The Indecomposable Summands of the Tensor Products of Monomial Modules Over Finite 2-Groups

George Cao
Mentor: Kent Vashaw
Montgomery High School
October 15-16, 2022
MIT PRIMES Conference
A complex sculpture

- What is representation theory?
- What are the goals in representation theory?

The sculpture “Threshold” by James Hopkins

1Source: https://www.jameshopkinsworks.com/commissions.html
Representation theory, broadly

Complicated algebraic object \rightarrow \text{Linear algebraic data}
Definition

Let G be a finite group. A **representation** of G is a vector space V (over field k) and a group homomorphism $\rho : G \to GL(V)$, where $GL(V)$ is the set of bijective linear transformations $V \to V$.

We write $\rho(g)v \in V$ as gv, where $g \in G$ and $v \in V$.

Example

Let $V = \mathbb{R}^3$. Then V is a representation of $G = C_3 = \langle g \rangle$, where

$$
\rho(g) : e_1 \mapsto e_2 \\
e_2 \mapsto e_3 \\
e_3 \mapsto e_1
$$
Let G be a group.

Definition
Let V_1, V_2 be representations of G. The **direct sum** of representations V_1 and V_2 is the vector space $V_1 \oplus V_2$ and the action of G given by $g(v_1 \oplus v_2) = gv_1 \oplus gv_2$.

Definition
Let V be a representation of G. Then V is **indecomposable** if it cannot be written as the direct sum of two nonzero representations, and V is called **irreducible** if it has no nontrivial proper subrepresentations.
Maschke’s Theorem

Theorem (Maschke)

Let G be a finite group. Then the characteristic of a field k does not divide $|G|$ if and only if any finite dimensional representation of G can be written as a direct sum of irreducible representations.

Modular representation theory: when the characteristic of k divides $|G|$.

Example

Let $G = C_2 = \langle g \rangle$. Over \mathbb{C}, the irreducible representations are \mathbb{C}_+ and \mathbb{C}_-, given by $\rho(g) = (1)$ and $\rho(g) = (-1)$, respectively. Over \mathbb{F}_2, the only irreducible representation is $\rho(g) = (1)$. The representation given by $\rho(g) = \begin{pmatrix} 1 & 1 \\ 0 & -1 \end{pmatrix}$ decomposes into $\mathbb{C}_+ \oplus \mathbb{C}_-$ over \mathbb{C} but is indecomposable over \mathbb{F}_2.
Monomial representations

Let k be an algebraically closed field of characteristic 2. Let $G = \mathbb{Z}_{2^r} \times \mathbb{Z}_{2^s}$ (a 2-group), with generators x and y.

Choose a partition and remove a sub-partition:

Example

The partition $(4, 4, 2, 1)/(3, 1)$:

- Place a basis vector of V in each cell. The action of $x - 1$ takes a basis vector to the one in the box adjacent to the right. The action of $y - 1$ takes it one cell up.
- Monomial representation is indecomposable if and only if diagram is connected.
Conjecture (Benson and Symonds)

There is a way of “multiplying” representations V and W, denoted $V \otimes W$. The dimension of this is $\dim V \cdot \dim W$.

A consequence of a previously published conjecture is that there is a unique odd-dimensional indecomposable summand of $V \otimes^n$. Let this summand be denoted as V_n.

Conjecture

Let $P_V(x)$ be a function such that $P_V(n)$ is the dimension of V_n. Then $P_V(x)$ is a polynomial, or a quasi-polynomial in some cases.

We examine this conjecture for monomial representations.
Simplest monomial representations to check the conjecture:

Proposition

If V is a monomial representation with a monomial diagram that is symmetric by rotation of 180°, then $V_{\text{odd}} \cong V$ and $V_{\text{even}} \cong k$. Particularly,

$$P_V(n) = \begin{cases} \dim V & \text{if } n \text{ odd} \\ 1 & \text{if } n \text{ even.} \end{cases}$$
Let V be the monomial representation corresponding to the partition $(4, 1)$.

\[V = \]

Proposition

We have the following decomposition into indecomposable summands:

\[
V_{2k} \otimes V = V_{2k+1} \oplus F \oplus \cdots \oplus F, \\
\text{4k copies}
\]

\[
V_{2k-1} \otimes V = V_{2k} \oplus W \oplus W \oplus F \oplus \cdots \oplus F, \\
\text{4k–3 copies}
\]

where F is a free module of dimension 8 and W is dimension 4. Particularly, $P_V(n) = 4n + 1$.

George Cao

Summands of Tensor Products

October 2022 10 / 14
(4, 1) monomial representation

(a) V

(b) $V_1 \otimes V$

(c) $V_2 \otimes V$

(d) $V_3 \otimes V$

(e) $V_4 \otimes V$

Key

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1 1</td>
</tr>
</tbody>
</table>
Data computed with MAGMA

<table>
<thead>
<tr>
<th>Diagram</th>
<th>Computed QP</th>
</tr>
</thead>
<tbody>
<tr>
<td>$2^m { }$</td>
<td>$2^m x + 1$</td>
</tr>
<tr>
<td>$m {}$</td>
<td>$2(m - 1)x + 1$</td>
</tr>
<tr>
<td></td>
<td>$[10x - 5, 6x + 1]$</td>
</tr>
<tr>
<td></td>
<td>$[6x - 1, 6x + 1]$</td>
</tr>
<tr>
<td></td>
<td>$2x^2 + 4x + 1$</td>
</tr>
<tr>
<td></td>
<td>$[18x - 11, 10x + 1]$</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Diagram</th>
<th>Computed QP</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$[4x + 3, 4x - 1]$</td>
</tr>
<tr>
<td></td>
<td>$[8x - 1, 8x + 1]$</td>
</tr>
<tr>
<td></td>
<td>$[10x - 3, 10x + 1]$</td>
</tr>
<tr>
<td></td>
<td>$[12x - 5, 12x - 7]$</td>
</tr>
<tr>
<td></td>
<td>$6x + 1$</td>
</tr>
<tr>
<td></td>
<td>$[20x - 13, 12x + 1]$</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Diagram</th>
<th>Computed QP</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$[12x - 4, 12x + 1]$</td>
</tr>
<tr>
<td></td>
<td>$[4x + 3, 8x + 1]$</td>
</tr>
<tr>
<td></td>
<td>$[8x - 1, 12x + 1]$</td>
</tr>
<tr>
<td></td>
<td>$[10x - 3, 10x + 1]$</td>
</tr>
<tr>
<td></td>
<td>$12x^2 - 4x + 1$</td>
</tr>
</tbody>
</table>
I would like to thank:

- Dr. Kent Vashaw for mentoring me.
- Prof. Etingof for proposing this project and giving valuable advice.
- Prof. Benson for his useful discussions.
- Dr. Gerovitch, Dr. Khovanova, and the MIT PRIMES program for making this wonderful research opportunity possible.

