9),

$$
\begin{align*}
|T| & \geq|T \cap M|+|T \cap J|-|T \cap M \cap J| \geq|T \cap M|+|T \cap J|-|M \cap J| \tag{3.10}\\
& =\left(n-a_{1}+m-\Delta+\epsilon\right)+\left(n-a_{1}-2-2 \Delta+\epsilon\right)-(\Delta-\epsilon) \\
& =2 n-4 \Delta+3 \epsilon-2 a_{1}+m-2 .
\end{align*}
$$

Because $|T|=\left(a_{n}-a_{1}+1\right)-n$, from Equation (3.10),

$$
\begin{equation*}
a_{n} \geq 3 n-a_{1}-3+m-4 \Delta+3 \epsilon \tag{3.11}
\end{equation*}
$$

Now, because $\max \left(N\left(a_{n}\right)\right) \geq a_{1}+\delta-\epsilon$, from Equation (3.11),

$$
\begin{equation*}
\operatorname{range}(L) \geq\left(a_{n}+a_{1}+\delta-\epsilon\right)-a_{1} \geq 3 n-a_{1}-3+m-4 \Delta+\delta+2 \epsilon \tag{3.12}
\end{equation*}
$$

Remark. The proof of Claim 2 in [5] claimed that $|S \cap J| \leq \Delta$, but it is possible that $|S \cap J|=\Delta+1$ if $2 a_{1} \in S \cap J$.

By specifying $G=P_{n}$ in Lemma 3.2, we arrive at the following corollary.
Corollary 3.3. If $\left\{a_{1}, 2 a_{1}\right\} \subseteq S$, then $\operatorname{spum}\left(P_{n}\right) \geq 3 n-a_{1}-11+2 \epsilon$.
3.2. The inequality $\operatorname{spum}\left(P_{n}\right) \geq 2 n-1$ for $n \geq 8$. For the rest of Section 3, let $G=$ $P_{n} \cup I_{\sigma\left(P_{n}\right)}=P_{n} \cup I_{1}$ from Lemma 2.1. In addition, let $\left\{a_{n+1}\right\}=L \backslash S$. Let $b_{i}=a_{i+1}-a_{i}$ for $1 \leq i \leq n$, and c_{ℓ} be the number of $1 \leq i \leq n$ such that $b_{i}=\ell$. We first generalize Lemma 2.5 by Li (4].

Lemma 3.4. If L is k-tight, then $2 n-3+m+k+\epsilon \leq a_{n} \leq \operatorname{range}(L)$.
Proof. By letting $G=P_{n}$ in Equation (3.7),

$$
\begin{equation*}
|T \cap M| \geq n-a_{1}+m-2+\epsilon \tag{3.13}
\end{equation*}
$$

Now, because $|T \backslash M|=k$ and $|T|=\left(a_{n}-a_{1}+1\right)-n$, from Equation (3.13),

$$
\begin{equation*}
\left(a_{n}-a_{1}+1\right)-n=|T|=|T \cap M|+k \geq n-a_{1}+m-2+\epsilon+k \tag{3.14}
\end{equation*}
$$

The statement of the lower bound of a_{n} now follows from rearranging Equation (3.14). In addition, because $a_{n+1} \geq a_{n}+a_{1}$, it follows that $a_{n} \leq a_{n+1}-a_{1}=\operatorname{range}(L)$.

An immediate corollary of Lemma 3.4 is a lower bound for range (L).
Corollary 3.5. If L is k-tight, then range $(L) \geq 2 n-2+m+k$.
Proof. Because $\max \left(N\left(a_{n}\right)\right) \geq a_{1}+1-\epsilon$, from Lemma 3.4 ,

$$
\begin{equation*}
\operatorname{range}(L) \geq a_{n}+a_{1}+1-\epsilon-a_{1} \geq 2 n-2+m+k \tag{3.15}
\end{equation*}
$$

Next, we give an upper bound on a_{1} for $k-\operatorname{tight} L$.
Lemma 3.6. If L is k-tight, then $a_{1} \leq k+2$.
Proof. Suppose otherwise. If $M \neq \emptyset$, then

$$
\begin{equation*}
\max (M)=a_{n}-a_{1} \leq a_{n}-k-3 \tag{3.16}
\end{equation*}
$$

so regardless of whether or not $M=\emptyset$, it must hold that

$$
\begin{equation*}
\left[a_{n}-k-2, a_{n}\right] \cap M=\emptyset \tag{3.17}
\end{equation*}
$$

Now, from Equation (3.17),

$$
\begin{equation*}
\left[a_{n}-k-2, a_{n}\right] \cap T \subseteq T \backslash M \tag{3.18}
\end{equation*}
$$

Because $S \sqcup T=\left[a_{1}, a_{n}\right]$ and L is k-tight, it holds from Equation (3.18) that

$$
\begin{align*}
\left|S \cap\left[a_{n}-k-2, a_{n}\right]\right| & =\left|\left[a_{n}-k-2, a_{n}\right]\right|-\left|\left[a_{n}-k-2, a_{n}\right] \cap T\right| \\
& \geq\left|\left[a_{n}-k-2, a_{n}\right]\right|-|T \backslash M| \tag{3.19}\\
& =k+3-k=3 .
\end{align*}
$$

Now, because $\sigma(G)=1$ and $a_{1} \geq k+3$, all vertices with labels in $S \cap\left[a_{n}-k-2, a_{n}\right]$ have one neighbor. However, exactly two vertices in P_{n} have one neighbor. Thus, $a_{1} \leq k+2$.

Next, we derive a upper bound for a_{n}. To do so, we define

$$
\begin{aligned}
& X=\left(S \backslash a_{1}\right)-a_{1}, \\
& Y=\left(S \backslash\left[a_{1}, a_{2}\right]\right)-a_{2}, \text { and } \\
& Z=\left[1, a_{n}\right] \backslash S
\end{aligned}
$$

In addition, let $\mu=\left|N\left(a_{1}\right) \backslash X\right|+\left|N\left(a_{2}\right) \backslash Y\right|$.
Lemma 3.7. If $2 a_{1} \notin L$, then $|Z \backslash X|+|Z \backslash Y| \leq 2 a_{n}-4 n+8-\mu$.

Proof. First, because $\left|N\left(a_{1}\right)\right| \leq 2$ and $2 a_{1} \notin L$,

$$
\begin{equation*}
|X \cap S| \leq 2-\left|N\left(a_{1}\right) \backslash X\right| \tag{3.20}
\end{equation*}
$$

Furthermore, because $\left|N\left(a_{2}\right)\right| \leq 2$ and $a_{2} \in S \cap Y$,

$$
\begin{equation*}
|Y \cap S| \leq 3-\left|N\left(a_{2}\right) \backslash Y\right| \tag{3.21}
\end{equation*}
$$

Because $X, Y \subseteq Z \sqcup S=\left[1, a_{n}\right]$, from Equations (3.20) and (3.21),

$$
\begin{equation*}
|X \cap Z|=|X|-|X \cap S| \geq(n-1)-\left(2-\left|N\left(a_{1}\right) \backslash X\right|\right)=n-3+\left|N\left(a_{1}\right) \backslash X\right| \tag{3.22}
\end{equation*}
$$

and

$$
\begin{equation*}
|Y \cap Z|=|Y|-|Y \cap S| \geq(n-2)-\left(3-\left|N\left(a_{2}\right) \backslash Y\right|\right)=n-5+\left|N\left(a_{2}\right) \backslash Y\right| \tag{3.23}
\end{equation*}
$$

Next, because $|Z|=a_{n}-n$, from Equations (3.22) and (3.23), it holds that

$$
\begin{equation*}
|Z \backslash X|=|Z|-|Z \cap X| \leq\left(a_{n}-n\right)-n+3-\left|N\left(a_{1}\right) \backslash X\right|, \tag{3.24}
\end{equation*}
$$

and

$$
\begin{equation*}
|Z \backslash Y|=|Z|-|Z \cap Y| \leq\left(a_{n}-n\right)-n+5-\left|N\left(a_{2}\right) \backslash Y\right| \tag{3.25}
\end{equation*}
$$

Finally, the statement of the lemma follows from adding Equations (3.24) and (3.25).
Next, we use Lemma 3.7 to bound n from above when $a_{1}+1=a_{2}$. In the following proof, for some $1 \leq i \leq j \leq n$, we say that $\left[a_{i}, a_{j}\right]$ is a run if $\left[a_{i}, a_{j}\right] \subseteq S$ and $\left\{a_{i}-1, a_{j}+1\right\} \cap S=\emptyset$. Note that $S=\bigsqcup_{i=1}^{t} R_{i}$, where R_{i} are runs.

Lemma 3.8. If $2 a_{1} \notin S$ and $a_{1}+1=a_{2}$, then $n \leq a_{1}\left(a_{n}-2 n+7-\mu\right)+2-\epsilon$.
Proof. From Lemma 3.7,

$$
\begin{align*}
2 a_{n}-4 n+8-\mu & \geq|Z \backslash X|+|Z \backslash Y| \tag{3.26}\\
& \geq|Z|-|X \cap Y|=|Z|-|Y|+|Y \backslash X|
\end{align*}
$$

Because $|Y|=n-2$ and $|Z|=a_{n}-n$, it follows from Equation (3.26) that

$$
\begin{align*}
|Y \backslash X| & \leq|Y|-|Z|+2 a_{n}-4 n+8-\mu \\
& =(n-2)-\left(a_{n}-n\right)+2 a_{n}-4 n+8-\mu \tag{3.27}\\
& =a_{n}-2 n+6-\mu
\end{align*}
$$

Note that $y \in Y \backslash X$ if and only if $y+a_{2}=y+a_{1}+1 \in S$ and $y+a_{1} \notin S$. Now, for all runs R_{i}, unless $a_{1}, a_{2} \in R_{i}$, it holds that $\min \left(R_{i}\right)-a_{2} \in Y \backslash X$, because by the definition of runs, $\min \left(R_{i}\right)-a_{2}+a_{1}=\min \left(R_{i}\right)-1 \notin S$. Thus, from Equation (3.27),

$$
\begin{equation*}
t \leq|Y \backslash X|+1 \leq a_{n}+7-\mu \tag{3.28}
\end{equation*}
$$

Next, because at most $2-\epsilon$ pairs of labels in S differ by a_{1} and $2 a_{1} \notin S$,

$$
\begin{equation*}
\sum_{i=1}^{t} \max \left(\left|R_{i}\right|-a_{1}, 0\right) \leq 2-\epsilon \tag{3.29}
\end{equation*}
$$

from which it follows that

$$
\begin{equation*}
|S|=\sum_{i=1}^{t}\left|R_{i}\right| \leq t \cdot a_{1}+2-\epsilon \tag{3.30}
\end{equation*}
$$

Therefore, from Equations (3.27) and (3.28), $|S|=n \leq a_{1}\left(a_{n}-2 n+7-\mu\right)+2-\epsilon$.

Next, we use the labels not in $S \cup(T \backslash M)$ to find labels in S.
Proposition 3.9. If $t \notin S$ and $t \notin T \backslash M$, then $t+a_{1} \in S$. In addition, if $t>2 a_{1}$ and $t-a_{1} \notin T \backslash M$, then $t-a_{1} \in S$.
Proof. First, if $t+a_{1} \notin S$, then $t \notin M$, from which $t \in T \backslash M$. Next, if $t>2 a_{1}$ and $t-a_{1} \notin S$, then from $S \sqcup T=\left[a_{1}, a_{n}\right]$, it holds that $t-a_{1} \in T$. Now, because $t \notin S$, it holds that $t-a_{1} \notin M$ by the definition of M. Therefore, $t-a_{1} \in T \backslash M$, a contradiction.

Next, we show that if $\operatorname{spum}\left(P_{n}\right)=2 n-2$ and $n \geq 13$, then $\left\{a_{1}, 2 a_{1}\right\} \subseteq L$.
Lemma 3.10. If $\operatorname{spum}\left(P_{n}\right)=2 n-2$ for $n \geq 13$, then $\left\{a_{1}, 2 a_{1}\right\} \subseteq L$.
Proof. Suppose otherwise. From Corollary 3.5, $m=k=0$. By Lemma 3.6, $a_{1} \leq 2$. First, if $a_{1}=2$, then $|S \cap[2,4]|=2$. Thus, because $2 a_{1}=4 \notin S$, we have $a_{2}=3$. Then, because $a_{n} \leq \operatorname{spum}\left(P_{n}\right)=2 n-2$, by Lemma 3.8, $n \leq 12$. Thus, $a_{1}=1$.

Now, as $m=0$, it holds that $|S \cap[1,2]|=1$, so $2 \notin S$. As $k=0$, it holds that $T \backslash M=\emptyset$, so by setting $t=2$ in Proposition 3.9, $a_{2}=3$. Next, from Lemma 3.4, $2 n-3 \leq a_{n} \leq 2 n-2$. However, if $a_{n}=2 n-3$, then $N(2 n-3)=\emptyset$ as $2 \notin S$. Thus, $a_{n}=2 n-2$.

Now, if $2 n-3 \in S$, then because $2 \notin S$, the vertices $\{2 n-2,1,2 n-3\}$ are a component of G, so $2 n-3 \notin S$. Because $k=0$, by setting $t=2 n-3$ in Proposition 3.9, it holds that $2 n-4 \in S$. Now, if 4 or $2 n-5$ is in L, then $\{1,3,4,2 n-5,2 n-4,2 n-2\} \cap L$ is a component of G, so $\{4,2 n-5\} \subseteq T$. Now, by setting $t=4$ (resp. $2 n-5$) in Proposition 3.9, we have $5 \in S$ (resp. $2 n-6 \in S$). Because $\{2,4,2 n-2,2 n-4\} \subseteq T$, it holds that $|N(2 n-6)|=1$. However, the vertices $2 n-2$ and $2 n-4$ also have 1 neighbor. Thus, $\left\{a_{1}, 2 a_{1}\right\} \subseteq L$.

Now, from Lemma 3.10, we show that $\operatorname{spum}\left(P_{n}\right) \geq 2 n-1$.
Theorem 3.11. If $n \geq 8$, then $\operatorname{spum}\left(P_{n}\right) \geq 2 n-1$.
Proof. Suppose otherwise. First, from Theorem 3.1, $\operatorname{spum}\left(P_{n}\right)=2 n-2$. Then, by computer search in $\mathrm{Li}[4]$ for odd $8 \leq n \leq 12$, it follows that $n \geq 13$. Now, as $m \geq-1$, from Corollary 3.5, $k \leq 1$. By Lemma 3.6, $a_{1} \leq 3$. However, from Lemma 3.10, $2 a_{1} \in S$. Thus, $2 n-2=\operatorname{range}(L) \geq 3 n-a_{1}-11$ by Corollary 3.3, which implies $n \leq a_{1}+9 \leq 12$.
3.3. The inequality $\operatorname{spum}\left(P_{n}\right) \geq 2 n$ for odd $n \geq 9$. We now show that $\operatorname{spum}\left(P_{n}\right) \geq 2 n$ for odd $n \geq 9$. First, assign $\varphi:[n] \rightarrow\{0,1\}$ such that

$$
\varphi(i)= \begin{cases}1 & \text { if } a_{i} \geq 8 \text { and } b_{i-1}=b_{i-2}=b_{i-3}=2 \\ 0 & \text { otherwise }\end{cases}
$$

Next, we define for labels a_{i} in L

$$
\operatorname{st}\left(a_{i}\right)=a_{i}-2 \sum_{j=1}^{i-1} \varphi(j)
$$

Note that $\operatorname{st}\left(a_{i}\right)$ is weakly increasing in i. Next, we define the set $\operatorname{st}(L)$

$$
\operatorname{st}(L)=\left\{\operatorname{st}\left(a_{i}\right) \mid \varphi(i)=0\right\} .
$$

Note that each st $\left(a_{i}\right)$ for i such that $\varphi(i)=0$ are distinct. The following proposition follows immediately from the definitions.
Proposition 3.12. If $\operatorname{st}\left(a_{i}\right)<\operatorname{st}\left(a_{j}\right)$ are consecutive in $\operatorname{st}(L)$ for $i \geq 2$, then $\operatorname{st}\left(a_{j}\right)-\operatorname{st}\left(a_{i}\right)=$ b_{j-1}.

Proof. If $j=i+1$, it holds that $\operatorname{st}\left(a_{j}\right)-\operatorname{st}\left(a_{i}\right)=a_{i+1}-a_{i}-2 \varphi(i)=b_{i}$. Otherwise, if $j \neq i+1$, then because $\operatorname{st}\left(a_{\ell}\right) \notin \operatorname{st}(L)$ and $\varphi(\ell)=1$ for $i \leq \ell-1 \leq j$, we have $b_{\ell}=2$ for $i-2 \leq \ell \leq j-2$. In addition, because $\varphi(i+1)=1$ and $\varphi(i)=0$, it follows that $a_{i-3} \neq 2$. Thus, $\varphi(i-1)=0$, and $\operatorname{st}\left(a_{j}\right)-\operatorname{st}\left(a_{i}\right)=b_{j-1}+2 \cdot(j-i)-2 \sum_{\ell=i-1}^{j-1} \varphi(\ell)=b_{j-1}$.

We now show that number of pairs of labels that differ by 3 in L is at least that of $\operatorname{st}(L)$.
Proposition 3.13. $\left|N_{L}(3)\right| \geq\left|N_{\mathrm{st}(L)}(3)\right|$.
Proof. We show that if $\operatorname{st}\left(a_{i}\right)-3 \in N_{\mathrm{st}(L)}(3)$, then $a_{i}-3 \in N_{L}(3)$. Suppose that there exists some a_{j} such that $\operatorname{st}\left(a_{i}\right)=\operatorname{st}\left(a_{j}\right)+3$. First, from Proposition 3.12, if $\left[\operatorname{st}\left(a_{j}\right)+1, \operatorname{st}\left(a_{j}\right)+\right.$ $2] \cap \operatorname{st}(L)=\emptyset$, then $b_{i-1}=3$. Thus, $a_{i}-3 \in N_{L}(3)$. Next, if $\left[\operatorname{st}\left(a_{j}\right)+1\right.$, $\left.\operatorname{st}\left(a_{j}\right)+2\right] \cap \operatorname{st}(L)=$ $\operatorname{st}\left(a_{j}\right)+1=\operatorname{st}\left(a_{\nu}\right)$ with $\varphi(\nu)=0$, then $b_{i-1}=2$ and $b_{\nu-1}=1$ from Proposition 3.12. Now, because $b_{\nu-1}=1$, it holds that if $i \neq \nu+1$, then $\varphi(\nu+1)=1$. Thus, $i=\nu+1$, so $a_{\nu-1}=a_{j}-3$.

Now, suppose $\left[\operatorname{st}\left(a_{j}\right)+1, \operatorname{st}\left(a_{j}\right)+2\right] \cap \operatorname{st}(L)=\operatorname{st}\left(a_{j}\right)+2=\operatorname{st}\left(a_{\nu}\right)$ with $\varphi(\nu)=0$. Then, from Proposition 3.12, $b_{i-1}=1$ and $b_{\nu-1}=2$. If $i=\nu+1$, then either $a_{\nu-1}=a_{i}-3$ or $b_{i-2}=2$ because $\varphi(i-1)=1$. Thus, $a_{i-2}=a_{j}-3$. Finally, suppose that $\left[\operatorname{st}\left(a_{j}\right)+1, \operatorname{st}\left(a_{j}\right)+2\right] \subseteq$ $\operatorname{st}(L)$. If $\operatorname{st}\left(a_{j}\right)+1=\operatorname{st}\left(a_{\nu}\right)$, and $\operatorname{st}\left(a_{j}\right)+2=\operatorname{st}\left(a_{\ell}\right)$ with $\varphi(\nu)=\varphi(\ell)=0$, then from Proposition 3.12, $b_{i-1}=b_{\ell-1}=b_{\nu-1}=1$. If $i \neq \ell+1$, then $\varphi(\ell+1)=1$ because $b_{\ell-1}=1$. Thus, $i=\ell+1$. Similarly, $\ell=\nu+1$. Thus, because $b_{i-1}=b_{\ell-1}=b_{\nu-1}=1$, we have $a_{i}=a_{\nu-1}+3$.

Next, we prove that if range $(L)=2 n-1$ and $a_{1}=1$, then $2 \in S$.
Lemma 3.14. If range $(L)=2 n-1$ for odd $n \geq 17$ and $a_{1}=1$, then $[1,2] \subseteq S$.
Proof. Suppose otherwise. Then $m=0$. Now, from Corollary $3.5, k=|T \backslash M| \leq 1$. If $a_{2} \geq 5$, then $\{2,3,4\} \subseteq T$, which implies that $\{2,3\} \subseteq T \backslash M$. It follows that $a_{2} \in\{3,4\}$. Suppose that $a_{2}=4$. Then $2 \in T \backslash M$, so $k=1$. From Lemma $3.4, a_{n} \in\{2 n-2,2 n-1\}$. Because $2 \in T$ and $a_{n+1}=2 n-1+a_{1}=2 n$, if $a_{n}=2 n-2$, then $N(2 n-2)=\emptyset$. Thus, $a_{n}=2 n-1$. Now, as $2 \notin S$ and $|N(1)| \leq 2$, if $2 n-2 \in S$, then the labels $\{2 n-1,1,2 n-2\}$ form a component. Therefore, $2 n-2 \in T$. By setting $t=2 n-2$ in Proposition 3.9, $2 n-3 \in S$. However, if $\{2,3,2 n-2\} \subseteq T$, then $N(2 n-3)=\emptyset$. Thus, $a_{2}=3$.

Now, from Lemma 3.4, $a_{n} \geq 2 n-3$. Because $2 \in T$ and $a_{n+1}=\operatorname{range}(L)+a_{1}=2 n$, if $a_{n}=2 n-2$, then $N(2 n-2)=\emptyset$. Thus, $a_{n} \in\{2 n-3,2 n-1\}$. Furthermore, if $b_{i} \geq 3$, then $\left[a_{i}+1, a_{i}+2\right] \subseteq T$ and $a_{i}+1 \in T \backslash M$. Therefore, $b_{i} \geq 3$ for at most one value of $i \in[1, n-1]$. In addition, because $\sum_{i=1}^{n} b_{i}=\operatorname{range}(L)=2 n-1$, it follows that $c_{1}=2$, $c_{2}=n-3$, and $c_{3}=1$. Therefore, for $n \geq 10$, there exists a sequence $b_{i}=b_{i+1}=b_{i+2}=2$ with $a_{i+2} \geq 8$. Thus, $|\operatorname{st}(L)| \leq 9$. From Proposition 3.13 , we must have $N_{\operatorname{st}(L)}(3) \leq 2$. In addition, if $\{\max (\operatorname{st}(L))-2, \max (\operatorname{st}(L))-1\} \subseteq \operatorname{st}(L)$, then $\{1, \max (L)-2, \max (L)-1\} \subseteq L$ is a component. Thus, $\{\max (\operatorname{st}(L))-2, \max (\operatorname{st}(L))-1\} \nsubseteq \mathrm{st}(L)$. Now, Table 1 shows the exhaustive list of the possible st (L) found by computer search given the constraints
(1) $|\operatorname{st}(L)| \leq 9$,
(2) $N_{\mathrm{st}(L)}(3) \leq 2$, and
(3) $\{\max (\operatorname{st}(L))-2, \max (\operatorname{st}(L))-1\} \nsubseteq \operatorname{st}(L)$
and why each is not a sum graph labeling of P_{n}. Therefore, $[1,2] \subseteq S$.
Now, we prove the analog of Lemma 3.14 for $a_{1} \neq 1$.

$\operatorname{st}(L)$	Why P_{n} is not a sum graph of L
$\{1,3,5,6,7,9,11,14\}$	$\{1,5,6\}$ is a cycle.
$\{1,3,6,7,9,11,12\}$	$N(2 n-5)=\emptyset$
$\{1,3,4,6,8,11,12\}$	$\{6,8,10\} \subseteq N(4)$ for $n \geq 9$.
$\{1,3,5,6,9,11,13,14\}$	$\{2 n-1,1,5,2 n-5\}$ is a component.
$\{1,3,5,6,8,10,13,14\}$	$\{1,3,2 n-6\} \subseteq N(5)$
$\{1,3,5,7,8,9,12\}$	$\|N(n)\|=\|N(n-2)\|=\|N(2 n-1)\|=1$ for odd n.
$\{1,3,5,7,8,11,12\}$	$\|N(n)\|=\|N(n-2)\|=\|N(2 n-1)\|=1$ for odd n.

Table 1. Remaining possible $\operatorname{st}(L)$ in the proof of Lemma 3.14
Lemma 3.15. If range $(L)=2 n-1$ for odd $n \geq 17$ and $a_{1} \neq 1$, then $2 a_{1} \in S$.
Proof. Suppose otherwise. Then from Corollary $3.5, k \leq 1$. Thus, $a_{1} \in\{2,3\}$. First, suppose that $a_{1}=3$. Then, $1 \leq\left|\left[a_{n}-2, a_{n}-1\right] \cup(T \backslash M)\right| \leq k$ by the definition of k. Thus, $m=0$ from Corollary 3.5, and so $[3,5] \subseteq S$. Because $a_{n} \geq 2 n-2$ from Lemma 3.4 and $a_{n+1}=\operatorname{range}(L)+3=2 n+2$, it follows that $N\left(a_{n}\right) \cap\{3,4\} \neq \emptyset$, so $\mu \geq 1$. If $a_{n}=2 n-1$, then $\epsilon=1$, and from Lemma 3.8, $n \leq 16$. Thus, $a_{n}=2 n-2$, so from Lemma $3.8, n \leq 14$.

Next, suppose that $a_{1}=2$. First, if $m=1$, then because $\{3,4\} \subseteq T$, $\max (L)=2 n+1$ and $N\left(a_{n}\right) \neq \emptyset$, from Lemma $3.4, a_{n}=2 n-1$. Now, because $N(2 n-2)=\emptyset$, then $2 n-2 \in T \backslash M$. Now, from Corollary $3.5, k=0$. Thus, $m=0$ and $[2,3] \subseteq S$, so $n \leq 14$ from Lemma 33.8.

Now, from Lemma 3.15, we show that $\operatorname{spum}\left(P_{n}\right) \geq 2 n$ for odd n.
Theorem 3.16. For odd $n \geq 9$, it holds that $\operatorname{spum}\left(P_{n}\right) \geq 2 n$.
Proof. Suppose otherwise. First, from Theorem 3.11, $\operatorname{spum}\left(P_{n}\right)=2 n-1$. From computer search by Li $[4], n \geq 17$. Now, because $m \geq-1$, from Corollary 3.5, $k \leq 2$. Then, from Lemma 3.6, $a_{1} \leq 4$. Furthermore, from Lemmas 3.14 and 3.15, it holds that $2 a_{1} \in S$, and thus from Corollary $3.3,2 n-1=\operatorname{range}(L) \geq 3 n-a_{1}-11$, which implies that $n \leq a_{1}+10 \leq 14$.
3.4. The inequality $\operatorname{spum}\left(P_{n}\right) \geq 2 n+1$ for odd $n \geq 9$. We first show that if range $(L)=2 n$ and $a_{1}=1$, then $a_{2} \leq 4$.

Lemma 3.17. If range $(L)=2 n$ for odd $n \geq 17$, and $a_{1}=1$, then $a_{2} \leq 4$,
Proof. Suppose otherwise. Then $m=0$. From Corollary 3.5, $k=|T \backslash M| \leq 2$. Now, if $a_{2} \geq 6$, then $\{2,3,4,5\} \subseteq T$, and thus, $\{2,3,4\} \subseteq T \backslash M$. Therefore, $a_{2}=5$.

As a result, $\{2,3\} \subseteq T \backslash M$, so $k=2$. From Lemma 3.4, $a_{n} \geq 2 n-1$. If $a_{n}=2 n-1$, then $N(2 n-1)=\emptyset$, because $2 \in T$ and $a_{n+1}=$ range $(L)+a_{1}=2 n+1$. Thus, $a_{n}=2 n$. Now, if $2 n-1 \in S$, then because $1 \in S$ and $2 \notin S$ and $|N(1)| \leq 2$, the vertices with labels $\{2 n, 1,2 n-1\}$ form a component. Therefore, $2 n-1 \in T$. By setting $t=2 n-1$ in Proposition 3.9, $2 n-2 \in S$. However, because $\{2,3,2 n-1\} \subseteq T$, it holds that $N(2 n-2)=$ \emptyset.

We now show the analog of Lemma 3.17 for $a_{2}=4$.
Lemma 3.18. If range $(L)=2 n$ for odd $n \geq 17$ and $a_{1}=1$, then $a_{2} \neq 4$.
Proof. Suppose otherwise. Then, $2 \in T \backslash M$, so $k \geq 1$. Now, from Lemma $3.4, a_{n} \geq 2 n-2$. If $a_{n} \in\{2 n-2,2 n-1\}$, then $N\left(a_{n}\right)=\emptyset$, because $\{2,3\} \subseteq T$ and $a_{n+1}=2 n+1$. Thus, $a_{n}=2 n$.

First, if $2 n-1 \in S$, then because $1 \in S$ and $2 \notin S$ and $|N(1)| \leq 2$, the vertices with labels $\{2 n, 1,2 n-1\}$ form a component. Therefore, $2 n-1 \in T$. Furthermore, if $2 n-2 \in S$, then because $\{2,3,2 n-1\} \subseteq T$, we have $N(2 n-2)=\emptyset$, so $2 n-2 \in T$. Then, from Corollary 3.5, $k \leq 2$, so $\{2 n-2,2\}=T \backslash M$. Then, by setting $t=2 n-2$ in Proposition $3.9,2 n-3 \in S$.

Now, if $\{5,2 n-4\} \cap L \neq \emptyset$, then the vertices with labels in $\{1,4,5,2 n-4,2 n-3,2 n\} \cap S$ form a component because $|N(1)|,|N(4)| \leq 2$. Thus, because $n \geq 17$, it must hold that $\{5,2 n-4\} \cap S=\emptyset$. Now, setting $t=5$ (resp. $t=2 n-4$) in Proposition 3.9, we have $6 \in S$ (resp. $2 n-5 \in S$). But then, because $\{2,3,5,2 n-4,2 n-2,2 n-1\} \subseteq T$, it holds that $|N(2 n-5)|=1$. Therefore, the vertices with labels $2 n, 2 n-3$, and $2 n-5$ all have degree 1, a contradiction to $G=P_{n}$.

We now show the analog of Lemma 3.17 for $a_{2}=3$.
Lemma 3.19. If range $(L)=2 n$ for odd $n \geq 17$, and $a_{1}=1$, then $a_{2} \neq 3$.
Proof. Suppose otherwise. Then from Lemma 3.4, $a_{n} \geq 2 n-3$. First, because $|N(1)| \leq 2$, then $c_{1} \leq 2$. Then because $\sum_{i=1}^{n} b_{i}=\operatorname{range}(L)=2 n$, either

- $c_{2}=n$,
- $c_{1}=c_{3}=2$, and $c_{2}=n-4$,
- $c_{1}=2, c_{4}=1$, and $c_{2}=n-3$, or
- $c_{1}=1, c_{2}=n-2$, and $c_{3}=1$.

First, if $c_{2}=n$, then labels in L are odd, so $G=I_{n} \neq P_{n}$. Now, because $2 \in T$, we have $b_{n} \neq 2$ and $b_{1} \neq 2$, otherwise $N\left(a_{n}\right)=\emptyset$ and $a_{2}=2$, respectively. Next, we show that if $c_{1}=2, c_{4}=1$, and $c_{2}=n-3$, and $b_{n}=1$, then $b_{n-1}=4$. Suppose otherwise.

First, $b_{n-1} \neq 1$, otherwise $\{2 n, 1,2 n-1\}$ is a component. In addition, if $b_{n-1}=2$, then $\{4,2 n-3\} \cap L=\emptyset$, otherwise $\{1,3,4,2 n-3,2 n-2,2 n\} \cap S$ form a component, because $2 \in T$. In addition, $2 n-4 \notin S$, because otherwise $\max (|N(2 n-4)|,|N(2 n)|,|N(2 n-2)|) \leq 1$. Thus, $\{2 n-4,2 n-3\} \subseteq T$, and it follows that $b_{n-2}=4$ and $a_{n-2}=2 n-6$. Because $\max (|N(2 n)|,|N(2 n-2)|) \leq 1$, it holds that $|N(2 n-6)|=2$, and $\{6,7\} \subseteq S$. However, $a_{2}=3,\{6,7\} \subseteq S, c_{3}=0$, and $c_{1}=1$. Therefore, $b_{n-1}=4$.

Therefore, for $n \geq 14$, there exists i such that $b_{i}=b_{i+1}=b_{i+2}=2$ with $a_{i+3} \geq 8$. Thus, $|\operatorname{st}(L)| \leq 13$. From Proposition 3.13, $N_{\mathrm{st}(L)}(3) \leq 2$. In addition, $\{\max (\operatorname{st}(L))-$ $2, \max (\operatorname{st}(L))-1\} \nsubseteq \operatorname{st}(L)$, otherwise $\{\max (L)-2, \max (L)-1,1\} \subseteq L$ is a component. Now, Table 2 shows the exhaustive list of the possible st (L) found by computer search given the constraints
(1) $|\operatorname{st}(L)| \leq 13$,
(2) $N_{\mathrm{st}(L)}(3) \leq 2$, and
(3) $\{\max (\operatorname{st}(L))-2, \max (\operatorname{st}(L))-1\} \nsubseteq \mathrm{st}(L)$
and why each is not a sum graph labeling of P_{n}. Therefore, $[1,2] \subseteq S$.
Now, Lemmas 3.17, 3.18, and 3.19 give the following corollary.
Corollary 3.20. If range $(L)=2 n$ for odd $n \geq 17$ and $a_{1}=1$, then $2 \in S$.
Now, we show the analog of Corollary 3.20 for $a_{1}=2$.
Lemma 3.21. If range $(L)=2 n$ for odd $n \geq 17$ and $a_{1}=2$, then $4 \in S$.
Proof. Suppose otherwise. Because $m \geq 0$, from Corollary 3.5, $k \leq 2$. If $a_{2} \geq 6$, then $m=1$ and $\{2,3\} \subseteq T \backslash M$. Then, from Corollary 3.5, range $(L) \geq 2 n+1$. Thus, because

st (L)	Why P_{n} is not a sum graph of L.
$\{1,3,4,5,7,9,13\}$	$\{1,3,5\} \subseteq N(4)$
$\{1,3,4,6,8,9,13\}$	$\|N(2 n-6)\|=\|N(2 n-4)\|=\|N(2 n-3)\|=1$
$\{1,3,4,6,8,11\}$	$\{1,3,2 n-2\}$ is a component.
$\{1,3,5,6,8,10,13\}$	$\{1,5,2 n-4\}$ is a component.
$\{1,3,5,7,8,11\}$	$\{1,2 n-3\}$ is a component.
$\{1,3,6,7,8,10,12,15\}$	$N(2 n-4)=\emptyset$
$\{1,3,6,8,10,11,12,15\}$	$\|N(2 n-4)\|=\|N(2 n-3)\|=\|N(2 n-2)\|=1$
$\{1,3,5,6,7,10,12,14,17\}$	$\|N(2 n-6)\|=\|N(2 n-4)\|=\|N(2 n-2)\|=1$
$\{1,3,5,7,10,11,12,15\}$	$\{2 n-9,2 n-7,2 n-4\} \subseteq N(5)$ for $n \geq 9$.
$\{1,3,4,6,8,12,13\}$	$\{1,3,2 n\}$ is a component.
$\{1,3,5,6,8,10,14,15\}$	$\{1,3,2 n-4\} \subseteq N(5)$
$\{1,3,5,7,8,10,12,16,17\}$	$\|N(2 n-6)\|=\|N(2 n-4)\|=\|N(2 n)\|=1$
$\{1,3,5,7,8,10,14,15\}$	$\|N(2 n-6)\|=\|N(2 n-4)\|=\|N(2 n)\|=1$
$\{1,3,5,7,8,12,13\}$	$\|N(3)\|=\|N(2 n-4)\|=\|N(2 n)\|=1$
$\{1,3,6,7,10,12,14,15\}$	$N(2 n-4)=\emptyset$
$\{1,3,6,7,9,11,14,15\}$	$\{1,6,2 n-5,2 n\}$ is a component.
$\{1,3,6,8,10,11,14,15\}$	$\{1,2 n-4,2 n\}$ is a component.
$\{1,3,5,6,9,11,13,16,17\}$	$\{5,6,2 n-5\}$ is a cycle.
$\{1,3,5,7,10,11,14,15\}$	$\|N(n)\|=\|N(n-2)\|=\|N(2 n-1)\|=1$ for odd n.

Table 2. Remaining possible st (L) in the proof of Lemma 3.19
$2 a_{1}=4 \in T$, it holds that $a_{2} \in\{3,5\}$. First, if $a_{2}=3$, then because $a_{n} \leq$ range (L), from Lemma 3.8, $n \leq 16$. Thus, $a_{2}=5$.

Because $a_{2}=5$, it follows that $m=1$, and because $3 \in T \backslash M$, from Corollary $3.5, k=1$. From Lemma 3.4, $2 n-1 \leq a_{n} \leq 2 n$. Because $3 \in T$, if $2 n-1 \in S$, then $N(2 n-1)=\emptyset$. Thus, because $\{2 n-1,2\} \subseteq T \backslash M$, it follows that $k \geq 2$. Finally, from Corollary 3.5, range $(L) \geq 2 n+1$. Thus, $2 a_{1} \in S$.

Next, we show the analog of Corollary 3.20 for $a_{1}=3$.
Lemma 3.22. If $\operatorname{spum}\left(P_{n}\right)=2 n$ for odd $n \geq 17$, and $a_{1}=3$, then $2 a_{1} \in S$.
Proof. Suppose otherwise. Then, as $m \geq 0$, it follows from Corollary 3.5 that $k \leq 2$. Next, from Lemma 3.4, $2 n-3 \leq a_{n} \leq 2 n$. But, because $N\left(a_{n}\right) \neq \emptyset$ and $a_{n+1}=a_{1}+\operatorname{range}(L)=$ $2 n+3$, it holds that $a_{n} \neq 2 n-3$. Next, because $6 \in T$ and $a_{n+1}=2 n+3$, if $a_{n}=2 n-2$, then from Lemma 3.4, $\{2 n-3\}=T \backslash M$, and $m=0$. Thus, $[3,5] \subseteq S$. In addition, by setting $t=6$ (resp. $t=2 n-3,2 n-1$) in Proposition $3.9,9 \in S$ (resp. $\{2 n-4,2 n-6\} \subseteq S$). Because $N(2 n-4) \neq \emptyset$, it holds that $7 \in S$. Thus, $\{3,5,2 n-6\} \subseteq N(4)$, so $a_{n} \neq 2 n-2$.

Now, if $a_{n}=2 n-1$ then $4 \in S$, otherwise $N(2 n-1)=\emptyset$. In addition, $\{2 n-3\}=T \backslash M$, otherwise $N(2 n-3)=\emptyset$. Because $N(2 n-2) \neq \emptyset$, if $2 n-2 \in S$, then $5 \in S$. Therefore, if $\{9,2 n-6\} \cap S \neq \emptyset$, then $\{4,5,2 n-6,2 n-2,2 n-1\}$ is a component. Thus, $\{9,2 n-6\} \subseteq T$, and $\{6,2 n-6,2 n-3\} \subseteq T \backslash M$. Because $k \leq 2$ from Corollary 3.5, we have that $2 n-2 \in T$. Then from Lemma 3.4, $\{2 n-3,2 n-2\}=T \backslash M$, and $m=0$. Therefore, $[3,5] \subseteq S$, and $\{6,2 n-5\} \cap T \backslash M=\emptyset$. Thus, by setting $t=6$ (resp. $t=2 n-2$) in Proposition 3.9, $9 \in S$ (resp. $2 n-5 \in S$) which implies $\{5,2 n-5,2 n-1\} \subseteq N(4)$. Therefore, $a_{n} \neq 2 n-1$.

Therefore, $a_{n}=2 n$. If $a_{n-1}=2 n-1$ then $4 \in S$, as otherwise $N(2 n-1)=\emptyset$. Thus, $\mu=2$, and $\epsilon=1$. Now, because $n \geq 17$ and from Lemma 3.8, $a_{n-1} \leq 2 n-2$. If $a_{n-1} \leq 2 n-3$, then from Lemma 3.4, $\{2 n-2,2 n-1\}=T \backslash M$. Next, because $m=0$, it follows that $[3,5] \subseteq S$. Thus, by setting $t=6$ (resp. $t=2 n-2,2 n-1$) in Proposition 3.9, $9 \in S$ (resp. $\{2 n-5,2 n-4\} \subseteq S$). Now, if $7 \in S$ (resp. $8 \in S$), then $\{3,5,2 n-4\} \subseteq N(4)$ (resp. $\{3,4,2 n-5\} \subseteq N(5)$). Therefore, $\{7,8\} \subseteq T$, which implies $\{2 n-4,4,5,2 n-5\}$ is a component, so $a_{n-1}=2 n-2$. Now, because $N(2 n-2) \neq \emptyset$, it holds that $5 \in S$. Next, if $2 n-4 \in S$, because $|N(2 n-2)|=|N(2 n)|=1$, it follows that $|N(2 n-4)|=2$, which implies $\{4,7\} \subseteq S$. Now, because $N(4)=\{3,2 n-4\}$, it holds that $9 \in T$, and from Lemma 3.4, $\{6,2 n-1\}=T \backslash M$. Thus, because $9 \notin T \backslash M$, by setting $t=9$ in Proposition $3.9,12 \in S$. Now, because $|N(2 n-2)|=|N(2 n)|=1$, it holds that $\{3,4,5,7,2 n-4,2 n-2,2 n\}$ is a component. Thus, $2 n-4 \in T$, and from Lemma 3.4, $\{2 n-4,2 n-1\}=T \backslash M$, and $m=0$, so $[3,5] \subseteq S$. Thus, because $6,2 n-7 \notin T \backslash M$, by setting $t=6$ (resp. $t=2 n-4$) in Proposition 3.9, $9 \in S$ (resp. $2 n-7 \in S$). Therefore, $\{4,2 n-7,2 n-2\} \subseteq N(5)$. Thus, because $\Delta=2$, it holds that $2 a_{1} \in S$.

Now, we show the analog of Corollary 3.20 for $a_{1} \geq 4$.
Lemma 3.23. If $\operatorname{spum}\left(P_{n}\right)=2 n$ and $a_{1} \geq 4$, then $2 a_{1} \in S$.
Proof. Suppose otherwise. Then from Corollary 3.5 and Lemma 3.6, $a_{1}=4, k=2$ and $m=0$. Therefore, $[4,7] \subseteq S$. Because $\left|\left[a_{n}-3, a_{n}-1\right] \cup(T \backslash M)\right| \geq 2$ by the definition of k, it holds that $T \backslash M \subseteq\left[a_{n}-3, a_{n}-1\right]$. Thus, by setting $t=8 \notin T \backslash M$ in Proposition 3.9, $12 \in S$. In addition, $a_{n+1}=a_{1}+\operatorname{spum}\left(P_{n}\right)=2 n+4$, and from Lemma $3.4, a_{n} \in\{2 n-1,2 n\}$.

If $a_{n}=2 n-1$, then $\{7,2 n-1\}=N(5)$. If $2 n-3 \in S$, then because $12 \in S$, it follows that $\{2 n-1,5,7,2 n-3\}$ is a component. If $2 n-4 \in S$, then because $8 \in S$, it follows that $N(2 n-4)=\emptyset$. Thus, from Corollary $3.5, T \backslash M=\{2 n-4,2 n-3\}$. Now, by setting $t=2 n+2$ in Proposition 3.9, $2 n-2 \in S$. If $13 \in S$, then $\{2 n, 5,7,6,2 n-1\}$ is a component. Therefore, $13 \in T$. Furthermore, because $4 \notin N(5)$, it follows that $9 \in T \backslash M$, so $a_{n}=2 n$.

Now, by the definition of $k,\left|\left[a_{n}-3, a_{n}-1\right] \cap S\right|=1$. If $2 n-3 \in S$, then $9 \notin S$ as otherwise, $\{2 n, 4,5,7,2 n-3\}$ is a component. Thus, $9 \in T$, and by setting $t=9 \notin T \backslash M$ in Proposition 3.9 , $13 \in S$. Then, $\{5,6,2 n-3\} \subseteq N(7)$, so $2 n-3 \notin S$. If $2 n-2 \in S$, then by setting $t=2 n-1 \notin T \backslash M$ in Proposition 3.9, $a_{n}-5 \in S$. Thus, $\{7,2 n-5\}=N(5)$. Because $4 \in S$, but $4 \notin N(5)$, it holds that $9 \in T$. But then because $\{9,2 n-1\} \subseteq T$, it holds that $|N(2 n-5)|=|N(2 n-2)|=|N(2 n)|=1$, so $2 n-2 \notin S$. Therefore, $2 n-5 \in S$, and so $|N(5)|=2$ implies that $a_{n}-6 \in T \backslash M$, a contradiction with $T \backslash M \subseteq\left[a_{n}-3, a_{n}-1\right]$. Thus, $2 a_{1} \in S$.

Finally, from Corollary 3.20 and Lemmas $3.21,3.22$, and 3.23 , we prove Theorem 1.1 .
Proof of Theorem 1.1. The statement is true for $n \leq 15$ from computer search by Li [4]. From Theorem 3.16, $\operatorname{spum}\left(P_{n}\right) \geq 2 n$ for odd $n \geq 9$. Now, assume for the sake of contradiction that range $(L)=2 n$ for odd $n \geq 17$. First, because $m \geq-1$, from Corollary 3.5 , $k \leq 3$. Then from Lemma 3.6, $a_{1} \leq 5$. Furthermore, from Corollary 3.20 and Lemmas 3.21, 3.22, and 3.23, $2 a_{1} \in S$. Thus, from Corollary 3.3, $2 n=$ range $(L) \geq 3 n-a_{1}-11$, which implies that $n \leq a_{1}+11 \leq 16$. Lastly, from Theorem $3.1, \operatorname{spum}\left(P_{n}\right) \leq 2 n+1$.

4. The Integral Sum-Diameter of Paths

In this section, we prove Theorem 1.4, from which Theorem 1.2 follows. Currently, the best known lower bound on isd $\left(P_{n}\right)$ is by Singla, Tiwari, and Tripathi [5], and the best known upper bound is by Li [4].

Theorem 4.1 (Theorem 2.2 of [5] and Proposition 9.6 of (4]). For $n \geq 3$, it holds that

$$
2 n-5 \leq \operatorname{isd}\left(P_{n}\right) \leq \begin{cases}2 n-2 & \text { if } n \text { is even } \\ 2 n-3 & \text { if } n \text { is odd }\end{cases}
$$

For the rest of this section, let $G \cup I_{t}$ be an integral sum graph of L that satisfies range $(L)=$ $\operatorname{isd}(G)$. Let $L=\left\{a_{1}, a_{2}, \ldots, a_{n+t}\right\}$ with $a_{1}<\cdots<a_{r-1}<0<a_{r}<\cdots<a_{n+t}$, and let $S \subseteq L$ be the labels of the vertices of G. Additionally, because $-L$ is still an integral sum graph labeling of $G \cup I_{t}$, we assume without loss of generality that $a_{r} \leq-a_{r-1}$. Now, define $b_{i}=a_{i+1}-a_{i}$ for $1 \leq i \leq n+t-1$, and c_{ℓ} be the number of $1 \leq i \leq n+t-1$ such that $b_{i}=\ell$. For each $1 \leq i \leq n+t$, say that a_{i} and a_{i+1} are consecutive. Finally, denote $N_{L}(\ell)=N(\ell)$ unless otherwise specified.

Next, we borrow notations from [5], and let

$$
\begin{array}{r}
S_{1}=\left\{a_{1}, a_{2}, \ldots, a_{r-1}\right\}, \\
S_{2}=\left\{a_{r}, a_{r+2}, \ldots, a_{n+t}\right\}, \\
S_{3}=S_{1}+a_{r}, \text { and } \\
S_{4}=S_{2}-a_{r} .
\end{array}
$$

In addition, for this section, let $T=\left[a_{1}, a_{n+t}\right] \backslash L$ and $M=S_{3} \cup S_{4}$. Finally, let $\eta=1$ if $a_{r-1}=-a_{r}$, and $\eta=0$ otherwise. Similarly, let $\xi=1$ if $2 a_{r} \in L$, and $\xi=0$ otherwise.
4.1. The inequality $\operatorname{isd}\left(P_{n}\right) \geq 2 n-4$ for $n \geq 8$. First, we set a lower bound on $|T \backslash M|$.

Lemma 4.2. It holds that $\left|\left(\left[a_{r-1}-a_{r}+1,-a_{r}-1\right] \cup\left[a_{r}, 2 a_{r}-1\right]\right) \backslash L\right| \leq|T \backslash M|$.
Proof. First, because $S_{3}=S_{1}+a_{r}=M \cap \mathbb{Z}_{\leq 0}$,

$$
\begin{equation*}
\left|\left[a_{r-1}-a_{r}+1,-a_{r}-1\right] \backslash S_{1}\right|=\left|\left[a_{r-1}+1,-1\right] \backslash S_{3}\right|=\left|\left[a_{r-1}+1,-1\right] \backslash M\right| \tag{4.1}
\end{equation*}
$$

Next, because $S_{4}=S_{2}-a_{r}=M \cap \mathbb{Z}_{\geq 0}$,

$$
\begin{equation*}
\left|\left[a_{r}, 2 a_{r}-1\right] \backslash S_{2}\right|=\left|\left[0, a_{r-1}-1\right] \backslash S_{4}\right|=\left|\left[0, a_{r}\right] \backslash M\right| . \tag{4.2}
\end{equation*}
$$

Now, from Equations (4.1) and (4.2), it holds that

$$
\begin{equation*}
\left|\left(\left[a_{r-1}-a_{r}+1,-a_{r}-1\right] \cup\left[a_{r}, 2 a_{r}-1\right]\right) \backslash L\right| \leq\left|\left[-a_{r-1}+1, a_{r}-1\right] \backslash M\right| . \tag{4.3}
\end{equation*}
$$

Now, by the definitions of a_{r-1} and a_{r},

$$
\begin{equation*}
\left[a_{r-1}+1, a_{r}-1\right] \backslash M \subseteq T \backslash M \tag{4.4}
\end{equation*}
$$

It follows from Equation (4.3) that the lemma holds.
Now, we generalize Theorem 2.2 of (5].
Proposition 4.3. It holds that $\left|S_{1} \cap S_{3}\right|+\left|S_{2} \cap S_{4}\right|=N\left(a_{r}\right)+\xi$.

Proof. First, because $a_{r}+a_{r-1} \leq 0$,

$$
\begin{equation*}
N\left(a_{r}\right) \cap S_{1}=S_{1} \cap S_{3} \tag{4.5}
\end{equation*}
$$

Similarly, it holds that

$$
\begin{equation*}
N\left(a_{r}\right) \cap S_{2}=\left(S_{2} \cap S_{4}\right) \backslash\left\{a_{r}\right\} . \tag{4.6}
\end{equation*}
$$

Finally, as $a_{r} \in S_{2} \cap S_{4}$ if and only if $2 a_{r} \in S_{2}$, it holds that

$$
\begin{equation*}
\left|\left(S_{2} \cap S_{4}\right) \backslash\left\{a_{r}\right\}\right|=\left|S_{2} \cap S_{4}\right|-\xi \tag{4.7}
\end{equation*}
$$

Now, because $S_{1} \sqcup S_{2}=L$, from Equations (4.5), (4.6), and 4.7),

$$
\begin{equation*}
\left|N\left(a_{r}\right)\right|=\left|S_{1} \cap S_{3}\right|+\left|S_{2} \cap S_{4}\right|-\xi \tag{4.8}
\end{equation*}
$$

Next, we strengthen Proposition 4.3.
Proposition 4.4. It holds that $\sum_{i=1}^{4}\left|S_{i}\right|-\left|\bigcup_{i=1}^{4} S_{i}\right|=\left|N\left(a_{r}\right)\right|+\xi+\eta$.
Proof. First, $S_{3} \cap S_{4}=\{0\}$ if and only if $a_{r-1}=-a_{r}$. Thus, it holds that

$$
\begin{equation*}
\left|S_{3} \cap S_{4}\right|=\eta \tag{4.9}
\end{equation*}
$$

Next, because $a_{r-1}+a_{r} \leq 0$, it follows from the definitions of $S_{1}, S_{2}, S_{3}, S_{4}$ that

$$
\begin{equation*}
S_{1} \cap S_{4}=\emptyset, S_{2} \cap S_{3}=\emptyset, S_{1} \cap S_{2}=\emptyset \tag{4.10}
\end{equation*}
$$

Thus, from Proposition 4.3 and Equations (4.9) and (4.10),

$$
\begin{equation*}
\sum_{i=1}^{4}\left|S_{i}\right|-\left|\bigcup_{i=1}^{4} S_{i}\right|=\left|S_{1} \cap S_{3}\right|+\left|S_{2} \cap S_{4}\right|+\left|S_{3} \cap S_{4}\right|=\left|N\left(a_{r}\right)\right|+\xi+\eta \tag{4.11}
\end{equation*}
$$

Now, we use Proposition 4.4 to refine Theorem 2.2 of [5] to isd $\left(P_{n}\right)$.
Lemma 4.5. It holds that $\operatorname{isd}\left(P_{n}\right)=2(n+t)+|T \backslash M|-\left|N\left(a_{r}\right)\right|-\xi-\eta-1$.
Proof. First, because $\bigcup_{i=1}^{4} S_{i}=\left(S_{1} \sqcup S_{2}\right) \cup\left(S_{3} \cup S_{4}\right)=L \cup M$, it holds that

$$
\begin{equation*}
\left[a_{1}, a_{n+t}\right] \backslash \bigcup_{i=1}^{4} S_{i}=\left[a_{1}, a_{n+t}\right] \backslash(L \cup M)=T \backslash M \tag{4.12}
\end{equation*}
$$

Now, because $\bigcup_{i=1}^{4} S_{i} \subseteq\left[a_{1}, a_{n+t}\right]$, from Equation (4.12),

$$
\begin{equation*}
\left|\left[a_{1}, a_{n+t}\right]\right|-\left|\bigcup_{i=1}^{4} S_{i}\right|=|T \backslash M| \tag{4.13}
\end{equation*}
$$

Therefore, from Equation (4.13) and Proposition 4.4, it holds that

$$
\begin{align*}
\operatorname{isd}\left(P_{n}\right)=a_{n+t}-a_{1} & =\left|\left[a_{1}, a_{n+t}\right]\right|-1=\left|\bigcup_{i=1}^{4} S_{i}\right|+|T \backslash M|-1 \\
& =\sum_{i=1}^{4}\left|S_{i}\right|+|T \backslash M|-\left|N\left(a_{r}\right)\right|-\xi-\eta-1 \tag{4.14}\\
& =2(n+t)+|T \backslash M|-\left|N\left(a_{r}\right)\right|-\xi-\eta-1 .
\end{align*}
$$

If isd $\left(P_{n}\right)=2 n-5$, then Lemma 4.5 results in the following corollary.

Corollary 4.6. If $\operatorname{isd}\left(P_{n}\right)=2 n-5$, then $t=0, T \subseteq M,\left|N\left(a_{r}\right)\right|=2$, and $\xi=\eta=1$.
Next, we show that if $[a, b]$ and $[c, d]$ are disjoint intervals that share sufficiently many elements with L, then another interval is disjoint from L. Let $\tau=|([a, b] \sqcup[c, d]) \backslash L|$.
Lemma 4.7. If $[a, b]$ and $[c, d]$ are disjoint intervals such that $\min (b-a, d-c) \geq 2+\tau$, then

$$
([2+\tau+a-d,-2-\tau+b-c] \cup[2+\tau+c-b, d-a-2-\tau]) \cap L=\emptyset .
$$

Proof. We first show that $[2+\tau+a-d,-2-\tau+b-c] \cap L=\emptyset$. Suppose otherwise, and let $\ell=2+\tau+a-d+k \in[2+\tau+a-d,-2-\tau+b-c] \cap L$. Because $\ell \leq-2-\tau+b-c$,

$$
\begin{equation*}
0 \leq k \leq d-c+b-a-4-2 \tau \tag{4.15}
\end{equation*}
$$

Consider $([c, d]+\ell) \cap[a, b]=[c+\ell, d+\ell] \cap[a, b]$. From Equation (4.15),

$$
\begin{align*}
& c+\ell=2+\tau+a+c-d+k \leq b-2-\tau, \text { and } \tag{4.16}\\
& d+\ell=2+\tau+a+k \geq a+2+\tau \tag{4.17}
\end{align*}
$$

Thus, from Equations 4.16 and 4.17, either $[b-2-\tau, b] \subseteq([c, d]+\ell$, or $[a, a+2+\tau] \subseteq[c, d]+\ell$, or $[c, d]+\ell \subseteq[a, b]$. Then

$$
\begin{equation*}
|[a, b] \cap([c, d]+\ell)| \geq 3+\tau \tag{4.18}
\end{equation*}
$$

Now, because $|([a, b] \cup[c, d]) \backslash L| \leq \tau$, and if $\{t, t+\ell\} \subseteq L$ then $t \in N(\ell)$ from Equation (4.18), it holds that $N(\ell) \geq 3$, a contradiction as $G=P_{n}$. Lastly, swapping $[a, b]$ and $[c, d]$ gives $[2+\tau+a-d,-2-\tau+b-c] \cap L=\emptyset$.

We now show that if $T \backslash M$, and $\left\{-2 a_{r},-a_{r}, a_{r}, 2 a_{r}\right\} \subseteq L$, then $a_{r}=1$.
Lemma 4.8. If $T \subseteq M, \xi=\eta=1, t \leq 1,-2 a_{r} \in L$, and $n \geq 9$, then $a_{r}=1$.
Proof. Because P_{n} is a integral sum graph of $-L$, assume without loss of generality that $a_{n+t} \geq-a_{1}$. Now, because $T \subseteq M,-2 a_{r} \in L$, and from Lemma 4.2,

$$
\begin{equation*}
\left[-2 a_{r},-a_{r}\right] \cup\left[a_{r}, 2 a_{r}\right] \subseteq L \tag{4.19}
\end{equation*}
$$

Next, because $t \leq 1$, we have $\left\{2 a_{r}-1,-2 a_{r}+1\right\} \cap S \geq 1$. Thus, because $N\left(2 a_{r}-1\right) \neq \emptyset$ or $N\left(-2 a_{r}+1\right) \neq \emptyset$, and $a_{n+t} \geq-a_{1}$, from Equation 4.19), $a_{n} \geq 3 a_{r}-1$.

Now, because $a_{n} \geq 3 a_{r}-1 \geq 4 a_{r}-2$ for $a_{r} \geq 3$, by applying Lemma 4.7 on intervals $\left[-2 a_{r},-a_{r}\right]$ and $\left[a_{r}, 2 a_{r}\right]$, it holds that

$$
\begin{equation*}
\left[2 a_{r}+2,4 a_{r}-2\right] \subseteq T \tag{4.20}
\end{equation*}
$$

Thus, if $a_{r} \geq 4$, then $\left\{2 a_{r}+2,3 a_{r}+2\right\} \subseteq T$, so $2 a_{r} \in T \backslash M$. Thus, $a_{r} \leq 3$.
Now, if $a_{r}=3$, because $a_{n} \geq 3 a_{r}-1=8$, and setting $a_{r}=3$ in Equation (4.20) implies $[8,10] \subseteq T$, we have $a_{n} \geq 11$. Thus, because $\{7,8\} \cap T \backslash M=\emptyset$, and $[8,10] \subseteq T$, we have $\{7,11\} \subseteq L$. But,by Equation (4.19), $\{-3,-4,4\} \subseteq N(7)$. Thus, $a_{r} \neq 3$.

Finally, if $a_{r}=2$, by applying Lemma 4.7 on intervals $[-4,-2]$ and $[2,4]$, it follows that $\{-6,6\} \cap L=\emptyset$. Now, because $n \geq 9$, and $a_{n} \geq-a_{1}$, it follows that $a_{n} \geq 7$. Thus, $6 \in T \subseteq M$, which implies $8 \in L$. Now, if $7 \in L$ then $N(-4)=\{2,7,8\}$. Thus, $7 \in T$. However, if $5 \in L$, then $\{-3,-2,3\} \subseteq N(5)$. Thus, $5 \in T \backslash M$. Therefore, $a_{r}=1$.

We now show that if isd $\left(P_{n}\right)=2 n-5$ and $n \geq 11$, then $a_{r}=1$.
Corollary 4.9. If $\operatorname{isd}\left(P_{n}\right)=2 n-5$ for $n \geq 9$, then $a_{r}=1$.

Proof. Because P_{n} is a integral sum graph of $-L$, by applying Corollary 4.6 to L and $-L$, we have $\xi=\eta=1, T \subseteq M, t=0$, and $-2 a_{r} \in L$. Thus, by Lemma 4.8, $a_{r}=1$.

Now, we bound $\operatorname{isd}\left(P_{n}\right)$ from below assuming $a_{r}=1, a_{r-1}+a_{r}=0$, and $2 a_{r} \in L$.
Lemma 4.10. If $T \subseteq M$ and $a_{r}=\xi=\eta=1$, then range $(L) \geq 3 n-12$.
Proof. Because $a_{r}=\xi=1$, it follows that $\{1,2\} \subseteq L$. Now, if $i \neq r$, and $b_{i}=1$, then $a_{i} \in N(1)$. Thus, $c_{1} \leq 3$ because $|N(1)| \leq 2$.

Likewise, if $b_{i}=2$ and $i \neq r+1$, then $a_{i} \in N(2)$. Thus, $c_{2} \leq 3$, because $|N(2)| \leq 2$. Therefore,

$$
\begin{equation*}
\operatorname{range}(L)=\sum_{i=1}^{n+t-1} b_{i} \geq c_{1} \cdot 1+c_{2} \cdot 2+\left(n+t-1-c_{1}-c_{2}\right) \cdot 3 \geq 3 n-12 \tag{4.21}
\end{equation*}
$$

We now use Lemmas 4.9 and 4.10 to show that $\operatorname{isd}\left(P_{n}\right) \geq 2 n-4$ when $n \geq 8$.
Lemma 4.11. If $n \geq 8$, then $\operatorname{isd}\left(P_{n}\right) \geq 2 n-4$.
Proof. Suppose otherwise. Then range $(L)=2 n-5$ by Theorem4.1. First, isd $\left(P_{n}\right) \geq 2 n-4$ by exhaustive search for $n=8$. Next, if $n \geq 9$, then $a_{r}=\xi=\eta=1$ from Corollary 4.6 and Corollary 4.9. Thus, range $(L) \geq 3 n-12>2 n-5$ from Lemma 4.10.
4.2. The inequality $\operatorname{isd}\left(P_{n}\right) \geq 2 n-3$ for $n \geq 8$. Now, we state a corollary of Lemma 4.5 if isd $\left(P_{n}\right)=2 n-4$.

Corollary 4.12. If $\operatorname{isd}\left(P_{n}\right)=2 n-4$ and $n \geq 9$, then $t=0$, and $|T \backslash M|=\xi+\eta-1$.
Proof. From Lemma 4.5, if isd $\left(P_{n}\right)=2 n-4$, then $2 t+|T \backslash M| \geq\left|N\left(a_{r}\right)\right|+\xi+\eta-3$. Because $\max (\xi, \eta) \leq 1$, and $\left|N\left(a_{r}\right)\right| \leq 2$, it holds that $t=0$. Now, if $\left|N\left(a_{r}\right)\right| \leq 1$, then $T \subseteq M$ and $\xi=\eta=1$. Thus, from Lemma 4.8 and Lemma 4.10, $a_{r}=1$ and range $(L) \geq 3 n-12>2 n-4$, because $n \geq 9$. Thus, $\left|N\left(a_{r}\right)\right|=2$, and $|T \backslash M|=\xi+\eta-1$ from Lemma 4.5.

Now, let $k=\left|\left(\left[-2 a_{r},-a_{r}\right] \cup\left[a_{r}, 2 a_{r}\right]\right) \cap T\right|$. In addition, let

$$
\begin{array}{r}
J_{1}=\left(\left[a_{1},-2 a_{r}-1\right] \cap L\right)+2 a_{r}, \text { and } \\
\quad J_{2}=\left(\left[2 a_{r}+1, a_{n+t}\right] \cap L\right)-2 a_{r} .
\end{array}
$$

We now prove the analog of of Corollary 3.3 for isd $\left(P_{n}\right)$.
Lemma 4.13. If $-2 a_{r} \in L$ or $2 a_{r} \in L$, then range $(L) \geq 3 n+3 t+k-2 a_{r}-11$.
Proof. First, $J_{1} \cap J_{2}=\emptyset$. Additionally, because $S \sqcup T=\left[a_{1}, a_{n}\right]$,

$$
\begin{align*}
\left|J_{1} \cup J_{2}\right| & =\left|\left(\left[a_{1},-2 a_{r}-1\right] \cup\left[2 a_{r}+1, a_{n+t}\right]\right) \cap L\right| \\
& =n+t-\left|\left(\left[-2 a_{r},-a_{r}\right] \cup\left[a_{r}, 2 a_{r}\right]\right) \cap L\right| \tag{4.22}\\
& =n+t-2\left(a_{r}+1\right)+k .
\end{align*}
$$

Now, because $\left(S_{3} \cap S_{1}\right)-a_{r} \subseteq N\left(a_{r}\right)$, and $S_{4} \cap S_{2} \subseteq N\left(a_{r}\right) \cup\left\{a_{r}\right\}$, but $\left(S_{1}-a_{r}\right) \cap S_{2}=\emptyset$,

$$
\begin{equation*}
\left|\left(S_{3} \cap S_{1}\right)\right|+\left|S_{4} \cap S_{2}\right| \leq\left|N\left(a_{r}\right) \cup\left\{a_{r}\right\}\right| \leq 3 \tag{4.23}
\end{equation*}
$$

First, if $2 a_{r} \in L$, then $\left(J_{1} \cap S_{1}\right)-2 a_{r} \subseteq N\left(2 a_{r}\right) \backslash\left\{-a_{r}\right\}$ and $J_{2} \cap S_{2} \subseteq N\left(2 a_{r}\right) \cup\left\{2 a_{r}\right\}$. Next, because $\left(S_{1}-2 a_{r}\right) \cap S_{2} \neq \emptyset$ and $-a_{r} \in N\left(2 a_{r}\right)$ if and only if $\eta=1$,

$$
\begin{equation*}
\left|\left(J_{1} \cap S_{1}\right)\right|+\left|J_{2} \cap S_{2}\right| \leq\left|N\left(a_{r}\right) \cup\left\{2 a_{r}\right\} \backslash\left\{-a_{r}\right\}\right| \leq 3-\eta \tag{4.24}
\end{equation*}
$$

Equivalently, if $-2 a_{r} \in L$, then $J_{1} \cap S_{1} \subseteq N\left(-2 a_{r}\right) \cup\left\{-2 a_{r}\right\}$ and $J_{2} \cap S_{2} \subseteq N\left(-2 a_{r}\right) \backslash\left\{a_{r}\right\}$, but $a_{r} \in N\left(-2 a_{r}\right)$ if and only if $\eta=1$. Thus, Equation (4.24) holds.

Now, because $S_{1} \sqcup S_{2} \sqcup T=\left[a_{1}, a_{n+t}\right]$, and $S_{3} \cap S_{4} \subseteq\{0\}$, from Equation (4.23),

$$
\begin{align*}
\left|T \cap\left(S_{3} \cup S_{4}\right)\right| & =\left|S_{3} \cup S_{4}\right|-\left|S \cap\left(S_{3} \cup S_{4}\right)\right| \\
& \geq(n+t-\eta)-\left|\left(S_{3} \cap S_{1}\right)\right|-\left|\left(S_{4} \cap S_{2}\right)\right| \tag{4.25}\\
& \geq(n+t-\eta)-3 .
\end{align*}
$$

Likewise, because $S_{1} \sqcup S_{2} \sqcup T=\left[a_{1}, a_{n+t}\right]$ and $J_{1} \cap J_{2}=\emptyset$, from Equations (4.22) and (4.24),

$$
\begin{align*}
\left|T \cap\left(J_{1} \cup J_{2}\right)\right| & =\left|J_{1} \cup J_{2}\right|-\left|S \cap\left(J_{1} \cup J_{2}\right)\right| \\
& =n+t-2\left(a_{r}+1\right)+k-\left|S_{1} \cap J_{1}\right|-\left|S_{2} \cap J_{2}\right| \tag{4.26}\\
& \geq n+t-2 a_{r}+k-5+\eta .
\end{align*}
$$

Additionally, because $\left(J_{1} \cap S_{3}\right) \sqcup\left(J_{2} \cap S_{4}\right) \subseteq N\left(a_{r}\right)$, it follows that

$$
\begin{equation*}
\left|J_{1} \cap S_{3}\right|+\left|J_{2} \cap S_{4}\right| \leq\left|N\left(a_{r}\right)\right| \leq 2 \tag{4.27}
\end{equation*}
$$

Lastly, because $\left(J_{1} \cap S_{3}\right) \cap\left(J_{2} \cap S_{4}\right)=J_{1} \cap J_{2}=\emptyset$, from Equations (4.25), 4.26), and (4.27),

$$
\begin{align*}
|T| & \geq\left|T \cap\left(S_{3} \cup S_{4} \cup J_{1} \cup J_{2}\right)\right| \\
& =\left|T \cap\left(S_{3} \cup S_{4}\right)\right|+\left|T \cap\left(J_{1} \cup J_{2}\right)\right|-\left|T \cap\left(S_{3} \cup S_{4}\right) \cap\left(J_{1} \cup J_{2}\right)\right| \\
& \geq\left|T \cap\left(S_{3} \cup S_{4}\right)\right|+\left|T \cap\left(J_{1} \cup J_{2}\right)\right|-\left|\left(S_{3} \cup S_{4}\right) \cap\left(J_{1} \cup J_{2}\right)\right| \tag{4.28}\\
& \geq(n+t-\eta-3)+\left(n+t-2 a_{r}+k-5+\eta\right)-\left(\left|J_{1} \cap S_{3}\right|+\left|J_{2} \cap S_{4}\right|\right) \\
& \geq 2 n+2 t+k-8-2 a_{r}-2=2 n+2 t+k-2 a_{r}-10 .
\end{align*}
$$

Because $|T|=$ range $(L)+1-n-t$, from Equation (4.28), range $(L) \geq 3 n+3 t+k-2 a_{r}-11$.
Now, we strengthen Corollary 4.12.
Lemma 4.14. If $\operatorname{isd}\left(P_{n}\right)=2 n-4$ and $n \geq 13$, then $T \subseteq M$.
Proof. Suppose otherwise. Because P_{n} is a integral sum graph of $-L$, by applying Corollary 4.12 on L and $-L$, we have $|T \backslash M|=\xi=\eta=1, t=0$, and $-2 a_{r} \in L$. Additionally, assume without loss of generality that $a_{n} \geq\left|a_{1}\right|$. First, from Lemma 4.2,

$$
\begin{equation*}
\left|\left(\left[-2 a_{r},-a_{r}\right] \cup\left[a_{r}, 2 a_{r}\right]\right) \backslash L\right|=k \leq 1 . \tag{4.29}
\end{equation*}
$$

Thus, $\left|\left\{2 a_{r}-1,-2 a_{r}+1\right\} \cap S\right| \geq 1$. Without loss of generality, let $2 a_{r}-1 \in L$. Therefore, because $N\left(2 a_{r}-1\right) \neq \emptyset$, and $a_{n} \geq\left|a_{1}\right|$, we have $a_{n} \geq 3 a_{r}-1$.

Now, suppose that $k=0$. Because $a_{n} \geq 3 a_{r}-1 \geq 2 a_{r}+2$ for $a_{r} \geq 3$, by setting $[a, b]=\left[-2 a_{r},-a_{r}\right]$ and $[c, d]=\left[a_{r}, 2 a_{r}\right]$ in Lemma 4.7,

$$
\begin{equation*}
\left[2 a_{r}+2,4 a_{r}-2\right] \subseteq T \tag{4.30}
\end{equation*}
$$

If $a_{r} \geq 5$, then from Equation (4.30), $\left\{2 a_{r}+2,2 a_{r}+3\right\} \subseteq T \backslash M$, so $a_{r} \leq 4$.
If $a_{r}=4$, from Equation 4.30$),[10,14] \subseteq T$. Thus, $T \backslash M=\{10\}$ because $|T \backslash M|=1$. Now, $\{9,15\} \subseteq L$ because $\{9,11\} \cap T \backslash M=\emptyset$. Then $\{-8,-7,-6\} \subseteq N(15)$. Thus, $a_{r} \leq 3$.

If $a_{r}=3$, from Equation 4.30), $[8,10] \subseteq T$. First, if $7 \in L$, then $N(7)=\{-3,-4\}$ because $\Delta=2$. Thus, $[8,13] \subseteq T$ because $[4,6] \cap N(7)=\emptyset$ and $[8,10] \subseteq T$. Thus, $\{8,9\} \subseteq T \backslash M$. So, $7 \in T$. Now, because $|T \backslash M|=1$ and $10 \in T$, it follows that $T \backslash M=\{7\}$. Thus,
$[11,13] \subseteq L$ because $[8,10] \cap T \backslash M=\emptyset$. As a result, $\{3,11,12\} \subseteq N(-6)$. Thus, $a_{r} \leq 2$. Now, because $\xi=1$ and $a_{r} \leq 2$, from Lemma 4.13, range $(L)=2 n-4 \geq 3 n-16$, so $n \leq 12$.

Next, suppose that $k=1$. First, because $|T \backslash M|=1$, we have $T \backslash M \subseteq\left[-a_{r}, a_{r}\right]$. Now, if $n \geq 4$, then because $a_{n} \geq 3 a_{r}-1 \geq 2 a_{r}+3$, by Lemma 4.7 on $\left[-2 a_{r},-a_{r}\right]$ and $\left[a_{r}, 2 a_{r}\right]$ with $\tau=1$, we have $\left[2 a_{r}+3,4 a_{r}-3\right] \subseteq T$. Now, because $\left\{a_{r}+3,2 a_{r}+3,3 a_{r}-3,4 a_{r}-3\right\} \cap T \backslash M=\emptyset$, it must be that $\left\{a_{r}+3,3 a_{r}+3,3 a_{r}-3,5 a_{r}-3\right\} \subseteq L$, and $\left\{a_{r}, 3 a_{r}+3,5 a_{r}-3\right\} \subseteq N\left(-2 a_{r}\right)$. Thus, $n \leq 3$, and it follows that $n \leq 12$ by Lemma 4.13, because $k=\xi=1$.

We now further strengthen Corollary 4.12 with the following result:
Lemma 4.15. If $\operatorname{isd}\left(P_{n}\right)=2 n-4$ for $n \geq 13$, then $\eta=1$ and $\xi=0$.
Proof. Suppose otherwise. Then, from Corollary 4.12 and Lemma 4.14, $T \subseteq M, \xi=1$, and $t=\eta=0$. Then $a_{r-1}<-a_{r} \leq-1$. Thus, $-1 \in T \subseteq M$, which implies $a_{r-1}=-\left(a_{r}+1\right)$. Therefore, as $T \subseteq M$, from Lemma 4.2,

$$
\begin{equation*}
\left[-2 a_{r},-a_{r}-1\right] \cup\left[a_{r}, 2 a_{r}\right] \subseteq L \tag{4.31}
\end{equation*}
$$

Because $t=0$, it follows that $N\left(2 a_{r}-1\right) \neq \emptyset$. Therefore, $a_{1} \leq-3 a_{r}$ or $a_{n} \geq 3 a_{r}-1$ or both. First if $a_{n} \geq 3 a_{r}-1$, then from Equation (4.31) and Lemma 4.7 with intervals $\left[-2 a_{r},-a_{r}\right]$, and $\left[a_{r}, 2 a_{r}\right]$ and $\tau=0$, it holds that $\left[2 a_{r}+3,4 a_{r}-2\right] \cap L=\emptyset$.

Now, if $a_{r} \geq 4$, then $a_{n} \geq 3 a_{r}-1 \geq 2 a_{r}+3$, so $\left[2 a_{r}+3,4 a_{r}-2\right] \subseteq T$. Then, because $T \subseteq M$, we have $\left\{a_{r}+3,3 a_{r}+3,3 a_{r}-3,5 a_{r}-3,3 a_{r}-2,5 a_{r}-2\right\} \subseteq L$. Thus, $\left\{a_{r}+3,3 a_{r}-3,3 a_{r}-2\right\} \subseteq$ $N\left(2 a_{r}\right)$. Therefore, $a_{r} \leq 3$, so by Lemma 4.13, $n \leq 12$ because $k=1$ and $a_{r-1}=-\left(a_{r}+1\right)$. As a result, $a_{1} \leq-3 a_{r}$.

Now, if $a_{r} \geq 4$ then $a_{1} \leq-3 a_{r} \leq-2 a_{r}+3$, so from Equation 4.31) and Lemma 4.7 with intervals $\left[-2 a_{r},-a_{r}\right] \cup\left[a_{r}, 2 a_{r}\right]$ and $\tau=0$, we have $\left[-4 a_{r}+2,-2 a_{r}-3\right] \subseteq T$. Then, because $T \subseteq M$, then $\left\{a_{r}+3,3 a_{r}-3,3 a_{r}-2\right\} \subseteq N\left(2 a_{r}\right)$. Therefore, $a_{r} \leq 3$, so by Lemma 4.13, $n \leq 12$, because $k=1$ and $a_{r-1}=-\left(a_{r}+1\right)$.

Lemmas 4.2, 4.14, and 4.15, result in the following corollary.
Corollary 4.16. If $\xi=t=0, \eta=1$, and $T \subseteq M$, then $\left[-2 a_{r}+1, a_{r}\right] \cup\left[a_{r}, 2 a_{r}-1\right] \subseteq L$.
Now, we show that if isd $\left(P_{n}\right)=2 n-4$, then $a_{r} \leq 3$.
Lemma 4.17. If $\xi=t=0, \eta=1$, and $T \subseteq M$ for $n \geq 13$, then $a_{r} \leq 3$.
Proof. Suppose otherwise. First, because P_{n} is a sum graph of $-L$, assume that $a_{n+t} \geq\left|a_{1}\right|$. From Corollary 4.16, $2 a_{r}-1 \in L$. Then, because $t=0$, it holds that $N\left(2 a_{r}-1\right) \neq \emptyset$. Thus, since $a_{n} \geq\left|a_{1}\right|$, we have $a_{n} \geq 3 a_{r}-1$. As a result, because $a_{r} \geq 4$, we have $a_{n} \geq 3 a_{r}-1 \geq 2 a_{r}+2$, and by setting intervals $\left[-2 a_{r}+1, a_{r}\right] \cup\left[a_{r}, 2 a_{r}-1\right]$ with $\tau=0$ in Lemma 4.7, $3 a_{r} \in\left[2 a_{r}+2,4 a_{r}-4\right] \subseteq T$, which implies $2 a_{r} \in T \backslash M$ because $\xi=0$. Thus, $a_{r} \leq 3$.

Next, we show that if isd $\left(P_{n}\right)=2 n-4$, then $a_{r} \leq 2$.
Lemma 4.18. If $\xi=t=0, \eta=1, T \subseteq M$, and $-2 a_{r} \notin L$ for $n \geq 13$, then $a_{r} \leq 2$.
Proof. Suppose otherwise. Thus, from Corollary 4.16 and Lemma 4.18, $a_{r}=3$ and $[-5,-3] \cup$ $[3,5] \subseteq L$. Because $t=0$ from Corollary $4.12, N(5) \neq \emptyset$. Then, because P_{n} is a integral sum graph labeling of $-L$, assume $a_{n} \geq 8$. Thus, because $6 \in T \subseteq M$ from Lemma 4.15, $9 \in L$. Now, by setting $\tau=0$ with intervals $[-5,-3] \cup[3,5]$ in Lemma 4.7, $8 \in T \subseteq M$, so $11 \in L$.

Next, because $9 \in L$, it follows that $\{-4,-5\} \subseteq N(9)$. Now, $\{-4,-5,9\}$ forms a cycle if $-9 \in L$. Thus, $-9 \notin L$ but $-2 a_{r}=6 \notin L$. Thus, $a_{1}=-5$ because $T \subseteq M$. In addition, because $\Delta=2$, we have $\{-4,-5\}=N(9)$, which implies $[12,14] \cap L=\emptyset$, because $[3,5] \cap N(9)=\emptyset$. If $a_{n} \geq 15$, then $[12,14] \subseteq T \subseteq M$, so $\{10,15,16\} \subseteq L$. As a result, $\{4,10,11\} \subseteq N(5)$, so $a_{n}<15$. Now, $a_{n}=11$ because $[12,14] \cap L=\emptyset$. Thus, $a_{r} \leq 2$.

Now, we show that if isd $\left(P_{n}\right)=2 n-4$, then $a_{r}=1$.
Lemma 4.19. If $\xi=t=0, \eta=1$, and $T \subseteq M$ for $n \geq 13$, then $a_{r} \leq 1$.
Proof. Suppose otherwise. By Lemma 4.18, $a_{r}=2$. Then, from Corollary 4.16, $T \subseteq M$. For $1 \leq i \leq n-2$, if $b_{i}, b_{i+1} \neq 1$, then $\left\{a_{i+1}-1, a_{i+1}+1\right\} \cap T \backslash M \neq \emptyset$. Thus, if $b_{i}=2$, then $b_{i+1}=1$ or $b_{i-1}=1$ or both, $\left\{a_{i}, a_{i-1}\right\} \cap N(3) \neq \emptyset$. However, because $3 \in L$, then $c_{2}+c_{3} \leq 3$.

Next, $\left\{a_{i}+1, a_{i}+3\right\} \cap T \backslash M \neq \emptyset$ if $b_{i}=4$ and $i \neq r-1$. Therefore, because $b_{r-1}=4$, we have $c_{4}=1$. It follows that range $(L) \leq 4 c_{4}+3 c_{3}+2 c_{2}+\left(n-1-c_{2}-c_{3}-c_{4}\right) \leq n+8$. As a result, $\operatorname{isd}\left(P_{n}\right)=2 n-4 \leq n+8$, which implies $n \leq 12$ or $a_{r}=1$ or both.

Now, we show that $\operatorname{isd}\left(P_{n}\right) \geq 2 n-3$ for $n \geq 8$.
Lemma 4.20. If $n \geq 8$, then $\operatorname{isd}\left(P_{n}\right) \geq 2 n-3$.
Proof. Suppose otherwise. From Lemma 4.11, isd $\left(P_{n}\right)=2 n-4$. By exhaustive computer search, isd $\left(P_{n}\right) \geq 2 n-3$ if $8 \leq n \leq 12$. Thus, $n \geq 13$. Because P_{n} is a sum graph labeling of $-L$, assume that $a_{n} \geq\left|a_{1}\right|$. In addition, from Lemmas 4.12 and 4.15 on L and $-L$, we have $\xi=t=0, \eta=1, T \subseteq M,\left|N\left(a_{r}\right)\right|=1$, and $-2 a_{r} \notin L$. Thus, from Lemmas 4.17, 4.18, and 4.19, $a_{r}=1=\left|a_{r-1}\right|$ for $n \geq 13$. Because $n \geq 13$ and $a_{n} \geq\left|a_{1}\right|$, it follows that $a_{n} \geq 11$.

Now, if $b_{i} \geq 3$, then $\left\{a_{i}+1, a_{i}+2\right\} \cap T \backslash M \neq \emptyset$. Therefore, $b_{i} \leq 2$ for $1 \leq i \leq n-1$. Furthermore, $c_{1}=2$, because $|N(1)|=2$. Thus, let $b_{j}=b_{k}=1$ with $j<k$.

Now, because $\xi=0$, it holds that $2 \in T \subseteq M$. Then, because $a_{n} \geq 11$, it holds that $3 \in L$. If $k \neq n-1$ and $k-j=1$, then $\{-3,-1,1\} \in N\left(a_{j}+1\right)$. However, if $k \neq n-1$ and $k-j \neq 1$, then $\left\{-1, a_{j}+1,-3, a_{k}+1\right\}$ form a component. Therefore, $k=n-1$.

Likewise, if $-3 \in L$, then $j=1$. Thus, because $a_{n} \geq 11$ and $k=n-1$, it follows that $\{1,3,5\} \subseteq L$. Because $j=1$ and $k=n-1$, it holds that $\{1,3,5\} \subseteq N\left(a_{1}\right)$. Therefore, $-3 \notin L$, so $a_{1}=-1$. As range $(L)=2 n-4$ and $k=n-1$, we have $\{2 n-5,2 n-6\} \subseteq L$.

First, suppose that $2 n-7 \in L$. Then $N(2 n-5)=\{-1\}$, and $N(2 n-7)=\{1\}$ because $\min (L)=a_{1}=-1$ and $2 \notin L$. Thus, because $\Delta=2$, and $\{-1,1\} \subseteq N(2 n-6)$, it follows that $\{-1,1,2 n-7,2 n-6,2 n-5\}$ forms a component. Therefore, $2 n-7 \notin L$. As a result, $2 n-8 \in L$, otherwise $2 n-8 \in T \backslash M$. Because $\min (L)=-1$ and $2 n-7 \notin L$, we have $|N(2 n-5)|=|N(2 n-6)|=1$. Now, $|N(2 n-8)|=2$, because $G=P_{n}$. Therefore, $j=n-3$. Then, $\{-1,1,3,2 n-9,2 n-8,2 n-6,2 n-5\}$ forms a component. Thus, isd $\left(P_{n}\right) \geq 2 n-3$.

Now, Lemma 4.20 is sufficient to proof Theorem 1.2
Proof of Theorem [1.2. From Proposition 7.2 of Li [4], it holds that $\operatorname{isd}\left(P_{n}\right) \leq \operatorname{ispum}\left(P_{n}\right)$. Thus, the lower and upper bounds of Theorem 1.2 are shown by Lemma 4.20 and Theorem 7.3 of Singla, Tiwari, and Tripathi [5], respectively.
4.3. The inequality isd $\left(P_{n}\right) \geq 2 n+1$ for $n \geq 27$. Now, we show that for odd n, isd $\left(P_{n}\right) \neq$ $2 n-3$. First, we state the following corollary of Lemma 4.5.

Corollary 4.21. If isd $\left(P_{n}\right)=2 n-3$, then $2 t+|T \backslash M|+2=\xi+\eta+\left|N\left(a_{r}\right)\right|$.

Next, we show that if isd $\left(P_{n}\right)=2 n-3$, then L has no isolated vertices.
Lemma 4.22. If isd $\left(P_{n}\right)=2 n-3$ for $n \geq 10$, then $t=0$.
Proof. Suppose otherwise. Then, as P_{n} is a integral sum graph of $-L$, by applying Corollary 4.21 to L and $-L$, we have $T \subseteq M,\left|N\left(a_{r}\right)\right|=2, \xi=\eta=t=1$, and $-2 a_{r} \in L$. Thus, from Lemmas 4.8 and 4.10, $a_{r}=1$, and $2 n-3=\operatorname{isd}\left(P_{n}\right) \geq 3 n-12$, so $n \leq 9$.

We now further strengthen Corollary 4.21 by showing that $\xi=0$.
Lemma 4.23. If isd $\left(P_{n}\right)=2 n-3$ for $n \geq 27$, then $\xi=0$.
Proof. Suppose otherwise. First, if $a_{r} \leq 9$, from Lemma 4.13, $n \leq 26$. Thus, $a_{r} \geq 10$, and from Corollary $4.21,|T \backslash M| \leq 2$. Then, from Lemma 4.2,

$$
\begin{equation*}
\left|\left[a_{r-1}-a_{r}+1,-a_{r}-1\right] \cup\left[a_{r}, 2 a_{r}\right] \backslash L\right| \leq 2 . \tag{4.32}
\end{equation*}
$$

From Equation (4.32), there exists $\ell \in\left\{2 a_{r}-1,-2 a_{r}+1,2 a_{r}-2\right\}$ in L. Then, because $t=0$, and $N(\ell) \neq \emptyset$, we have $\max \left(\left|a_{1}\right|, a_{n}\right) \geq 3 a_{r}-2$.

First suppose that equality holds in Equation (4.32). From Lemma 4.7, with $\tau=2$, and intervals $\left[a_{r-1}-a_{r}+1,-a_{r}-1\right] \cup\left[a_{r}, 2 a_{r}\right]$, and because $\max \left(\left|a_{1}\right|, a_{n}\right) \geq 3 a_{r}-2 \geq 2 a_{r}+5$, we have $\left[-3 a_{r}+a_{r-1}+5,-2 a_{r}-5\right] \subseteq T$ or $\left[2 a_{r}+5,3 a_{r}-a_{r-1}-5\right] \subseteq T$ or both. Then $2 a_{r}+5 \in T \backslash M$ or $-2 a_{r}-5 \in T \backslash M$ or both. But, $\left|T \backslash M \cap\left[a_{r-1}, a_{r}\right]\right|=2$ and $|T \backslash M| \leq 2$. Thus, $\left|\left[a_{r-1}-a_{r}+1,-a_{r}-1\right] \cup\left[a_{r}, 2 a_{r}\right] \backslash L\right| \leq 1$.

Next, suppose $\left|\left[a_{r-1}-a_{r}+1,-a_{r}-1\right] \cup\left[a_{r}, 2 a_{r}\right] \backslash L\right|=1$. From Lemma 4.7 with $\tau=1$, and intervals $\left[a_{r-1}-a_{r}+1,-a_{r}-1\right] \cup\left[a_{r}, 2 a_{r}\right]$, and because $\max \left(\left|a_{1}\right|, a_{n}\right) \geq 3 a_{r}-2 \geq 2 a_{r}+4$, it must be that $\left[-3 a_{r}+a_{r-1}+4,-2 a_{r}-4\right] \subseteq T$ or $\left[2 a_{r}+4,3 a_{r}-a_{r-1}-4\right] \subseteq T$. As a result, $\left|\left\{-2 a_{r}-4,-2 a_{r}-5,2 a_{r}+4,2 a_{r}+5\right\} \cap T \backslash M\right| \geq 2$. However, $\left|T \backslash M \cap\left[a_{r-1}, a_{r}\right]\right|=1$ and $|T \backslash M| \leq 2$. Thus, $\left[a_{r-1}-a_{r}+1,-a_{r}-1\right] \cup\left[a_{r}, 2 a_{r}\right] \backslash L=\emptyset$.

Then, from Lemma 4.7, with $\tau=0$ and intervals $\left[a_{r-1}-a_{r}+1,-a_{r}-1\right] \cup\left[a_{r}, 2 a_{r}\right]$, we have $\left(\left[-3 a_{r}+a_{r-1}+3,-2 a_{r}-3,\right] \cup\left[2 a_{r}+3,3 a_{r}-a_{r-1}-3\right]\right) \cap L=\emptyset$. As a result, and also because $\max \left(\left|a_{1}\right|, a_{n}\right) \geq 3 a_{r}-2 \geq 2 a_{r}+4$, it must be that $\left[2 a_{r}+3,2 a_{r}+5\right] \subseteq T \backslash M$ or $\left[-2 a_{r}-3,2 a_{r}-5\right] \subseteq T \backslash M$ or both. Therefore, $\xi=0$.

We now show if isd $\left(P_{n}\right)=2 n-3$ then $\left|N\left(a_{r}\right)\right|=2$.
Lemma 4.24. If $\operatorname{isd}\left(P_{n}\right)=2 n-3$ for $n \geq 27$, then $\left|N\left(a_{r}\right)\right|=2$.
Proof. Suppose otherwise. From Corollary 4.21, Lemmas 4.22 and $4.23, t=0,\left|N\left(a_{r}\right)\right|=1$, $T \subseteq M$ and $\eta=1$. Now, because P_{n} is a sum graph labeling of $-L$, we have $-2 a_{r} \in L$ from Lemma 4.23 on $-L$. As a result, if $n \geq 13$, then $a_{r}=1$ from Lemmas 4.17, 4.18, and 4.19,

Now, by applying Corollary 4.21 on $-L$, it holds that $\left|N\left(a_{r-1}\right)\right|=1$. Thus, because $G=P_{n}$ and $t=0$, if $a_{i} \notin\{1,-1\}$ then $\left|N\left(a_{i}\right)\right|=2$. In addition, because $\left|N\left(a_{r}\right)\right|=1$ and $T \subseteq M$, we have $c_{1}=1$, and $c_{2}=n-2$. Thus, one of a_{1}, a_{n} is even. Without loss of generality, let a_{n} be even. Since $1 \in L$, all even labels are in S_{2}, and all labels in S_{1} are odd.

However, as $a_{n}=\max (L)$, it follows that $N\left(a_{n}\right) \subseteq S_{1}$. Let $N\left(a_{n}\right)=\left\{a_{j}, a_{k}\right\}$ with $j<k$. Then, because $\left\{a_{j}, a_{k}+a_{n}\right\} \subseteq L$, all odd labels between a_{j} and $a_{k}+a_{n}$ must be in L. Thus, because $a_{j} \leq a_{k}$, it follows that $\left\{a_{j}, a_{j}+2, a_{k}+2\right\} \subseteq N\left(a_{n}-2\right)$. As a result, $a_{n}-2 \notin L$ and a_{n} is the only even label. Then, $\left|N\left(a_{i}\right)\right| \leq 1$ for for $1 \leq i \leq n-2$, so $\left|N\left(a_{r}\right)\right|=2$.

We now show that if isd $\left(P_{n}\right)=2 n-3$ then $|T \backslash M|=\eta=1$.
Lemma 4.25. If $\operatorname{isd}\left(P_{n}\right)=2 n-3$ for $n \geq 27$, then $|T \backslash M|=\eta=1$.

Proof. Suppose otherwise. From Corollary 4.21 and Lemmas 4.22, 4.23, and 4.24, $|T \backslash M|=$ $\eta=0$. Thus, $a_{r-1}=-\left(a_{r}+1\right)$ because $\left|a_{r-1}\right| \neq a_{r}$ and $-1 \in T \subseteq M$. Now, from Lemma 4.2,

$$
\begin{equation*}
\left(\left[-2 a_{r},-1-a_{r}\right] \cup\left[a_{r}, 2 a_{r}-1\right]\right) \subseteq L \tag{4.33}
\end{equation*}
$$

Next, from Lemma 4.7 with $\tau=0$ and intervals $\left[-2 a_{r},-1-a_{r}\right] \cup\left[a_{r}, 2 a_{r}-1\right]$,

$$
\begin{equation*}
\left(\left[-4 a_{r}+3,-2 a_{r}-3\right] \cup\left[2 a_{r}+3,4 a_{r}-3\right]\right) \cap L=\emptyset . \tag{4.34}
\end{equation*}
$$

First, because $N\left(-2 a_{r}\right) \neq \emptyset$ from Lemma 4.22 and Equation (4.33), $\max \left(\left|a_{1}\right|, a_{n}\right) \geq 3 a_{r}$. Now, if $a_{r} \geq 6$, because $\max \left(\left|a_{1}\right|, a_{n}\right) \geq 3 a_{r} \geq 2 a_{r}+3$, it must be that $\left[-4 a_{r}+3,-2 a_{r}-3\right] \subseteq T$ or $\left[2 a_{r}+3,4 a_{r}-3\right] \subseteq T$ or both. Thus, $\left|\left\{-2 a_{r}-3,2 a_{r}+3\right\} \cap T \backslash M\right| \geq 1$. Therefore, $a_{r} \leq 5$. Finally, because $k \geq 1$ from $-a_{r} \notin L$, and $-2 a_{r} \in L$ from Equation (4.33), it follows from Lemma 4.13 that $2 n-3=\operatorname{isd}\left(P_{n}\right) \geq 3 n-2 a_{r}-10$, so $n \leq 17$.

Now, we use Lemmas $4.22,4.24,4.23$, and 4.25 to bound the value of a_{r}.
Lemma 4.26. If $\operatorname{isd}\left(P_{n}\right)=2 n-3$ for $n \geq 27$, then $a_{r} \leq 4$.
Proof. Suppose otherwise. From Lemma 4.25, $|T \backslash M|=\eta=1$. Thus, from Lemma 4.2,

$$
\begin{equation*}
\left|\left(\left[-2 a_{r}+1,-a_{r}\right] \cup\left[a_{r}, 2 a_{r}-1\right]\right) \backslash L\right| \leq 1 \tag{4.35}
\end{equation*}
$$

As $t=0$ by Lemma 4.22, and $2 a_{r}-1 \in S$ or $-2 a_{r}+1 \in S$ or both, and because P_{n} is a sum graph labeling of $-L$, assume without loss of generality that $\max \left(\left|a_{1}\right|, a_{n}\right)=a_{n} \geq 3 a_{r}-1$. In addition, because $3 a_{r}-1>2 a_{r}+3$, from Equation (4.35) and by setting $\tau=1$, with intervals $\left[-2 a_{r}+1,-a_{r}\right] \cup\left[a_{r}, 2 a_{r}-1\right]$ in Lemma 4.7, $\left[2 a_{r}+3,4 a_{r}-5\right] \subseteq T$. Thus, $3 a_{r} \in T$. However, from Lemmas 4.23 and 4.25, $2 a_{r}=T \backslash M$. Therefore, because $\left[a_{r-1}, a_{r}\right] \cap T \backslash M=\emptyset$,

$$
\begin{equation*}
\left[-2 a_{r}+1,-a_{r}\right] \cup\left[a_{r}, 2 a_{r}-1\right] \subseteq L, \tag{4.36}
\end{equation*}
$$

so because $a_{n} \geq 3 a_{r}-1 \geq 2 a_{r}+2$, by setting $\tau=0$ and disjoint intervals $\left[-2 a_{r}+1,-a_{r}\right] \cup$ $\left[a_{r}, 2 a_{r}-1\right]$ in Lemma 4.7, $\left[2 a_{r}+2,4 a_{r}-4\right] \subseteq T$. For $a_{r} \geq 6$, it holds that $\left\{2 a_{r}, 2 a_{r}+2\right\} \subseteq$ $T \backslash M$. Thus, $a_{r}=5$, so $\left[2 a_{r}+2,4 a_{r}-4\right]=[12,16] \in T$. Then because $\{11,12\} \cap T \backslash M=\emptyset$, we have $11,17 \in L$, and thus, $\{-5,-6,6\} \subseteq N(11)$. Therefore, $a_{r} \leq 4$.

We now strengthen Lemma 4.26 by showing that $a_{r} \neq 4$.
Lemma 4.27. If $\operatorname{isd}\left(P_{n}\right)=2 n-3$ for $n \geq 27$, then $a_{r} \leq 3$.
Proof. Suppose otherwise. Then by Lemmas 4.25 and $4.26, a_{r}=4$, and $|T \backslash M|=\eta=$ 1. Thus, from Lemma 4.2, $|([-7,-4] \cup[4,7]) \backslash L| \leq 1$. From Lemma 4.22 and because $|\{7,-7\} \cap L| \geq 1$, it follows that $N(7) \neq \emptyset$ or $N(-7) \neq \emptyset$ or both. Therefore, because P_{n} is a sum graph labeling of $-L$, we have $\max \left(\left|a_{1}\right|, a_{n}\right)=a_{n} \geq 11$.

First, suppose that $[-7,-4] \cup[4,7] \subseteq L$. Because $a_{n} \geq 11$, by setting $\tau=0$ and disjoint intervals $[-7,-4]$ and $[4,7]$ in Lemma $4.7,[10,12] \subseteq T$. Then, because $8 \in T$ from Lemma 4.23, and $|T \backslash M|=1$, it holds that $T \backslash M=\{8\}$. Thus, as $\{10,11,12\} \cap T \backslash M=\emptyset$, we have $\{10,11,12\} \subseteq M$, so $[14,16] \subseteq L$. Now, $9 \notin L$, otherwise $\{5,6,7\} \subseteq N(9)$. Thus, because $9 \notin T \backslash M$, we have $13 \in L$. Because $|N(13)| \leq 2$ and $\{-7,-6\} \subseteq N(13)$, we must have $-8 \notin N(13)$, and thus $-8 \notin L$. However, if $-8 \in T$, as $-8 \notin T \backslash M$, we have that $-12 \in L$, which implies that $\{5,6,7\} \subseteq N(-12)$. Therefore, $-8 \notin T$ so $a_{1}=-7$, and as $n \geq 27$, we have that $a_{n} \geq 20$. As $[4,7] \cap N(13)=\emptyset$ and $a_{n} \geq 20$, it follows that $[17,20] \subseteq T$. Because $17 \notin T \backslash M$, it holds that $21 \in L$. However, then $\{-7,-6,-5\} \subseteq N(21)$.

Thus, $[-7,-4] \cup[4,7] \nsubseteq L$. Now, from Lemma 4.7 with $\tau=1$ and disjoint intervals $[-7,-4]$ and $[4,7]$, and because $a_{n} \geq 11$, it holds that $11 \in T$, so $15 \in L$. Furthermore, from Lemma 4.23, $8 \in T$, and thus, $12 \in L$. We now consider each of $([-7,4] \cup[4,7]) \backslash L$.

First, because $\eta=1$, we have $\{-4,4\} \subseteq L$. Now, $6 \notin T$, as otherwise $10 \in L$, and $\{-5,-6,5\} \subseteq N(10)$. Similarly, $-6 \notin T$, as otherwise $-10 \in L$, so $\{5,6,15\} \subseteq N(-10)$. Next, suppose that $5 \in T$. Then $9 \in L$, so $\{9,12\} \subseteq N(-5)$. As $N(-5) \leq 2$, we have $\{14,15\} \cap N(5)=\emptyset$, so $\{10,14\} \subseteq T$, and thus, $10 \in T \backslash M$. Thus, $5 \notin T$ Now, suppose that $-5 \in T$. Then, $-9 \in L$, which implies $-8 \in T$, because $-8 \notin L$ by applying Lemma 4.23 on $-L$. Thus, $\{-12,-9,7\} \subseteq N(5)$. Therefore, $-5 \notin T$.

Additionally, if $7 \in T$, because $11 \in T$, we have $7 \in T \backslash M$, a contradiction. Note that $-7 \notin T$ as otherwise $-11 \in L$ and $\{5,6,7\} \subseteq N(-11)$. Therefore, if $-7 \notin L$, then $a_{1}=-6$. However, as $\{-4,-5,6\} \subseteq N(9)$ and $\{-4,-5,-6\} \subseteq N(10)$, it follows that $\{9,10\} \subseteq T$, so $\{13,14\} \subseteq L$. Then, because $|N(7)| \leq 2$, and $\{5,6\} \subseteq N(7)$, it follows that $[12,15] \cap N(7)=\emptyset$, so $[19,22] \cap L=\emptyset$. Now, as $15 \in L$ and $[9,11] \subseteq T$, we have $\{-4,-5,-6\} \cap N(15)=\emptyset$. As $N(15) \neq \emptyset$, it holds that $\min (N(15)) \geq 4$, so $a_{n} \geq 19$. However, because $[19,22] \cap L=\emptyset$, it holds that $[19,22] \subseteq T$, and thus, $[16,18] \subseteq L$, which implies $\{7,12,13\} \subseteq N(5)$. Thus, $a_{r} \leq 3$.

Lemma 4.28. If $\operatorname{isd}\left(P_{n}\right)=2 n-3$ for $n \geq 27$, then $a_{r} \leq 2$.
Proof. Suppose otherwise. Then, $a_{r}=3$ by Lemma 4.27. Now, from Lemma 4.25, $|T \backslash M|=$ $\eta=1$. Thus, from Lemma 4.2, $|([-5,-3] \cup[3,5]) \backslash L| \leq 1$.

Then, because P_{n} is a sum graph labeling of $-L$, assume without loss of generality that $[3,5] \subseteq L$. First, if $b_{i}=5$, then $\left|\left\{a_{i}+1, a_{i}+4\right\} \cap T \backslash M\right| \geq 1$. Because $|T \backslash M|=1$, it holds that $c_{5} \leq 1$. Similarly, if $b_{i} \geq 6$ but $i \neq r-1$, then $a_{i}+1, a_{i}+4 \in T$ and $a_{i}+2, a_{i}+5 \in T$. Thus, because $|T \backslash M|=1$ and $b_{r-1}=6$, we have $c_{6}=1$. Next, because $[3,5] \subseteq L$, it follows that 4,8 are not consecutive. In addition, from Lemma 4.23, $6 \notin L$. Thus, because $|N(4)| \leq 2$ and $|N(3)| \leq 2$, we have $c_{4} \leq 2$, and $c_{3} \leq 2$.

Finally, we bound c_{2}. First, if $b_{1}=2$ and $b_{n-1}=2$, then $\left\{a_{1}+1, a_{n}-1\right\} \subseteq T \backslash M$, a contradiction. Thus, assume that $b_{n-1} \neq 2$. Now, if $b_{i}=2$ and $b_{i+1}=1$, then $a_{i} \in N(3)$. Next, if $b_{i}=2$ and $b_{i+1}=2$, then $a_{i} \in N(4)$. In addition, if $b_{i}=2$ and $b_{i+1} \geq 3$, then $\left\{a_{i}+1, a_{i}+4\right\} \cap T \backslash M \neq \emptyset$. Now, because $|N(3)|,|N(4)| \leq 2$, and $|T \backslash M|=1$,

$$
\begin{equation*}
c_{2} \leq\left(2-c_{3}\right)+\left(2-c_{4}\right)+\left(1-c_{5}\right)=5-c_{3}-c_{4}-c_{5} . \tag{4.37}
\end{equation*}
$$

Thus, $\max \left(c_{3}, c_{4}\right) \leq 2$ and $c_{5} \leq 1$, so from Equation (4.37), it holds that

$$
\begin{align*}
\operatorname{range}(L)=\sum_{\ell=1}^{\max \left(b_{i}\right)} \ell \cdot c_{\ell} & =6+5 c_{5}+4 c_{4}+3 c_{3}+2 c_{2}+\left(n-1-\sum_{\ell=2}^{\max \left(b_{i}\right)} c_{\ell}\right) \\
& =n+4+4 c_{5}+3 c_{4}+2 c_{3}+c_{2} \tag{4.38}\\
& \leq n+4+4 c_{5}+3 c_{4}+2 c_{3}+\left(5-c_{3}-c_{4}-c_{5}\right) \leq n+18 .
\end{align*}
$$

Therefore, because $2 n-3=$ range $(L) \leq n+18$, it holds that $n \leq 21$.
We now show that $a_{r}=1$ if $\operatorname{isd}\left(P_{n}\right)=2 n-3$ for $n \geq 27$.
Lemma 4.29. If $\operatorname{isd}\left(P_{n}\right)=2 n-3$ for $n \geq 27$, then $a_{r}=1$.
Proof. Suppose otherwise. Then, by Lemma 4.28, $a_{r}=2$. First, if $b_{i}=4$, with $i \neq r-1$, then $\left\{a_{i}+1, a_{i}+3\right\} \subseteq T$, which results in an element of $T \backslash M$. Thus, because $|T \backslash M| \leq 1$,
and $b_{r-1}=4$, we have $c_{4} \leq 2$. In addition, $|\{-3,3\} \cap L| \geq 1$, as otherwise $\{-1,1\} \subseteq T \backslash M$, a contradiction to $|T \backslash M|=1$. Thus, because $N(\pm 3) \leq 2$, we have $c_{3} \leq 3$. Now, if $b_{1}=b_{n-1}=2$, then $\left\{a_{1}+1, a_{n}-1\right\} \subseteq T \backslash M$, a contradiction. Thus, assume that $b_{n-1} \neq 2$. Then, if $b_{i} \neq 1$ and $b_{i+1} \neq 1$, then $\left\{a_{i+1}-1, a_{i+1}+1\right\} \subseteq T$, which results in an element of $T \backslash M$. Therefore, for each $b_{i}=2$, either $b_{i+1}=1$ or $a_{i}+1 \in T \backslash M$.

Now, because $|T \backslash M|=1$, and $|N(3)| \leq 2$, it holds that

$$
\begin{equation*}
c_{2} \leq\left(3-c_{3}\right)+\left(1-c_{4}\right)=4-c_{3}-c_{4} . \tag{4.39}
\end{equation*}
$$

Therefore, because $c_{3} \leq 3$ and $c_{4} \leq 2$, it holds that

$$
\begin{align*}
\operatorname{range}(L) & \leq 4 c_{4}+3 c_{3}+2 c_{2}+\left(n-1-c_{4}-c_{3}-c_{2}\right) \\
& \leq n-1+3 c_{4}+2 c_{3}+\left(4-c_{3}-c_{4}\right) \tag{4.40}\\
& =n+3+2 c_{4}+c_{3} \leq n+10 .
\end{align*}
$$

Thus, $\operatorname{isd}\left(P_{n}\right)=2 n-3 \leq n+10$, from which $n \leq 13$, a contradiction.
We now show our final result for odd n.
Lemma 4.30. For odd $n \geq 27$, it holds that $\operatorname{isd}\left(P_{n}\right) \geq 2 n-2$.
Proof. Suppose otherwise. Then, by Lemmas 4.25 and 4.29, $\left|a_{r-1}\right|=a_{r}=1$. In addition, from Lemmas 4.23 and 4.24 . because $|N(1)|=2$ and $2 \notin L$, we have $c_{1}=2$. Furthermore, from Lemma 4.25, $|T \backslash M|=1$, so $c_{3}=1$, and there is no i such that $b_{i} \geq 4$. Therefore, let $b_{f}=1, b_{g}=1$, and $b_{h}=3$, where $f<g$. In addition, for every $i \notin\{f, g, h\}$, we have $b_{i}=2$.

In addition, for $n \geq 14$, there are at least 3 indices i for which $b_{i}=b_{i+1}=b_{i+2}=2$. Thus, $\{4,-4,6,-6\} \cap L=\emptyset$, as otherwise $|N(\pm 6)|,|N(\pm 4)| \geq 2$. It follows that either $-3 \in L$ or $\min (L)=-1$, and either $3 \in L$ or $\max (L)=1$. In addition, because $6 \notin L$ and $b_{h}=3$, there is at most one index i such that $\left\{b_{i}, b_{i+1}\right\}=\{1,2\}$, otherwise $|N(3)|>2$ or $|N(-3)|>2$.

First, we consider $h \notin[f, g]$. Since $-L$ is also a sum graph labeling of P_{n}, without loss of generality let $h>g$. If $g \neq f+1$, then $\left\{b_{f}, b_{f+1}\right\}=\left\{b_{g-1}, b_{g}\right\}=\{1,2\}$. Therefore, $g=f+1$. Now suppose that $f \neq 1$. Then, because $h>g$, it holds that $b_{f-1}=2$, which implies $-3 \notin L$, as otherwise $\{-1,1,-3\} \subseteq N\left(a_{g}\right)$. Thus, it follows that $\min (L)=a_{1}=-1$. Then because $t=0$ from Lemma 4.22, it holds that $b_{n-1}=1$, because otherwise a_{n} would be isolated, for $\min (L)=-1$. However, $h>g$, which implies $b_{n-1} \neq 1$. Thus, $f=1$. Now, if $3 \in L$, then $h=g+1$, as otherwise $\{-1,1,3\} \subseteq N\left(a_{g}\right)$. However, this forces $|N(3)|=|N(-3)|=$ $\left|N\left(a_{n}\right)\right|=1$, a contradiction to $G=P_{n}$. Thus, $3 \notin L$ and thus, $1=\max (L)=a_{n}$, i.e., 1 is the only positive label of L. It follows from $f=g-1=1$ and $2 \notin L$ that $a_{3}=a_{1}+2$ and a_{1} have exactly one neighbor. Therefore, because $|N(-1)|=|N(1)|=\left|N\left(a_{2}\right)\right|=2$, it follows that $\left\{-1,1, a_{1}, a_{2}, a_{3}\right\}$ is a component.

Therefore, $h \in[f, g]$. First, if $f \neq 1$ and $g \neq n-1$, we have $\left\{b_{f-1}, b_{f}\right\}=\{1,2\}=\left\{b_{g}, b_{g+1}\right\}$, a contradiction, because there is at most one i such that $\left\{b_{i}, b_{i+1}\right\}=\{1,2\}$. Therefore, either $f=1$ or $g=n-1$. Assume without loss of generality that $g=n-1$. First, suppose that $f=1$. Then either $h=g-1$ or $h=f+1$, as otherwise, $\left\{b_{f+1}, b_{f}\right\}=\{1,2\}=\left\{b_{g-1}, b_{g}\right\}$. Assume without loss of generality that $h=g-1$. Now, because $\{-6,-4,4,6\} \cap L=\emptyset$, we have $\left|a_{1}\right|, a_{n} \geq 8$. Thus, $\left\{1,3,5, a_{1}+1, a_{1}+3, a_{1}+5\right\} \subseteq L$, so $\{1,3,5\} \subseteq N\left(a_{1}\right)$. Therefore, $f \neq 1$, which forces $f+1=h=g-1$, as otherwise $\left\{b_{f-1}, b_{f}\right\}=\{1,2\}$ and either $\left\{b_{f}, b_{f+1}\right\}=\{1,2\}$ or $\left\{b_{g-1}, b_{g}\right\}=\{1,2\}$. Because $b_{n-4}=2$, we have $-3 \notin L$, as otherwise $\{-3,-1,3\} \subseteq N\left(a_{n-2}\right)$. Therefore, $a_{1}=-1$, and $\{f, g, h\}=\{n-3, n-2, n-1\}$, which
corresponds to the set of all odds from $[-1,2 n-9]$, combined with $\{2 n-8,2 n-5,2 n-4\}$. For odd n, $\{n-4, n-2,2 n-4\}$ each have exactly one neighbor, which contradicts $G=P_{n}$.

We now proceed to the proof of Theorem 1.4.
Proof of Theorem 1.4. We verify the case when $n \leq 26$ through computer search. Now, the lower bounds of the theorem are a result of Lemmas 4.20 and 4.30. The upper bounds are a result of Theorem 4.1.

5. The Sum-Diameter of Paths

We prove Theorem 1.3. The current best bound on $\operatorname{sd}\left(P_{n}\right)$ is by Li.
Theorem 5.1 (Proposition 9.4 of [4]). For $n \geq 3$, it holds that

$$
2 n-3 \leq \operatorname{sd}\left(P_{n}\right) \leq 2 n-2 .
$$

For the rest of this section, let L be a sum graph labeling of a graph $G \cup I_{m}$ that satisfies range $(L)=\operatorname{sd}(G)$. Let $S=\left\{a_{1}, a_{2}, \ldots, a_{n}\right\} \subseteq \mathbb{N}$ be the labels of the vertices of G such that $a_{1}<a_{2}<\cdots<a_{n}$. We first cite Li [4] on the labels that must be in S if range $(L)=2 n-3$.
Lemma 5.2 (Remark 7.8 of [4]). If range $(L)=2 n-3$, then $\left[a_{1}, 2 a_{1}\right] \subseteq S$.
In addition, following the proof of Lemma 3.2 directly after defining T, M, and N analogously as Section 3 gives us the following lower bound on $\operatorname{sd}(G)$.

Corollary 5.3. If $\left[a_{1}, 2 a_{1}\right] \subseteq S$, then $\operatorname{sd}(G) \geq 3 n-a_{1}-4-4 \Delta+\delta$.
Next, we give a lower bound on n with respect to a_{1} when range $(L)=2 n-3$ and $n-a_{1} \geq 4$.
Lemma 5.4. If range $(L)=2 n-3$ and $n-a_{1} \geq 4$, then $n \geq 2 a_{1}$.
Proof. By Lemma 5.2, it holds that $\left[a_{1}, 2 a_{1}\right] \subseteq S$. Now, because range $(L)=2 n-3$, it holds that $\max (S) \leq 2 n-3$, otherwise $\max (S)$ would be isolated. Therefore,

$$
\begin{equation*}
\left|S \cap\left[2 a_{1}+1,2 n-3\right]\right|=n-\left(a_{1}+1\right)=n-a_{1}-1 . \tag{5.1}
\end{equation*}
$$

As a result,

$$
\begin{align*}
\left|S \cap\left[2 a_{1}+1, n+a_{1}+1\right]\right| & =\left|S \cap\left[2 a_{1}+1,2 n-3-\left(n-a_{1}-4\right)\right]\right| \tag{5.2}\\
& \geq\left|S \cap\left[2 a_{1}+1,2 n-3\right]\right|-\left(n-a_{1}-4\right)=3 .
\end{align*}
$$

Thus, if $a_{1}+2 a_{1} \geq n+a_{1}+1$, then $N\left(a_{1}\right) \geq 3$. As a result, $n \geq 2 a_{1}$.
Next, we give an upper and lower bound on a_{1} when range $(L)=2 n-3$.
Lemma 5.5. If range $(L)=2 n-3$, then $n-2 \geq a_{1} \geq n-8$.
Proof. By Corollary 5.3, $\operatorname{sd}\left(P_{n}\right)=2 n-3 \geq 3 n-a_{1}-11$. Therefore, $a_{1} \geq n-8$. In addition, if $a_{1} \geq n-1$, then $a_{n} \geq a_{1}+(n-1)=2 n-2$. Thus, range $(L) \geq 2 n-2+a_{1}-a_{1} \geq 2 n-2$. As a result, $n-2 \geq a_{1}$.

We now proceed to the proof of Theorem 1.3.

Proof of Theorem 1.3. From Theorem 5.1, it suffices to show that $\operatorname{sd}\left(P_{n}\right) \neq 2 n-3$ when $n \geq 7$. Thus, suppose for the sake of contradiction that $\operatorname{sd}\left(P_{n}\right)=2 n-3$ and $n \geq 7$. Then by Lemma 5.5, it holds that $n-2 \geq a_{1} \geq n-8$.

Now, if $n-4 \geq a_{1} \geq n-8$, then it follows from Lemma 5.4 that $n \geq 2 a_{1} \geq 2 n-16$. Thus, $n \leq 16$. From exhaustive computer search, we check that the statement holds when $n \leq 16$.

Now, if $a_{1}=n-3$, then $\max (L)=3 n-6$. Because all $s \in S$ must satisfy $n-3+s \leq 3 n-6$, it must hold that $s \leq 2 n-3$. In addition, because $|S|=n$, it must hold that

$$
\begin{equation*}
|[n-3,2 n-3] \backslash S|=1 \tag{5.3}
\end{equation*}
$$

Now, if $2 n-3 \in S$, then $\{2 n-3, n\} \subseteq N(n-3)$. Therefore, $\{n-1, n-2\} \cap N(n-3)=\emptyset$, and thus, $2 n-4,2 n-5 \notin S$. But if so, then $|[n-3,2 n-3] \backslash S| \geq 2$. Thus $2 n-3 \notin S$. However, from Equation (5.3), it holds that $S=[n-3,2 n-4]$. Then, $N(n-2)=\{n-3,2 n-4\}$, and thus $[n-1,2 n-3] \notin N(n-2)$. Therefore $[2 n-3,3 n-7] \notin L$. But then, since $|N(2 n-5)|=|N(2 n-4)|=1$, we have $\{2 n-4, n-2, n-3, n-1,2 n-5\}$ is a component, a contradiction as sought.

Finally, if $a_{1}=n-2$, then because $\max (L)=3 n-5$, any $s \in S$ should satisfy $s \leq$ $3 n-5-(n-2)=2 n-3$. Because $|S|=n$, it must be that $S=[n-2,2 n-3]$. Then $N(n-2)=\{n-1,2 n-3\}$, and thus $[n, 2 n-4] \notin N(n-2)$, which implies $[2 n-2,3 n-6] \notin L$. However, then $\{2 n-3, n-2, n-1,2 n-4\}$ is a component, a contradiction as sought.

Acknowledgements

This research was conducted as a part of the PRIMES-USA program, hosted by the Department of Mathematics at MIT. The authors thank Tanya Khovanova, Slava Gerovitch, and Pavel Etingof for their advice. Last but not least, they thank Felix Gotti for reviewing and providing feedback on this research.

References

[1] J. Goodell et al. Sum graphs. unpublished (1990).
[2] F. Harary. Sum graphs and difference graphs. Congr. Numer. 72 (1990), pp. 101-108.
[3] F. Harary. Sum graphs over all integers. Discrete Math. 124 (1994), pp. 99-105.
[4] R. Li. The Spum and Sum-Diameter of Graphs: Labelings of Sum Graphs. Discrete Math. 345.5 (2022), p. 112806.
[5] S. Singla, A. Tiwari, and A. Tripathi. Some results on the spum and the integral spum of graphs. Discrete Math. 344 (2021), P3.32.
A. Bora, William P. Clements High School, Sugar Land, TX, 77479

Email address: bora.aryan@gmail.com
Y. Choi, Harvard University, Cambridge, MA, 02138

Email address: ychoi@college.harvard.edu
L. Tang, Interlake High School, Bellevue, WA, 98008

Email address: lucastang06@gmail.com

