
Understanding High-Level
Properties of Low-Level

Programs through Transformers
Zifan (Carl) Guo - St. Mark’s School

Mentor: William S. Moses

MIT PRIMES Conference - May 22th, 2022

William S. MosesCarl Guo Susan Tan Yebin Chon Johannes Doerfert
MIT Princeton Princeton Argonne National Lab

Compilers

u Programs need to go through compilers to be executed

u Compilers transform English-based programs to 1s and 0s that computer
understand

double relu3(double x) {
double result;
if (x > 0)

result = pow(x, 3);
else

result = 0;
return result;

}

Relu3.c

Compiler

011010010110110001101111
011101100110010101111001
011011110111010101110111
011001010110111001100100
011110010010000001101001
011011010110100101110011
011100110111010100001010
...

Relu3.o

u High Level Languages

u (C, Java, Python)

u High abstraction

u English-like

Series of Transformation

u LLVM-IR (Intermediate Representation)

u Less abstract but still readable

u Platform independent

u Assembly Language

u Even less abstract and less readable

u Computer platform dependent

u X86_64

u AArch64

u RISC-V

u Machine Language

u Not readable

u 1s and 0s

LLVM-IR X86-64 IntelC

u As the language becomes more low-level,
it becomes more complicated, less readable, and more precise

double relu3(double x) {
double result;
if (x > 0)
result = pow(x, 3);

else
result = 0;

return result;
}

define double @relu3(double %x){
entry:

%cmp = %x > 0
br %cmp, cond.true, cond.end

cond.true:
%call = pow(%x, 3)
br cond.end

cond.end:
%result = phi [%call, cond.true],
[0, entry]
ret %result

}

.LCPI0_0:
.quad 4613937818241073152

relu3:
push rbp
mov rbp, rsp
sub rsp, 16
movsd qword ptr [rbp - 8], xmm0
movsd xmm0, qword ptr [rbp - 8]
xorps xmm1, xmm1
ucomisd xmm0, xmm1
jbe .LBB0_2
movsd xmm1, qword ptr [rip + .LCPI0_0]
movsd xmm0, qword ptr [rbp - 8]
call pow
movsd qword ptr [rbp - 16], xmm0
jmp .LBB0_3

.LBB0_2:
xorps xmm0, xmm0
movsd qword ptr [rbp - 16], xmm0

.LBB0_3:
movsd xmm0, qword ptr [rbp - 16]
add rsp, 16
pop rbp
ret

Compiler Optimization

u Code transformation to make the program run faster (under the hood)

Unoptimized: Θ(#$) Loop invariant code motion
(LICM)

Optimized: Θ(#)

//Compute magnitude in O(n)
double mag(double[] x);

//Compute norm in O(n)
void norm(double[] out, double[] in) {
double res = mag(in);
for (int i=0; i<n; i++) {
out[i] = in[i] / res;

}
}

//Compute magnitude in O(n)
double mag(double[] x);

//Compute norm in O(n^2)
void norm(double[] out, double[] in) {
for (int i=0; i<n; i++) {
out[i] = in[i] / mag(in);

}
}

This series of transformation is similar to …
language translations

Transformers

u Attention is all you need (Vaswani et al. 2017)

u Unlike RNN or LSTM, not sequential à no locality bias

u Better performance for long-distance context

u Allow parallel computation to save time

u Process sequences as a whole instead of word by word

Transfer Learning (BERT)

Input For Pretraining Task Pre-trained Model
(on massive corpus)

Knowledge
Transfer

Input For Fine-tuning Task Fine-tuned Model
(on smaller corpus)

Output For Fine-tuning Task

u BERT: Pre-training of Deep Bidirectional Transformers
for Language Understanding (Devlin et al. 2018)

u Utilize unlabeled data and need less labeled data

u Creating labels is labor-intensive

u Allow us to feed in more data

Research Context
u Success on natural languages (e.g. translating English to Portuguese)

DeepL Translator

u Success on high-level programming languages (e.g. translating Java to Python)

Unsupervised Translation of Programming Languages (Roziere et al., 2020)

u Few research on compiler optimization has used Transformer models before

Our Goal
u Test whether Transformer language modeling can extract high-level properties

of low-level programs and perform various downstream tasks on low-level
programs

u Through transfer learning, Transformer models can be more effective

u Unlabeled data

u Code more subject to error than natural languages

u Such information would be able to better inform us where and how to apply
compiler optimization

Three Levels

1. High-Level

2. Low-Level

3. Cross-Level

double relu3(double x) {
double result;
if (x > 0)
result = pow(x, 3);

else
result = 0;

return result;
}

Relu3.c

Existing High-Level Work

Unsupervised Translation of Programming Languages (Roziere et al., 2020)

TransCoder

DOBF (deobfuscation)

A Deobfuscation Pre-Training Objective for Programming Languages (Roziere et al., 2021)

Training DOBF on C
u Original paper only implemented in Java and Python

u Pretraining objective à actual objective

u Crucial to recover lost information when one tries to
recover LLVM-IR control-flow back to beautified C

u Constructed our own obfuscator through clang-tidy

Training DOBF on C
u Original paper only implemented in Java and Python

u Pretraining objective à actual objective

u Crucial to recover lost information when one tries to
recover LLVM-IR control-flow back to beautified C

u Constructed our own obfuscator through clang-tidy

Eval pobf = 0 Eval pobf = 1

Acc F1 Acc F1

MLM + 12 layers DOBF 32.89 30.46 30.40 27.88

MLM + 6 layers DOBF 29.35 26.94 28.17 25.72

u Results here are not satisfactory most likely because we chose a smaller,
cleaned C dataset and will try a bigger dataset on all GitHub C code

2nd: Transformer on Low-level Programs

u Ithemal (Mendis et al., 2018) uses a hierarchical LSTM to estimate throughput
given x86_64 assembly basic blocks

u Basic block = chunks of assembly code without branches

u Throughput = clock cycles for executing a basic block in steady state

u Shypula et al. 2021 use a Transformer to superoptimize programs with a Self
Imitation Learning for Optimization (SILO) approach

u Jayatilaka et al. 2021 focuses on automatically choosing between -01, -02,
and -03 pipeline based on code structure with ML

u …

Existing work

Case study: Throughput Estimation of
X86_64 Basic Blocks

u Accurate throughput estimation is an essential tool that informs choosing the
proper optimization passes

u Can a Transformer do better?

u DynamoRIO Tokenizer

u ML needs fixed length input à need to tokenize

u Programming Language specific

u Fixed vocabulary

Throughput Estimation Experiment

u BHive benchmark dataset with 320,000+ basic blocks mapping to the
throughput under Intel’s Haswell microarchitecture

u While the majority of data points fall under value between 20.0 and 1000.0, the
maximum can go up to 1,600,450

u Pretrained on Masked Language Modeling and fine-tuned with mean squared
error loss for regression on the same dataset

mov rdx, qword ptr
[rbx+0x50]
xor ecx, ecx
mov esi, 0x01178629
mov rdi, rbp

110.00prediction

Results & Observations

u Both Ithemal and Transformer struggle with large values

u Lab2id tries to mitigate the issue

u While Ithemal can be more exact for the small data points but is really far off
for these big outliers, Transformer seems to model the big data points better
but be less exact for all data points.

Pearson
Correlation

Spearman
Correlation

Prediction
Accuracy (<25%)

Reproduced
Ithemal

91.8 96.0 85.39%

Transformer 94.95 90.04 56.7%

Transformer with
Lab2id

93.69 95.74 76.06%

3rd: Cross-lingual Transformer model on
both high-level and low-level

Case study: Translating C to LLVM-IR

u Translating from C to LLVM-IR

u Preprocessing

u Inherited TransCoder’s C tokenizer and built my own LLVM-IR tokenizer

u Performed Byte-Pair Encoding (BPE)

u Transfer Learning:

u Pretrained first with Masked Language Modeling (MLM) on all data

u Fine-tuned with Machine Translation instead of Back Translation on functions only

double relu3(double x) {
double result;
if (x > 0)
result = pow(x, 3);

else
result = 0;

return result;
}

define double @relu3(double %0){
%2 = fcmp ogt double %0, 0
br %2, label %3 , label %5

3:
%4 = tail call double @pow (%0, double
3)
br label %5

5:
%6 = phi [%4, %3], [0, %1]
ret %6

}

u Csmith (randomly generated compilable C programs) (Yang et al., 2011)

u Project CodeNet (web scrape of competitive programming online judging
websites) (Puri et al., 2021)

u GitHub Google BigQuery (all available GitHub C programs)

u AnghaBench (1 million selected and cleaned compilable GitHub C programs)
(de Silva et al., 2021)

Data & Results

Csmith Project CodeNet AnghaBench

Training Accuracy 90.73% 93.66% 99.03%

Reference Match N/A N/A 13.33%

BLEU Score (0~100) 43.39 51.01 69.21

Model evaluation result on the 3 datasets

Preprocessing Modification
u Removing unnecessary syntax while making sure it compiles

u Prefix Notation

u A * B + C / D = + * A B / C D

u Math Transformer proves prefix notation effective (Griffith & Kalita, 2019)

u { 8, [3, 5.0, Carl] } = STRUCT2 8 ARR3 3 5.0 Carl

u Writing out definitions of global variables so they can be recoverable on the
function level

Original Prefix Prefix & Global

Training Accuracy 99.03% 98.69% 99.60%

Reference Match 13.33% 22.62% 49.57%

BLEU Score (0~100) 69.21 78.19 87.68%

Model evaluation result on AnghaBench with different preprocessing manipulation

u Note: Armengol-Estape & O’Boyle, 2021 attempted to translate C to x86_64 concurrently,
concluding that machine learning itself can’t be used as a compiler.

Discussion
u Cross-lingual Transformer models should be the direction

u Includes lost information on the low-level

u Shows preliminary successes in downstream tasks

u Future explorations:

u Translating LLVM to C

u Learn and reconstruct optimization passes and determine when to use

u Automatic implementation of desired compiler passes

Acknowledgement

u My Mentor, Billy Moses, for his tireless support

u MIT & MIT PRIMES, for this incredible opportunity

u Additional collaborators (Susan, Yebin, Johannes)

u This research was supported in part by a DOE Computational Sciences
Graduate Fellowship DESC0019323; in part by LANL grant 531711; and in by
the United States Air Force Research Laboratory and was accomplished under
Cooperative Agreement Number FA8750-19-2-1000. The views and conclusions
contained in this document are those of the authors and should not be
interpreted as representing the official policies, either expressed or implied,
of the United States Air Force or the U.S. Government.

u My parents

u All of you, for listening

Questions?

Thank you!

