Theoretically Efficient Parallel Density-Peaks Clustering

Michael Huang
Under the direction of
Shangdi Yu and Prof. Julian Shun

October 16, 2022
Density-based Clustering

Unclustered data

\[\begin{align*}
\text{k-means clustering result}^1 & \quad \text{DBSCAN clustering result}^2
\end{align*} \]

1 Everitt, Landau, and Leese 2009.
2 Ester et al. 1996.
DBSCAN fails on datasets where clusters are close together\(^3\)

\(^3\)Amagata and Hara 2021.
DBSCAN fails on datasets where clusters are close together\(^3\)

DPC is able to separate close clusters\(^4\)

\(^3\) Amagata and Hara 2021.
\(^4\) Amagata and Hara 2021.
Compute density5

5Rodriguez and Laio 2014.
DPC Algorithm Procedure Description

Compute density\(^5\)

Find dependent point (the nearest neighbor with higher density)\(^6\)

\(^5\)Rodriguez and Laio 2014.
\(^6\)Rodriguez and Laio 2014.
DPC Algorithm Procedure Description

1. Compute density
2. Find dependent point (the nearest neighbor with higher density)
3. Separate into clusters

DPC Algorithm Procedure Description

1. Compute density\(^5\)
2. Find dependent point (the nearest neighbor with higher density)\(^6\)
3. Separate into clusters\(^7\)

\(^5\) Rodríguez and Laio 2014.
\(^6\) Rodríguez and Laio 2014.
\(^7\) Rodríguez and Laio 2014.
Why Focus on Parallelism

CPU clock-speed hits ceiling; #cores increases exponentially\(^8\)

Each generation of Moore’s Law potentially doubles the number of cores.

\(^8\)Shun 2021.
Parallel Algorithm Background

\[T_p = \text{runtime with } p \text{ processors} \]
\[T_1 = \text{work} \]
\[T_\infty = \text{span} \]

Brent’s Law:

\[T_p \leq T_\infty + \frac{T_1 - T_\infty}{p} \]

Computational graph of a parallel algorithm\(^9\)

\(^9\)Shun 2021.
Binary Space Partitioning Tree:

1. Divide points up equally
2. Satisfy heap property (higher in the tree \Rightarrow higher density)
Parallel Dependent Point Finding with Priority Search

kd-tree

Binary Space Partitioning Tree:

1. Divide points up equally
2. Satisfy heap property (higher in the tree \Rightarrow higher density)
Binary Space Partitioning Tree:

1. Divide points up equally
2. Satisfy heap property (higher in the tree \Rightarrow higher density)
Parallel Dependent Point Finding with Priority Search

kd-tree

Binary Space Partitioning Tree:
1. Divide points up equally
2. Satisfy heap property (higher in the tree \Rightarrow higher density)

Reduce dependent point finding from $O(n)$ to Avg. $O(\log(n))$
Parallel Dependent Point Finding with Priority Search

kd-tree

Binary Space Partitioning Tree:
1. Divide points up equally
2. Satisfy heap property (higher in the tree \Rightarrow higher density)

Reduce dependent point finding from $O(n)$ to Avg. $O(\log(n))$
Parallel Dependent Point Finding with Priority Search

kd-tree

Binary Space Partitioning Tree:

1. Divide points up equally
2. Satisfy heap property (higher in the tree \Rightarrow higher density)

Reduce dependent point finding from $O(n)$ to Avg. $O(\log(n))$
Algorithmic Complexity

<table>
<thead>
<tr>
<th>Algorithms</th>
<th>Compute density</th>
<th>Find dependent point</th>
</tr>
</thead>
<tbody>
<tr>
<td>Previous SOTA(^\text{10})</td>
<td>$O(n^{2-\frac{1}{d}} + n\rho)$</td>
<td>$O(n^{1-\frac{1}{d}} + \rho)$</td>
</tr>
<tr>
<td>Our algorithm</td>
<td>$O(n^{2-\frac{1}{d}})$</td>
<td>$O(n^{1-\frac{1}{d}})$</td>
</tr>
</tbody>
</table>

Complexity comparison

1. **n**: the number of points to be clustered
2. **\(\rho\)**: average density of points
3. **d**: the number of dimensions each point has

\(^{10}\text{Rodriguez and Laio 2014; Amagata and Hara 2021.}\)
Experiment Setup

1. 30-core, 2-way hyperthreading, CPU @3.1 GHz
2. Implemented with ParlayLib11 and ParGeo12

<table>
<thead>
<tr>
<th>Dataset</th>
<th>n</th>
<th>d</th>
<th>synthetic</th>
</tr>
</thead>
<tbody>
<tr>
<td>uniform</td>
<td>10M</td>
<td>2</td>
<td>yes</td>
</tr>
<tr>
<td>simden</td>
<td>10M</td>
<td>2</td>
<td>yes</td>
</tr>
<tr>
<td>varden</td>
<td>10M</td>
<td>2</td>
<td>yes</td>
</tr>
<tr>
<td>GeoLife</td>
<td>24.88M</td>
<td>3</td>
<td>no</td>
</tr>
<tr>
<td>PAMAP2</td>
<td>0.26M</td>
<td>4</td>
<td>no</td>
</tr>
<tr>
<td>Sensor</td>
<td>3.84M</td>
<td>5</td>
<td>no</td>
</tr>
<tr>
<td>HT</td>
<td>0.93M</td>
<td>8</td>
<td>no</td>
</tr>
</tbody>
</table>

11Bleloch, Anderson, and Dhulipala 2020.
12Wang et al. 2022.
Runtime Comparison

Density computation

Overall speedups: 8.3–4666.3x

Algorithms
- DPC-EXACT-BASELINE
- DPC-APPROX-BASELINE
- DPC-FENWICK
- DPC-INCOMPLETE
- DPC-PRIORITY

Dependent point finding
13.2x self-relative speedup
Conclusion

1. Proposed the Priority Search kd-tree data structure and proved its avg. query complexity

2. Developed a theoretically efficient and practically fast DPC algorithm, with up to $4666x$ speedup compared to SOTA
Acknowledgements

- Shangdi Yu
- Prof. Julian Shun
- MIT PRIMES Program