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Abstract

The Helly number h(S) of a set S ⊆ Rd is defined as the smallest
positive integer h, if it exists, such that the following statement is true:
for any finite family of convex sets in Rd, if every subfamily of h sets
intersects, then all sets in the family intersect. We study Helly numbers
of product sets of the form Ad for some one-dimensional set A.

Inspired by Dillon’s research on the Helly numbers of product sets,
Ambrus, Balko, Frankl, Jung, and Naszódi recently obtained the first
bounds for Helly numbers of exponential lattices in two dimensions, which
are sets of the form S = {αn : n ∈ N}2 for some α > 1. We develop a
different, simpler method to obtain better upper bounds for exponential
lattices. In addition, we generalize the lower bounds of Ambrus et al. to
higher dimensions.

We additionally investigate sets A ∈ Z whose consecutive elements
differ by at most 2 such that h(A2) = ∞.We slightly strengthen a theorem
of Dillon that such sets exist while also providing a shorter proof.

We obtain Helly number bounds for certain sets defined by arithmetic
congruences.

Finally, we introduce a generalization of the notion of an empty poly-
gon, and show that in one case, it is equivalent to the original definition.

1 Introduction

An active area in discrete geometry is studying how convex sets intersect. A
foundational result in this topic is Helly’s Theorem.

Theorem 1.1 (Helly [9], 1923). Let F be a finite family of convex sets in Rd.
If every d + 1 or fewer sets in F have a point in common, then all sets in F
have a point in common.

Doignon [7] proved a similar theorem for integer points, which was also
discovered independently by Bell [3] and Scarf [11].
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Theorem 1.2 (Doignon’s Theorem). Let F be a finite family of convex sets in
Rd. If every 2d or fewer sets in F have an integer point in common, then all
sets in F have a lattice point in common.

Example. The 2d in the Doignon’s Theorem cannot be reduced. To see this,
take F to be the family of convex hulls of 2d − 1 vertices of a hypercube in
Rd. Every 2d − 1 of these sets intersect at a vertex of the hypercube, but the
intersection of all these sets does not contain a lattice point.

As this example shows, Doignon’s Theorem is tight; that is, we cannot re-
place 2d with anything smaller. In fact, Helly’s Theorem is also tight, as the
family of facets of a simplex shows.

Thus, the integer lattice also has a “Helly-type” property. We can make
precise the strength of the necessary assumption for a Helly-type property of
any set by introducing the Helly number.

Definition. Given a set S ⊆ Rd, the Helly number of S, denoted h(S), is the
smallest h such that the following Helly-type theorem holds:

Let F be a finite family of convex sets in Rd. If every h or fewer sets
in F intersect at a point in S, then the intersection of all sets in F
contains a point in S.

If no such h exists, we say h(S) = ∞.

Helly-type properties have several applications in optimization algorithms,
as outlined by Amenta, De Loera, and Soberón [2].

Example. We have h(Rd) = d+ 1 and h(Zd) = 2d.

Hoffman[10] proved a powerful characterization of Helly numbers of discrete
sets.

Definition. We say T ⊆ S is empty if conv(T ) ∩ S only contains vertices of
conv(T ). (Here, conv refers to the convex hull)

Theorem 1.3 (Hoffman [10], 1979). If S ∈ Rd and S is discrete, then h(S) is
equal to the maximum size of an empty subset of S.

Example. In Zd, consider a 2d + 1-vertex convex set. The Pigeonhole Princi-
ple implies that some two vertices have coordinates with the same modulo-2
residues, so their midpoint is a lattice point. In particular, no 2d + 1-vertex
convex set can be empty, so this theorem shows that the Helly number is at
most 2d.

In practice, most Helly numbers are found using Hoffman’s Theorem.
The following result immediately follows from the definition of the Helly

number:

Proposition 1.4. For all S1, S2 ∈ Rd,

h(S1 ∪ S2) ≤ h(S1) + h(S2).
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Similarly, it is not hard to show that the product of two convex empty sets
is convex and empty. The following theorem, based on this fact, gives us a way
to look at the Helly number across dimensions.

Proposition 1.5. For all discrete S1, S2,

h(S1 × S2) ≥ h(S1)h(S2).

Many authors, such as DeLoera, La Haye, Oliveros, and Roldán-Pensado [5],
have investigated h(S) for specific choices of S and d. Product sets, or sets of the
form S = Ak for some 1-dimensional set A are especially interesting, because
Proposition 1.5 immediately gives a lower bound for such sets. For example, if
h(A2) = ∞, then Proposition 1.5 implies that h(Ad) = ∞ for all d ≥ 2.

Dillon [6] proved a general criterion which implies that if p is a polynomial
with degree at least 2 and A = {p(n) : n ∈ Z}, then h(A2) = ∞ for all d ≥ 2.
Based on this result, it is natural to conjecture that whether or not the Helly
number of A2 is finite is related to the sparseness of the set A. However, Dillon
ruled this out by constructing A ⊆ Z whose consecutive elements differ by
at most 2 (a “2-syndetic” set) such that the A2 has arbitrarily large empty
polygons, and thus arbitrarily large Helly number.

In Section 3, we show that in fact, there is a 2-syndetic set such that A2 has
an empty polygon with infinitely many vertices.

Dillon’s proof for sets defined by polynomials analyzes the ratios of successive
differences between consecutive terms in A. This method gives no information
for exponential lattices, sets of the form Ld(α) = {αn : n ∈ N0}d. Ambrus,
Balko, Frankl, Jung, and Naszódi [1] studied these sets in two dimensions, and

they obtained lower bounds for all α > 1 and exact values for α ∈ [ 1+
√
5

2 ,∞).

Theorem 1.6 (Ambrus, Balko, Frankl, Jung, Naszódi [1], 2023). Let α > 1.

• If α ≥ 2, then h(L2(α)) = 5.

• If α ∈ [ 1+
√
5

2 , 2), then h(L2(α)) = 7.

• If α ∈ (1, 1+
√
5

2 ), then h(L2(α)) ≤ 3⌈logα( α
α−1 )⌉+ 3.

In Section 2.1, we obtain a stronger bound, with an approach that is shorter,
more geometric, and less computational than that of Ambrus et al. [1]:

Theorem 1.7. For α > 1,

h(L2(α)) ≤ 2

⌈
logα

(
α

α− 1

)⌉
+ 3.

This method recovers the exact values of h(L2(α)) for α > 1+
√
5

2 . It also
allows us to fully characterize all maximal empty polygons when α ≥ 2.

Ambrus et al. [1] proved a general lower bound for h(L2(α)) by constructing
an empty polygon with vertices on a hyperbola. They showed that for α > 1,

we have h(L2(α)) ≥
√

1
α−1 .
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In Section 2.2, we consider the analog of a hyperbola in higher dimensions
to generalize this bound:

Theorem 1.8. For α > 1 and d > 1,

h(Ld(α)) ≥
(
k + d− 1

d− 1

)
,

where k =
⌈√

1
α−1

⌉
.

This bound gives h(Ld(α)) ≥ Ωd((α−1)−(d−1)/2), whereas using h(L2(α)) ≥√
1

α−1 in conjunction with Proposition 1.5 gives h(Ld(α)) ≥ Ωd((α − 1)−d/4).

Hence, it is asymptotically stronger than the previous best-known result.
In Section 4, we investigate Helly numbers of powers of arithmetic congru-

ence sets, which are sets of the form

A = {n|n (mod m) ∈ {a1, . . . , ak}}

where 0 ≤ a1 < a2 < · · · < m. Since Ad consists of kd scaled translates of the
integer lattice mZd, Proposition 1.4 immediately gives h(Ad) ≤ 2dkd. Garber [8]
improved this bound in two dimensions, showing that h(A2) ≤ k2+6. However,
he worked with arbitrary unions of integer lattices rather than the more spe-
cific case of an arithmetic congruence set. We prove better bounds for certain
arithmetic congruence sets.

We algebraically show the following.

Theorem 1.9. If A = {n ∈ Z : n ≡ 0, 1 (mod 3)}, then h(A×A) = 8.

We execute the same method with the help of a computer program to obtain
similar results for different moduli.

Theorem 1.10. If A = {n ∈ Z : n ≡ 0, 1 (mod k)} for k = 4, 5, 6, then
h(A×A) = 8.

By analyzing segments between vertices of empty polygons, we obtain a more
general bound.

Theorem 1.11. Let m be a positive integer with smallest prime factor p and

let k and d be positive integers such that d < p(m−1)
m(m−k) . Choose k residues modulo

m, and let A be the set of all integers with one of these residues. Then we have

h(Ad) ≤ kd.

Finally, in Section 5, we propose a variation to the definition of an empty
polytope and prove a theorem similar to Doignon’s Theorem.
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2 Exponential Lattices

2.1 Upper Bounds

Ambrus et al. prove Theorem 1.6 by considering an empty polygon and dividing
its edges into four quadrants. In each quadrant, they bound the number of edges
by considering various points in the lattice which must not lie inside the polygon.

We also consider an empty polygon in an exponential lattice, and in one
case (where all the edge slopes are nonnegative), we repeat the analysis in [1].
However, in all other cases, we analyze a different set of points that cannot lie
inside the polygon, and our approach requires significantly less computation.

Proof of Theorem 1.7. Consider an empty polygon P in L(α). We have two
cases.

If all edges of P have nonnegative slope, then Corollary 11 of Ambrus et al. [1]
shows that P has at most 2⌈logα( α

α−1 )⌉+ 2 edges, implying the conclusion.
Otherwise, P contains vertices A = (αp, αq) and B = (αr, αs) such that

p < r and q > s. We may choose A and B so that no vertices are above and to
the left of A or below and to the right of B. A diagram is shown in Figure 1.

Let C = (αr−1, αq−1) and let ℓ1, ℓ2 be the horizontal and vertical lines
passing through C respectively. Also let D = (αr−1−d, αq−1) be the rightmost
point on ℓ1 strictly to the left of AB, and let E = (αr−1, αq−1−e) be the topmost
point on ℓ2 strictly below AB. It is possible for C to lie below the line AB, in
which case the points C,D,E coincide; this will not affect our proof. Finally,
let X and Y be the intersections of AB with ℓ1 and ℓ2 respectively.

To bound d and e, let A′ = (0, αq) and B′ = (αr, 0). The line A′B′ and ℓ1
intersect at X ′ = (αr−αr−1, αq−1). Since X ′ is strictly to the left of X, we have

αr − αr−1 < αr−d =⇒ d < logα

(
α

α− 1

)
.

The same bound holds for e by considering the intersection of A′B′ and ℓ2.
Let F be the point such that CDEF is a rectangle. Let G be the lattice

point immediately to the right of A, and let H be the lattice point immediately
above B. Consider a point P below AB lying outside pentagon XY EFD.

• If P lies below and to the left of D, then triangle PAB contains D.

• If P lies below and to the left of E, then triangle PAB contains E.

• Otherwise, P lies below and to the right of B or above and to the left of
A, violating our assumption.

Therefore, all vertices of P below AB must lie within XY EFD.
Similarly, consider a point P above AB lying outside triangle CXY.

• If P lies on or above ℓ1, then triangle PAB contains G.

• If P lies on or to the the right of ℓ2, then triangle PAB contains H.
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Figure 1: An illustration of the proof of Theorem 1.7

Thus, all vertices of P above AB must either be G or H, or lie within CXY.
To finish, we bound the number of vertices in rectangle CDFE. For any

given x-coordinate, no two vertices with that x-coordinate can lie on the same
side of AB (and similarly for y-coordinates). This implies that the number of
vertices in rectangle CDFE is at most

min(d, e) + min(d+ 1, e+ 1) ≤ 2

⌈
logα

(
α

α− 1

)⌉
− 1.

Adding the vertices A,B,G,H yields the desired bound. ■

Based on this proof, we can easily characterize all maximal empty polygons
for α ≥ 2.

Corollary 2.1. If α ≥ 2, then all empty pentagons in L2(α) have vertices of
the form (αp, αq), (αr, αs), (αr−1, αq−1), (αp+1, αq), (αr, αs+1), where p < r and
q > s.

Proof. We neglect the case where all edges have positive slope, because Corollary
11 of Ambrus et al. [1] already implies that equality cannot be reached in this
case.

If α ≥ 2, then logα(
α

α−1 ) ≤ 1. This means both d and e in the above proof
are 0, which means C = D = E. So the only possible vertices in an empty
polygon are A,B,C,G,H, which are exactly the points stated in the corollary.

6



In fact, our proof already shows that ABCGH is, indeed, empty. Any point
in the interior must lie within the rectangle CDEF, which consists of only the
point C. However, C is a vertex, so it is not in the interior. ■

2.2 Lower Bounds

Below is the proof of the lower bound mentioned in the introduction.

Proof of Theorem 1.8. Consider the set of points in Zd which lie on the convex
curve x1 . . . xd = αk. We claim that this set is empty in Ld(α). To prove
this, it suffices to check that the closest point to the curve, with coordinates
(α(k+1)/d, . . . , α(k+1)/d), lies above the facet of the polytope that is furthest from
the origin, which has vertices (1, 1, . . . , αk), . . . , (αk, 1, . . . , 1). The equation of
this facet is x1 + · · ·+ xd = αk + n− 1, so it suffices to show

nα(k+1)/d ≥ αk + n− 1.

Let α = 1+ s2. Note that (1+ s2)(k+1)/d ≥ 1+ k+1
d s2 by the Binomial Theorem

and (1 + s2)k < es
2k by Taylor approximation, so it suffices to prove

n

(
1 +

k + 1

d
s2
)

≥ es
2k + n− 1.

By plugging in our choice of k, this simplifies to

s2 + s+ 1 ≥ es,

which follows from the Taylor expansion of ex. Thus we have found an empty
polytope.

The number of vertices in this polytope is the number of ordered d-tuples of
nonnegative integers with sum k, which (say, by stars and bars) is well-known
to be

(
k+d−1
d−1

)
. ■

3 Infinite Empty Polygons in Integer Sets

To construct a 2-syndetic set whose square has infinite Helly number, Dillon
considered a sequence of rational approximations for an irrational number and
used these to construct a sequence of successively larger empty polygons. We
use a similar approach to construct an infinite empty polygon.

The polygon we construct will actually be a scaled, translated version of the
one in Section 5 of Amrbus et al.’s paper [1].

Construction of 2-syndetic set with infinite Helly number. Start by letting A =
Z. We will modify A to satisfy the desired property.

Define the Fibonacci numbers by F0 = 0, F1 = 1, and Fn = Fn−1 + Fn−2.

Let ϕ = 1+
√
5

2 and ψ = 1−
√
5

2 . Let P be the infinite polygon with vertices

{Pi = (−F2i, 2F2i+1 − 1)}i≥1.
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P1

(−1, 3)

P2

(−3, 9)

Figure 2: One strip of our empty polygon construction

Let ℓ be the line y = −2ϕx. By Binet’s Formula, the vertical distance between
Pi and ℓ is

2ϕ

(
ϕ2i − ψ2i

ϕ− ψ

)
−

(
2ϕ2i+1 − 2ψ2i+1

ϕ− ψ
− 1

)
= 1− 2ψ2i.

In particular, as i increases, the distance between Pi and ℓ increases and ap-
proaches 1.

Consider the strip of P lying between the lines x = −F2k+2 and x = −F2k.
Let L be the set of lattice points in this strip which are not vertices of P. Since
the vertical width of the strip is always less than 1 and the slope of ℓ is less than
−2, no two points in L have y-coordinates differing by 1. Therefore, by simply
removing the y-coordinates of points in L from A, we can ensure that the strip
is empty while enforcing the 2-syndetic condition.

Repeating for all strips, we have constructed a valid A, so we are done. ■

4 Arithmetic Congruence Sets

We begin with the simplest nontrivial arithmetic congruence set, consisting of
numbers congruent to 0 or 1 modulo 3.

Proof of Theorem 1.9. A construction of 8 points is shown in Figure 3.
We claim that any empty polygon has at most two vertices whose modulo-3

residues are (0, 0). Then, by symmetry, we will obtain a bound of 2 · 4 = 8, as
desired.
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Figure 3: Construction of 8-Vertex Empty Polygon for Theorem 1.9

Indeed, suppose for the sake of contradiction that
(3x1, 3y1), (3x2, 3y2), (3x3, 3y3) is a triangle whose sides and interior con-
tain no points in A × A. Then the centroid, (x1 + x2 + x3, y1 + y2 + y3), must
have a coordinate that is 2 (mod 3). We may assume x1+x2+x3 ≡ 2 (mod 3).
Clearly x1, x2, x3 cannot be distinct modulo 3, so assume x1 ≡ x2 (mod 3).
Now consider the following points on the sides of the triangle:

(2x1 + x2, 2y1 + y2),

(2x2 + x1, 2y2 + y1).

The x-coordinates are 0 (mod 3), so both y-coordinates must be 2 (mod 3).
However, the sum of the y-coordinates is 0 (mod 3), contradiction. ■

In fact, a similar proof works for modulo 4, 5, and 6 as well. However, we do
not have a simple algebraic argument; we used code to check all cases by brute
force.

Proof of Theorem 1.10. A similar construction achieves 8 vertices, and the first
code in the Appendix proves the bound. ■
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Note that the first code in the Appendix checks moduli up to 10, and finds
that the proof only works for 3, 4, and 5. This suggests that our method of
only considering the most obvious points in the convex hull (those whose co-
efficients are rational numbers with denominator the modulus) is unviable for
large moduli.

In fact, for some higher moduli, it is not even true that there are at most
2 points of each residue pair in an empty polygon. The second code in the
Appendix finds a specific set of three points of the same residue which is empty
in several moduli.

However, the method of bounding the number of points of each residue tuple
is useful for a more general class of congruence sets.

Proof of Theorem 1.11. Consider an empty polygon P with vertices in Ad. Sup-
pose for the sake of contradiction that P has two vertices A and B whose
coordinates in all dimensions have the same remainder modulo m. Construct
points C1, . . . , Cm−1 which partition segment AB into m equal parts (assume
A,C1, . . . , Cm−1, B appear in that order). Clearly, in any given dimension, the
coordinates of C1, . . . , Cm−1 form an arithmetic progression modulo m. There-
fore, in any given dimension, there are at most m

p (m − k) coordinates among

C1, . . . , Cm−1 which are not in A. However, we know m
p (m − k)d < m − 1. So

by the Pigeonhole Principle, there is some Ci with all of its coordinates in A.
This violates the emptiness condition, as desired.

Thus, there is at most one vertex of any given sequence of remainders modulo
m, so there are at most kd total vertices in P. ■

This theorem is strongest when A contains all but one residue modulo m,
and m is prime. In this case, the bound holds for any d < m − 1. The bound
is better than that obtained by Garber[8] in two dimensions, and furthermore
applies to higher dimensions.

5 Variations on Emptiness

Authors such as Steinitz[12] and Carathéodory[4] proved theorems where a prop-
erty of a large set of points implies the property for a subset of those points. This
motivates generalizing the emptiness condition, which allows lattice points only
at vertices, to related emptiness conditions involving more points. In particular,
the following theorem is a natural extension of Doignon’s Theorem:

Theorem 5.1. Suppose a convex polytope P is in Zd such that the only lattice
points in P are on its boundary. Suppose further that all facets of P are d− 1-
simplices. Then P has at most 2d vertices.

Proof. We will show that for any polytope satisfying the property, we can con-
struct an empty polytope with the same number of vertices.

Assume that P contains exactly B lattice point and has the minimum num-
ber of non-vertex lattice points among all polytopes with B lattice points. Sup-
pose for the sake of contradiction that there is a lattice point X lying on some
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facet. Let {P1, . . . , Pk} be the minimal set of vertices whose convex hull con-
tains X. Let Q be the polytope formed by replacing P1 with X in P. Clearly, Q
has strictly fewer lattice points on its boundary than P. Thus, P must in fact
have no non-vertex lattice points, which means it satisfies the Doignon bound
of 2d. ■

Note that the bound in Theorem 5.1 is not necessarily sharp for d > 2,
because the facets of parallelepipeds (the equality cases of Doignon’s Theorem)
are not all simplices.

However, if we remove the condition that all facets must be simplices, the
question becomes less interesting due to the following construction.

Theorem 5.2. There exist convex polytopes P in Zd with arbitrarily many
vertices such that the only lattice points in P are at its vertices, edges, or two-
dimensional faces, and P has nonempty interior.

Proof. Let n ≥ 3. We will construct P with n vertices satisfying the desired
property.

Choose (x1, y1), (x2, y2), . . . , (xn−1, yn−1) to be the vertices of a convex (n−
1)-gon in two dimensions which contains (0, 0) in its interior. Let the vertices
of P be

(x1, y1, 0, 0, . . . , 0),

(x2, y2, 0, 0, . . . , 0),

...

(xn−1, yn−1, 0, 0, . . . , 0),

(0, 0, 1, 1, . . . , 1).

Any convex combination of the last vertex with any other vertices will have a
non-integral coordinate. Moreover, any convex combination of the first n − 1
vertices lies in a two-dimensional facet.

Thus, P is a valid construction, so we are done. ■

6 Open Problems

The main unsolved problem in this paper is bounding the number of vertices
of empty polygons in high-dimensional exponential lattices. In particular, it
is still unknown whether any three-dimensional exponential lattice can have
empty polygons with infinitely many vertices. The proof of Corollary 11 of
Ambrus et al. [1] relies on ordering the edge slopes of a polygon. Since facets
in higher dimensions do not have ordered slopes, this approach cannot be easily
generalized, so a new method is required.

The growth of h(Ld(α)) is also unknown. In the two-dimensional case, Am-
brus et al. [1] note that if α = 1 + 1

x , then our best bounds currently are

⌊
√
x⌋ ≤ h(L2(α)) ≤ O(x log2(x)).
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In higher dimensions, as x→ ∞, our methods give

Ω(x(d−1)/2) ≤ h(Ld(α)).

In both cases, more work is needed to determine the exact growth in terms of
α.

Further bounds on arithmetic congruence sets, in general or in specific cases,
would also be fascinating.

Finally, while Theorem 5.1 provides one upper bound for our generalized
notion of emptiness, the precise value remains unknown.
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8 Appendix

The following is the C++ code used to show Theorem 1.10. We assume that
three points whose coordinates are both divisible by the modulus are vertices
of our polygon. Then, through brute force, we find a point in our set in the
interior of their convex hull. This shows that there are at most 2 vertices of any
given residue pair in an empty polygon, which by symmetry implies that there
are at most 8 vertices.

#inc lude <b i t s / s tdc++.h>
us ing namespace std ;

i n t main ( ) {
f o r ( i n t mod = 3 ; mod <= 10 ; mod++){

/∗ Suppose (mod∗x1 ,mod∗y1 ) , (mod∗x2 ,mod∗y2 ) , (mod∗
x3 ,mod∗y3 ) a l l

l i e in the polygon . Loop through a l l p o s s i b l e
r e s i du e s o f

x1 , y1 , x2 , y2 , x3 , y3 modulo mod . ∗/
bool p r o o fFa i l s = f a l s e ;
f o r ( i n t x1 = 0 ; x1 < mod ; x1++){

f o r ( i n t y1 = 0 ; y1 < mod ; y1++){
f o r ( i n t x2 = 0 ; x2 < mod ; x2++){

f o r ( i n t y2 = 0 ; y2 < mod ; y2++){
f o r ( i n t x3 = 0 ; x3 < mod ; x3++){

f o r ( i n t y3 = 0 ; y3 < mod ; y3
++){
/∗ loop though a l l convex

combinat ions
with c o e f f i c i e n t s a/mod,

b/mod, c/mod
where a+b+c = mod ∗/
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bool foundPoint = f a l s e ;
f o r ( i n t a = 0 ; a <= mod ;

a++){
f o r ( i n t b = 0 ; b <=

mod−a ; b++){
i n t c = mod−a−b ;
i f ( a!=mod&&b!=

mod&&c!=mod) {
i f ( ( a∗x1+b∗

x2+c∗x3 )%
mod==0 | |( a
∗x1+b∗x2+c
∗x3 )%mod
==1){
i f ( ( a∗y1

+b∗y2+
c∗y3 )%
mod
==0 | |(
a∗y1+b
∗y2+c∗
y3 )%
mod
==1){
foundPoint

=

true
;

}
}

}
}

}
i f ( ! foundPoint ) {

p r o o fFa i l s=true ;
}

}
}

}
}

}
}
i f ( ! p r o o fFa i l s ) {

cout << mod << ”\n ” ;
}
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}
}

The code prints 3, 4, and 5, implying Theorem 1.10.
Next, we show that it is possible to have three vertices of the same residue

pair in empty polygons in higher moduli. To do this, we scale the plane down
by a factor of the modulus and exhibit an empty triangle with vertices at lattice
points. Scaling back up, this corresponds to an empty triangle whose coordinates
are divisible by the modulus, as desired.

#inc lude <b i t s / s tdc++.h>
us ing namespace std ;

s t r u c t Point{
double x , y ;

} ;
bool inConv ( Point d , Point a , Point b , Point c ) {

/∗ s i gn o f m1 r ep r e s en t s which s i d e o f AB that D l i e s
in ,

s i gn o f n1 r ep r e s en t s which s i d e o f AB that C l i e s in
, and etc .∗/

double m1 = ( ( b . x−a . x ) ∗(d . y )−(b . y−a . y ) ∗(d . x )−(b . x∗a . y
−a . x∗b . y ) ) ;

double n1 = ( ( b . x−a . x ) ∗( c . y )−(b . y−a . y ) ∗( c . x )−(b . x∗a . y
−a . x∗b . y ) ) ;

double m2 = ( ( c . x−b . x ) ∗(d . y )−(c . y−b . y ) ∗(d . x )−(c . x∗b . y
−b . x∗c . y ) ) ;

double n2 = ( ( c . x−b . x ) ∗( a . y )−(c . y−b . y ) ∗( a . x )−(c . x∗b . y
−b . x∗c . y ) ) ;

double m3 = ( ( a . x−c . x ) ∗(d . y )−(a . y−c . y ) ∗(d . x )−(a . x∗c . y
−c . x∗a . y ) ) ;

double n3 = ( ( a . x−c . x ) ∗(b . y )−(a . y−c . y ) ∗(b . x )−(a . x∗c . y
−c . x∗a . y ) ) ;

/∗ check i f D l i e s on same s i d e o f AB as C, e t c . ∗/
i f (m1∗n1>=0&&m2∗n2>=0&&m3∗n3>=0){

re turn true ;
}
e l s e {

re turn f a l s e ;
}

}

bool equa l s ( Point a , Point b) {
re turn ( a . x==b . x&&a . y==b . y ) ;

}

i n t main ( ) {
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i f s t r e am c in ;
o fs tream cout ;
c in . open (” input . in ”) ;
cout . open (” output . out ”) ;

Point a = { 0 . 0 , 0 . 0 } ;
Point b = { 4 3 . 0 , 3 . 0 } ;
Point c = {100 . 0 , 7 . 0} ;
double bound = 110 . 0 ;
f o r ( double mod = 3 . 0 ; mod <= 50 . 0 ; mod+=1.0){

/∗ Assume that we have s ca l ed down our problem by
a f a c t o r o f mod ;

so S c o n s i s t s o f a l l po in t s whose coo rd ina t e s are
0 or 1/mod modulo 1∗/

bool empty = true ;
// Check mods po in t s that are (1/mod,1/mod)

modulo 1
f o r ( double i = 1 .0/mod ; i <= bound ; i +=1.0){

f o r ( double j = 1 .0/mod ; j <= bound ; j +=
1 . 0 ) {
Point p = { i , j } ;
i f ( ! equa l s ( a , p )&&!equa l s (b , p)&&!equa l s ( c

, p ) ) {
i f ( inConv (p , a , b , c ) ) {

empty = f a l s e ;
}

}
}

}
// Check mods po in t s that are (0 ,1/mod) modulo 1
f o r ( double i = 0 ; i <= bound ; i +=1.0){

f o r ( double j = 1 .0/mod ; j <= bound ; j +=
1 . 0 ) {
Point p = { i , j } ;
i f ( ! equa l s ( a , p )&&!equa l s (b , p)&&!equa l s ( c

, p ) ) {
i f ( inConv (p , a , b , c ) ) {

empty = f a l s e ;
}

}
}

}
// Check mods po in t s that are (1/mod, 0 ) modulo 1
f o r ( double i = 1 .0/mod ; i <= bound ; i +=1.0){

f o r ( double j = 0 ; j <= bound ; j += 1 . 0 ) {
Point p = { i , j } ;

16



i f ( ! equa l s ( a , p )&&!equa l s (b , p)&&!equa l s ( c
, p ) ) {
i f ( inConv (p , a , b , c ) ) {

empty = f a l s e ;
}

}
}

}
// Check mods po in t s that are (0 , 0 ) modulo 1
f o r ( double i = 0 ; i <= bound ; i +=1.0){

f o r ( double j = 0 ; j <= bound ; j += 1 . 0 ) {
Point p = { i , j } ;
i f ( ! equa l s ( a , p )&&!equa l s (b , p)&&!equa l s ( c

, p ) ) {
i f ( inConv (p , a , b , c ) ) {

empty = f a l s e ;
}

}
}

}
i f ( empty ) {

cout << mod << ” , ” ;
}

}

}

The code prints the set

{9, 10, 11, 15, 20, 22, 23, 29, 30, 31, 44, 45, 46}

implying that for all of these moduli (and possibly more), the Helly number
cannot be bounded in the same way as we bounded it for moduli 3, 4, and 5.
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