Truly Anonymous Sealed Sender in Signal

By Eric Chen and Boyan Litchev
Mentored by Kyle Hogan and Simon Langowski
What is Signal?

- Privacy-conscious messaging app
 - End-to-end encrypted
- 40 million monthly active users
Motivation
Confidentiality vs Anonymity

- Confidentiality → people don’t know the contents of a conversation
 ○ Message is encrypted

- Anonymity → don’t know the participants of a conversation
 ○ (Or the social graph of a network)
A Case for Anonymity

- Subpoenas
- Protest organization
- Whistleblowers
- Accuracy for research and surveys
Signal & Anonymous Communication
Normal (SMS/MMS) Messaging

- Post Office knows message contents
- Post Office knows who Boyan and Eric are
Encrypted Messaging

- Post Office knows message contents
- Post Office knows who Boyan and Eric are

Eric Chen
182 Memorial Dr
02142
Cambridge, MA

Boyan Litchev
32 Vassar St
02139
Cambridge, MA

Hi Boyan,
How’s it going?
From, Eric
Sealed Sender Messaging

- Post Office doesn’t know message
- Post Office doesn’t know who sent the message
Sealed Recipient

- Post Office can’t deliver the message
Sealed Sender’s Anonymity Guarantees
The Long Term

- Over time, Sealed Sender doesn’t prevent the post office from knowing that Boyan and Eric are talking
A Standard Conversation
A Standard Conversation

Eric

Boyan

Eric

Boyan

Eric

Boyan

Eric

Boyan

Eric

Boyan

Eric

Boyan

Eric

Boyan
The Digital World

- Boyan and Eric text back rapidly
 - Delivery receipts are sent within ~2 seconds
- Signal can see messages to Eric are consistently close to messages to Boyan
 - Over time, knows they are talking

<table>
<thead>
<tr>
<th>Recipient</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>To: Carol</td>
<td>0 s</td>
</tr>
<tr>
<td>To: David</td>
<td>1 s</td>
</tr>
<tr>
<td>To: Boyan</td>
<td>1.5 s</td>
</tr>
<tr>
<td>To: Eric</td>
<td>3 s</td>
</tr>
<tr>
<td>To: David</td>
<td>6 s</td>
</tr>
<tr>
<td>To: Alice</td>
<td>7 s</td>
</tr>
</tbody>
</table>
Our Goal

- Server shouldn't directly know that Eric and Boyan are talking
- Avoid timing-based attacks, by either
 - Hiding timing for messages
 - Hiding at least one of the participants
Recipient Anonymity & PIR
Anonymous Receiving

- If receiver is anonymous, server can't directly deliver it there
P.O. Boxes

- Can rent without revealing your identity
- Boyan and Eric agree on a box beforehand, then Boyan delivers it to that box
P.O. Boxes

- Can rent without revealing your identity
- Boyan and Eric agree on a box beforehand, then Boyan delivers it to that box
 - Post Office figures out who Eric is when he opens the box Boyan delivered into
Private Letter Retrieval

- Need to break linkage between box Eric accesses and who Eric is talking to
- To prevent the Post Office from knowing which box he needed to open, Eric opens all the boxes
No Delivery

- Eric has to go to the Post Office repeatedly, can't have the message delivered
 - Even if Eric received no mail
Digital Private Letter Retrieval

- Trivial implementation is to just ship everyone a copy of the database
 - Doesn’t violate confidentiality due to encryption
- Huge network costs
Private Information Retrieval

- Messages pushed into digital mailboxes
- Eric sends a query which will operate on every database element indistinguishably
 - Signal can’t tell which element was accessed

Database:

<table>
<thead>
<tr>
<th>Gtg</th>
<th>Hi</th>
<th>Ok</th>
<th>Btw</th>
<th>Pog</th>
<th>Imo</th>
<th>Jk</th>
<th>Cya</th>
</tr>
</thead>
</table>
Private Information Retrieval (PIR) Basics

- Query is all 0s and one 1
- Multiply each database element by query
- Add those up to get result
- Response is only the size of a single element
PIR + Sealed Sender = Anonymity

- Sealed Sender provides sender anonymity
- PIR provides recipient anonymity
Our Scheme
Overall Goal

- One person is always anonymous, and gets both sender and recipient anonymity
 - Signal can’t tell Boyan and Eric are talking to each other

From Eric:
(Sender Anonymity)

To Eric:
(Recipient Anonymity)
<table>
<thead>
<tr>
<th>Protocol Comparisons</th>
</tr>
</thead>
<tbody>
<tr>
<td>Recipient</td>
</tr>
<tr>
<td>To: Carol</td>
</tr>
<tr>
<td>From: Alice</td>
</tr>
<tr>
<td>To: Boyan</td>
</tr>
<tr>
<td>From: Boyan</td>
</tr>
<tr>
<td>To: David</td>
</tr>
<tr>
<td>From: Alice</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sealed Sender only:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Recipient</td>
</tr>
<tr>
<td>To: Carol</td>
</tr>
<tr>
<td>To: David</td>
</tr>
<tr>
<td>To: Boyan</td>
</tr>
<tr>
<td>To: Eric</td>
</tr>
<tr>
<td>To: David</td>
</tr>
<tr>
<td>To: Alice</td>
</tr>
</tbody>
</table>
An Asymmetric Protocol

- Only Eric is anonymous
 - Sending and Receiving use different protocols
- This is sufficient to hide that Boyan and Eric are talking
- One user sends through sealed sender and the other writes to a PIR mailbox
Eric

1) Decides on a mailbox & creates a PIR query for his mailbox

3) Sends a message with Sealed Sender

6) Decrypts the PIR response to get Boyan’s message

Signal Server

2) Stores Eric’s PIR query

5) Evaluates Eric’s PIR query

Boyan

4) Writes a message to the mailbox

Boyan Mailbox 19

= Sealed Sender
= PIR
= Initialization
Pushing Responses

- Any conversations stay in the same mailbox
 - Queries stay the same
- Since query is always the same, we can have Signal store it
- Signal can re-evaluate periodically and push out the update
 - Even if someone isn’t online, they don’t lose anonymity
PIR Optimizations

- Can update queries instead of recomputing
 - Store PIR results

\[
\begin{array}{c|c|c|c|c|c|c|c|c}
& Gtg & Hi & Ok & Btw & Ftw & Pog & Imo & Jk & Cya \\
\hline
0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\end{array}
\]

\[
\begin{array}{c|c|c|c|c|c|c|c|c}
& 0 & + & Hi & + & 0 & + & 0 & + & 0 \\
\hline
0 & + & Hi & + & 0 & + & 0 & + & 0 & + \\
\end{array}
= Hi
\]
Other PIR Details

- Queries can be compressed to only encode for one index, instead of having a ciphertext for each index
 - Query sizes are ~14 KB in state of the art schemes
- High network costs (~2.5 times larger responses)
 - On 2KB elements, we send 200 GB per push
 - Sending un-needed responses
 - Much more bandwidth needed
Takeaways

- Our protocol doesn’t require constant activity
- Hides that Boyan and Eric are talking to each other
- Less computationally expensive than similar protocols
Acknowledgments

- Thanks to MIT PRIMES for making this project possible
- Thanks to our mentors Kyle Hogan and Simon Langowski
Any Questions?