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Introduction
In the Euclidean plane, for any set of three non-collinear points,
any point in the plane can be determined solely by its distances to
the points in the set.



Graph Distance

We let G = (V ,E ) be a finite, simple, connected graph. All edges
have length 1. Let d(u, v) denote the shortest distance between
vertices u, v .
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d(v1, v4) = 1, d(v2, v3) = 2



Introduction (continued)

Now, let the robot move from vertex to vertex on a graph G . Let
R denote the vertex the robot is on.
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d(R, v1) = 1, d(R, v2) = 1, d(R, v3) = 2



Resolving Set

Definition (Resolving Set)

Let S = {z1, z2, . . . , zm} be a subset of V (G ). For every
vertex x ∈ V (G ), create a tuple

α(x) = (d(x , z1), d(x , z2), . . . , d(x , zm)).

If α(x) is distinct for every x ∈ V (G ), then we say S is a
resolving set of G .
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S = {u1, u2, u3}

α(u1) = (d(u1, u1), d(u1, u2), d(u1, u3)) =

= (0, 2, 2)

α(u2) = (2, 0, 2), α(u3) = (2, 2, 0)

α(u4) = (1, 1, 1), α(u5) = (2, 2, 2)



Resolving Set Example (Path)

u0 u1 u2 u3 u4

S = {u0}

α(u0) = (0)

α(u1) = (1)

α(u2) = (2)

α(u3) = (3)

α(u4) = (4)



Resolving Set Example (Clique)
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S = {v1, v2, v3}

α(v1) = (0, 1, 1), α(v2) = (1, 0, 1)

α(v3) = (1, 1, 0), α(v4) = (1, 1, 1)



Metric Dimension

Definition (Metric Dimension)

The size of the smallest resolving set of G is called the
metric dimension of G , and it is denoted dim(G ).
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dim(G ) = 3



k-Truncated Distance

What if the robot’s sensors have a finite range?

R
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Let k be an arbitrary positive integer. Define the k-truncated
distance, dk(u, v) := min(d(u, v), k + 1). In our example, let
k = 2, and let R be the vertex the robot is on. Then we have:

dk(R, u1) = 1, dk(R, u2) = 2, dk(R, u3) = 3, dk(R, u4) = 3



k-Truncated Resolving Set

When we consider k-truncated distance instead of regular distance,
the resolving set is called the k-truncated resolving set, and the
metric dimension is called the k-truncated metric dimension,
denoted dimk(G ).

v1 v2 v3 v4 v5

For the above example, let k = 2. Let S = {v1}, S ′ = {v1, v5}.
Both S and S ′ are resolving sets of the graph. However, S is not a
k-truncated resolving set of the graph because

dk(v1, v4) = dk(v1, v5) = 3.

Note that S ′ is a k-truncated resolving set of the graph.



Past Results

▶ It is known that computing dim(G ) and dimk(G ) for general
graphs G is NP-Hard (Estrada-Moreno, Yero,
Rodrigueq-Velazquez)

▶ For trees T , computing dim(T ) can be done in linear time
(Khuller, Raghavachari, Rosenfeld)

▶ For trees T , computing dim1(T ) can be done in linear time,
using dynamic programming (Frongillo, Lladser, Tillquist)



Our Results

In our paper, we focused on algorithms for computing k-truncated
metric dimension in trees. We proved the following two results:

▶ Computing dimk(T ) for general k , n is NP-Hard

▶ If k is fixed, then there exists an algorithm to compute
dimk(T ) with time complexity polynomial in n



NP-Hardness

The 3-dimensional matching (3DM) problem is known to be
NP-Hard. Our approach to show that computing dimk(T ) for
general n, k is NP-Hard was via a technique called reduction. We
showed that:

dimk(T ) can be computed in polynomial time =⇒

=⇒ 3DM can be solved in polynomial time



Conclusion

Many open questions remain regarding the computation of
k-truncated metric dimension. For example,

▶ What is the best dependence on k we can get in an algorithm
to compute dimk(T )?

▶ What is the best approximation ratio we can obtain for
k-truncated metric dimension of trees?

▶ Can we efficiently compute truncated metric dimension in
other classes of graphs for any constant k?
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