Understanding High-Level Properties of Low-Level Programs through Transformers

Zifan (Carl) Guo - St. Mark’s School
Mentor: William S. Moses
MIT PRIMES Conference - May 22th, 2022
Compilers

- Programs need to go through compilers to be executed
- Compilers transform English-based programs to 1s and 0s that computer understand

```c
double relu3(double x) {
    double result;
    if (x > 0)
        result = pow(x, 3);
    else
        result = 0;
    return result;
}
```

```
011010010110110001101111
011101100110010101111001
011011110110101011011011
01100101011011001100100
011110010010000001101001
011011010110100101110011
011100110111010100001010
... 
```

Relu3.c

Relu3.o
Series of Transformation

- High Level Languages
 - (C, Java, Python)
 - High abstraction
 - English-like

- Assembly Language
 - Even less abstract and less readable
 - Computer platform dependent
 - X86_64
 - AArch64
 - RISC-V

- LLVM-IR (Intermediate Representation)
 - Less abstract but still readable
 - Platform independent

- Machine Language
 - Not readable
 - 1s and 0s
As the language becomes more low-level, it becomes more complicated, less readable, and more precise.

double relu3(double x) {
 double result;
 if (x > 0)
 result = pow(x, 3);
 else
 result = 0;
 return result;
}

define double @relu3(double %x){
 entry:
 %cmp = %x > 0
 br %cmp, cond.true, cond.end
 cond.true:
 %call = pow(%x, 3)
 br cond.end
 cond.end:
 %result = phi [%call, cond.true],
 [0, entry]
 ret %result
}
Compiler Optimization

- Code transformation to make the program run faster (under the hood)

Unoptimized: $\Theta(n^2)$
Loop invariant code motion (LICM)
Optimized: $\Theta(n)$
This series of transformation is similar to ... language translations
Transformers

- Attention is all you need (Vaswani et al. 2017)
- Unlike RNN or LSTM, not sequential → no locality bias
 - Better performance for long-distance context
- Allow parallel computation to save time
 - Process sequences as a whole instead of word by word

Figure 1: The Transformer - model architecture.
Transfer Learning (BERT)

- **Input For Pretraining Task**
 - Pre-trained Model
 - (on massive corpus)
 - Knowledge Transfer
 - Fine-tuned Model
 - (on smaller corpus)
 - Output For Fine-tuning Task

- **Utilize unlabeled data and need less labeled data**
 - Creating labels is labor-intensive
 - Allow us to feed in more data

- **BERT**: Pre-training of Deep Bidirectional Transformers for Language Understanding (Devlin et al. 2018)
Research Context

- Success on natural languages (e.g. translating English to Portuguese)

![DeepL Translator]

- Success on high-level programming languages (e.g. translating Java to Python)

```
Java

public static int max(int a, int b) {
    return a > b ? a : b;
}

public static void createDirectory(Path path)
    throws IOException{
    if (!Files.exists(path)){
        Files.createDirectories(path);
    }
}

Python

def max(a, b):
    return a if a > b else b

def create_directory(path):
    if not os.path.exists(path):
        os.makedirs(path)
```

Unsupervised Translation of Programming Languages (Roziere et al., 2020)

- Few research on compiler optimization has used Transformer models before
Our Goal

- Test whether Transformer language modeling can extract high-level properties of low-level programs and perform various downstream tasks on low-level programs
- Through transfer learning, Transformer models can be more effective
 - Unlabeled data
 - Code more subject to error than natural languages
- Such information would be able to better inform us where and how to apply compiler optimization
Three Levels

1. High-Level

```
double relu3(double x) {
    double result;
    if (x > 0)
        result = pow(x, 3);
    else
        result = 0;
    return result;
}
```

Relu3.c

2. Low-Level

LLVM

3. Cross-Level

Intel x86
Existing High-Level Work

TransCoder

Java

```java
public static int max(int a, int b){
    return a > b ? a : b;
}
```

```java
public static void createDirectory(Path path)
    throws IOException{
    if(!Files.exists(path)){
        Files.createDirectories(path);
    }
}
```

Unsupervised Translation of Programming Languages (Roziere et al., 2020)

DOBF (deobfuscation)

```
def bfs(graph, root):
    visited = [root]
    queue = [root]
    while queue:
        node = queue.pop(0)
        for neighbor in graph[node]:
            if neighbor not in visited:
                visited.append(neighbor)
                queue.append(neighbor)
    return visited
```

Python

```python
def max(a, b):
    return a if a > b else b
```

```python
def create_directory(path):
    if not os.path.exists(path):
        os.makedirs(path)
```

A Deobfuscation Pre-Training Objective for Programming Languages (Roziere et al., 2021)
Training DOBF on C

- Original paper only implemented in Java and Python
- Pretraining objective \rightarrow actual objective
- Crucial to recover lost information when one tries to recover LLVM-IR control-flow back to beautified C
- Constructed our own obfuscator through clang-tidy
Training DOBF on C

- Original paper only implemented in Java and Python
- Pretraining objective \rightarrow actual objective
- Crucial to recover lost information when one tries to recover LLVM-IR control-flow back to beautified C
- Constructed our own obfuscator through clang-tidy

<table>
<thead>
<tr>
<th></th>
<th>Eval $p_{obf} = 0$</th>
<th>Eval $p_{obf} = 1$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Acc</td>
<td>F1</td>
</tr>
<tr>
<td>MLM + 12 layers DOBF</td>
<td>32.89</td>
<td>30.46</td>
</tr>
<tr>
<td>MLM + 6 layers DOBF</td>
<td>29.35</td>
<td>26.94</td>
</tr>
</tbody>
</table>

- Results here are not satisfactory most likely because we chose a smaller, cleaned C dataset and will try a bigger dataset on all GitHub C code
2nd: Transformer on Low-level Programs
Existing work

- Ithemal (Mendis et al., 2018) uses a hierarchical LSTM to estimate throughput given x86_64 assembly basic blocks
 - Basic block = chunks of assembly code without branches
 - Throughput = clock cycles for executing a basic block in steady state
- Shypula et al. 2021 use a Transformer to superoptimize programs with a Self Imitation Learning for Optimization (SILO) approach
- Jayatilaka et al. 2021 focuses on automatically choosing between -01, -02, and -03 pipeline based on code structure with ML
- ...
Case study: Throughput Estimation of X86_64 Basic Blocks

- Accurate throughput estimation is an essential tool that informs choosing the proper optimization passes
- Can a Transformer do better?
- DynamoRIO Tokenizer
 - ML needs fixed length input → need to tokenize
 - Programming Language specific
 - Fixed vocabulary
Throughput Estimation Experiment

- BHive benchmark dataset with 320,000+ basic blocks mapping to the throughput under Intel’s Haswell microarchitecture
 - While the majority of data points fall under value between 20.0 and 1000.0, the maximum can go up to 1,600,450
- Pretrained on Masked Language Modeling and fine-tuned with mean squared error loss for regression on the same dataset

```
mov rdx, qword ptr [rbx+0x50]
xor ecx, ecx
mov esi, 0x01178629
mov rdi, rbp
```
Results & Observations

<table>
<thead>
<tr>
<th></th>
<th>Pearson Correlation</th>
<th>Spearman Correlation</th>
<th>Prediction Accuracy (<25%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reproduced Ithemal</td>
<td>91.8</td>
<td>96.0</td>
<td>85.39%</td>
</tr>
<tr>
<td>Transformer</td>
<td>94.95</td>
<td>90.04</td>
<td>56.7%</td>
</tr>
<tr>
<td>Transformer with Lab2id</td>
<td>93.69</td>
<td>95.74</td>
<td>76.06%</td>
</tr>
</tbody>
</table>

- Both Ithemal and Transformer struggle with large values
- Lab2id tries to mitigate the issue
- While Ithemal can be more exact for the small data points but is really far off for these big outliers, Transformer seems to model the big data points better but be less exact for all data points.
3rd: Cross-lingual Transformer model on both high-level and low-level
Case study: Translating C to LLVM-IR

- Translating from C to LLVM-IR
- Preprocessing
 - Inherited TransCoder’s C tokenizer and built my own LLVM-IR tokenizer
 - Performed Byte-Pair Encoding (BPE)
- Transfer Learning:
 - Pretrained first with Masked Language Modeling (MLM) on all data
 - Fine-tuned with Machine Translation instead of Back Translation on functions only

```c
double relu3(double x) {
  double result;
  if (x > 0)
    result = pow(x, 3);
  else
    result = 0;
  return result;
}
```

```llvm
define double @relu3(double %0)
{
  %2 = fcmp ogt double %0, 0
  br %2, label %3 , label %5
  3:
    %4 = tail call double @pow (%0, double 3)
    br label %5
  5:
    %6 = phi [ %4, %3], [ %0, %1]
    ret %6
}
```
Data & Results

- Csmith (randomly generated compilable C programs) (Yang et al., 2011)
- Project CodeNet (web scrape of competitive programming online judging websites) (Puri et al., 2021)
- GitHub Google BigQuery (all available GitHub C programs)
- AnghaBench (1 million selected and cleaned compilable GitHub C programs) (de Silva et al., 2021)

Model evaluation result on the 3 datasets

<table>
<thead>
<tr>
<th></th>
<th>Csmith</th>
<th>Project CodeNet</th>
<th>AnghaBench</th>
</tr>
</thead>
<tbody>
<tr>
<td>Training Accuracy</td>
<td>90.73%</td>
<td>93.66%</td>
<td>99.03%</td>
</tr>
<tr>
<td>Reference Match</td>
<td>N/A</td>
<td>N/A</td>
<td>13.33%</td>
</tr>
<tr>
<td>BLEU Score (0~100)</td>
<td>43.39</td>
<td>51.01</td>
<td>69.21</td>
</tr>
</tbody>
</table>
Preprocessing Modification

- Removing unnecessary syntax while making sure it compiles
- Prefix Notation
 - \(A \times B + C / D = + \times A \times B / C \times D \)
 - Math Transformer proves prefix notation effective (Griffith & Kalita, 2019)
 - \{ 8, [3, 5.0, Carl] \} = STRUCT2 8 ARR 3 5.0 Carl
- Writing out definitions of global variables so they can be recoverable on the function level

Model evaluation result on AnghaBench with different preprocessing manipulation

<table>
<thead>
<tr>
<th></th>
<th>Original</th>
<th>Prefix</th>
<th>Prefix & Global</th>
</tr>
</thead>
<tbody>
<tr>
<td>Training Accuracy</td>
<td>99.03%</td>
<td>98.69%</td>
<td>99.60%</td>
</tr>
<tr>
<td>Reference Match</td>
<td>13.33%</td>
<td>22.62%</td>
<td>49.57%</td>
</tr>
<tr>
<td>BLEU Score (0~100)</td>
<td>69.21</td>
<td>78.19</td>
<td>87.68%</td>
</tr>
</tbody>
</table>

Note: Armengol-Estape & O’Boyle, 2021 attempted to translate C to x86_64 concurrently, concluding that machine learning itself can’t be used as a compiler.
Discussion

- Cross-lingual Transformer models should be the direction
 - Includes lost information on the low-level
 - Shows preliminary successes in downstream tasks

- Future explorations:
 - Translating LLVM to C
 - Learn and reconstruct optimization passes and determine when to use
 - Automatic implementation of desired compiler passes
Acknowledgement

- My Mentor, Billy Moses, for his tireless support
- MIT & MIT PRIMES, for this incredible opportunity
- Additional collaborators (Susan, Yebin, Johannes)
- This research was supported in part by a DOE Computational Sciences Graduate Fellowship DESC0019323; in part by LANL grant 531711; and in by the United States Air Force Research Laboratory and was accomplished under Cooperative Agreement Number FA8750-19-2-1000. The views and conclusions contained in this document are those of the authors and should not be interpreted as representing the official policies, either expressed or implied, of the United States Air Force or the U.S. Government.

- My parents
- All of you, for listening
Questions?
Thank you!