Deep Learning for Partial Differential Equations in Economics

Benjamin Fan, Eddie Qiao
Mentored by Prof. Lu Lu

October 15, 2022
MIT PRIMES Conference
Table of Contents

1 Introduction
2 Solving PDEs — Deep Learning
3 Current Research and Results
What does operating a bank involve?

- People depositing money
- People taking loans
- Amount of workers
- Fixed costs (property tax, insurance)
- Many more factors
Economic Modeling

- Make simplifications and assumptions
- Model these using *partial differential equations*
Economic Modeling

- Make simplifications and assumptions
- Model these using partial differential equations
- For a bank, solve for the value function $v(e, z)$ (“how good” it is)
 - Equity e (amount of shares sold)
 - Productivity z (amount of deposits/loans made per worker)
HJB Equation Solution

Graph of solution v to HJB equation.
Partial Differential Equations (PDEs) — Partial Derivatives

Definition

A *partial derivative* is the derivative with respect to one variable for functions of several variables. We denote the derivative of f with respect to x to be $\frac{\partial f}{\partial x}$.
Partial Differential Equations (PDEs) — Partial Derivatives

Definition

A *partial derivative* is the derivative with respect to one variable for functions of several variables. We denote the derivative of f with respect to x to be $\frac{\partial f}{\partial x}$.

Example 1

$$\frac{\partial}{\partial x}(x^2 + 2xy + 3y) = 2x + 2y$$
Partial Differential Equations (PDEs) — Partial Derivatives

Definition

A *partial derivative* is the derivative with respect to one variable for functions of several variables. We denote the derivative of f with respect to x to be $\frac{\partial f}{\partial x}$.

Example 1

$$\frac{\partial}{\partial x} (x^2 + 2xy + 3y) = 2x + 2y$$

Example 2

$$\frac{\partial^2}{\partial x \partial y} (x^4 + 2x^2y^2 + y) = \frac{\partial}{\partial x} (4x^2y + 1) = 8xy$$
PDE Example — Heat Equation

1D Heat Equation

We have

$$\frac{\partial u}{\partial t} = \alpha \frac{\partial^2 u}{\partial x^2}, \quad x \in [0, 1], \quad t \in [0, 1]$$

where $\alpha = 0.4$ is the thermal diffusivity constant. Boundary condition and initial conditions:

$$u(0, t) = u(1, t) = 0, \quad u(x, 0) = \sin(\pi x).$$

Models the diffusion of heat over time.
PDEs — Formal Setup

Consider a PDE with solution $u(x, t)$ for $x = (x_1, \ldots, x_d)$ and parameters λ over the domain $\Omega \subset \mathbb{R}^d$:

$$f \left(x; \frac{\partial u}{\partial x_1}, \ldots, \frac{\partial u}{\partial x_d}; \frac{\partial^2 u}{\partial x_1 \partial x_1}, \ldots, \frac{\partial^2 u}{\partial x_1 \partial x_d}; \ldots; \lambda \right) = 0, \quad x \in \Omega$$

with boundary conditions

$$\mathcal{B}(u, x) = 0 \quad \text{on} \quad \partial \Omega.$$
Table of Contents

1 Introduction

2 Solving PDEs — Deep Learning

3 Current Research and Results
Solving PDEs

PDEs are difficult to solve — think differentiating vs. integrating

\[\frac{\partial T}{\partial t} = \alpha \nabla^2 T \]
Deep Learning — FNN Formal Setup

Definition

An L-layer feed-forward neural network (FNN) is a function $\mathcal{N}^L(x) : \mathbb{R}^{d_{in}} \to \mathbb{R}^{d_{out}}$. For each layer, we define a weight matrix W^ℓ and a bias vector b^ℓ. Then, letting $T^\ell(x) = W^\ell x + b^\ell$ and σ be a non-linear activation function, we define

$$
\mathcal{N}^L(x) = T^L \circ \sigma \circ T^{L-1} \circ \ldots \circ \sigma \circ T^1(x).
$$
Deep Learning — FNN Formal Setup

Definition

An L-layer feed-forward neural network (FNN) is a function $\mathcal{N}^L(x): \mathbb{R}^{d_{\text{in}}} \rightarrow \mathbb{R}^{d_{\text{out}}}$. For each layer, we define a weight matrix W^ℓ and a bias vector b^ℓ. Then, letting $T^\ell(x) = W^\ell x + b^\ell$ and σ be a non-linear activation function, we define

$$\mathcal{N}^L(x) = T^L \circ \sigma \circ T^{L-1} \circ \ldots \circ \sigma \circ T^1(x).$$

Note: We can formalize this by specifying the dimensions of W^ℓ and b^ℓ.

Benjamin Fan, Eddie Qiao Mentored by Prof. Lu Lu
Deep Learning for Partial Differential Equations in Economics
Deep Learning — Unpacking the Definition

\[\mathcal{N}^L(x) = T^L \circ \sigma \circ T^{L-1} \circ \ldots \circ \sigma \circ T^1(x). \]

Visualization with \(L = 4 \)
Deep Learning — Training

The *loss function* represents how good the solution is.

When training, we aim to minimize the loss function. We use Adam and L-BFGS.
Physics-Informed Neural Networks (PINNs)

Physics-Informed Neural Networks get their name from using information from physics to aid the model.

- Equations such as conservation laws
- Basic idea: we embed a PDE into the loss function
- As the loss function gets closer to zero, the model increases in accuracy
PINN Details

First, we define the training set: we have \mathcal{T}_f points inside the domain and \mathcal{T}_b points on the boundary. Furthermore, we let:

$$
\mathcal{L}_f(\theta; \mathcal{T}_f) = \frac{1}{|\mathcal{T}_f|} \sum_{x \in \mathcal{T}_f} \left| f \left(x; \frac{\partial \hat{u}}{\partial x_1}, \ldots, \frac{\partial \hat{u}}{\partial x_d}, \frac{\partial^2 \hat{u}}{\partial x_1 \partial x_1}, \ldots, \frac{\partial^2 \hat{u}}{\partial x_1 \partial x_d}; \ldots; \lambda \right) \right|^2,
$$

$$
\mathcal{L}_b(\theta, \mathcal{T}_b) = \frac{1}{|\mathcal{T}_b|} \sum_{x \in \mathcal{T}_b} \left\| B(\hat{u}, x) \right\|^2_2.
$$

$\mathcal{L}_f(\theta; \mathcal{T}_f)$ is the L^2 mean of the PDE residuals and $\mathcal{L}_b(\theta, \mathcal{T}_b)$ is the L^2 mean of the errors for boundary points with the boundary condition.
PINN Details

First, we define the training set: we have \(\mathcal{T}_f \) points inside the domain and \(\mathcal{T}_b \) points on the boundary. Furthermore, we let:

\[
\mathcal{L}_f(\theta; \mathcal{T}_f) = \frac{1}{|\mathcal{T}_f|} \sum_{x \in \mathcal{T}_f} \left\| f \left(x; \frac{\partial \hat{u}}{\partial x_1}, \ldots, \frac{\partial \hat{u}}{\partial x_d}, \frac{\partial^2 \hat{u}}{\partial x_1 \partial x_1}, \ldots, \frac{\partial^2 \hat{u}}{\partial x_1 \partial x_d}; \ldots; \lambda \right) \right\|_2^2,
\]

\[
\mathcal{L}_b(\theta, \mathcal{T}_b) = \frac{1}{|\mathcal{T}_b|} \sum_{x \in \mathcal{T}_b} \| \mathcal{B} (\hat{u}, x) \|_2^2.
\]

\(\mathcal{L}_f(\theta; \mathcal{T}_f) \) is the \(L^2 \) mean of the PDE residuals and \(\mathcal{L}_b(\theta, \mathcal{T}_b) \) is the \(L^2 \) mean of the errors for boundary points with the boundary condition.

The loss function is

\[
\mathcal{L}(\theta, \mathcal{T}) = w_f \mathcal{L}_f(\theta; \mathcal{T}_f) + w_b \mathcal{L}_b(\theta; \mathcal{T}_b).
\]

\(w_f \) and \(w_b \) are loss weights.
PINNs in Action: Solving the Heat Equation

We use the python library DeepXDE to implement PINNs for solving PDEs. Recall the 1D Heat Equation

\[
\frac{\partial u}{\partial t} = \alpha \frac{\partial^2 u}{\partial x^2}, \quad x \in [0, 1], \quad t \in [0, 1]
\]

where \(\alpha = 0.4 \) is the thermal diffusivity constant. Boundary condition and initial conditions:

\[
u(0, t) = u(1, t) = 0, \quad u(x, 0) = \sin(\pi x).
\]
PINNs in Action: 1D Heat Equation Results
Table of Contents

1. Introduction

2. Solving PDEs — Deep Learning

3. Current Research and Results
Applications to Other Fields

PINNs can be applied to many other fields:

- Physics
- Systems biology
- Biochemistry
- Optics
- Economics
PINNs for Economic Modeling — HJB Equation Results

A) Train loss vs Iterations

B) L^2 relative error vs Iterations

C) PINN result

D) Reference result

E) Error plot
Acknowledgements

Many thanks to

- Our mentor, Prof. Lu Lu
- Prof. Wenhao Li, Zhouzhou Gu, Anran Jiao
- MIT PRIMES: Dr. Tanya Khovanova, Prof. Pavel Etingof, Dr. Slava Gerovitch
- Our families
References

