Introduction
Jaeyi

Hello, my name is Jaeyi Song and I am a freshman. My interests include science research, music, and playing with my dog.
Hello, my name is Jaeyi Song and I am a freshman.
Jaeyi

Hello, my name is Jaeyi Song and I am a freshman.

My interests include science research, music, and playing with my dog.
Hello, my name is Jaeyi Song and I am a freshman.

My interests include science research, music, and playing with my dog.
Hi, my name is Sophia Hou and I'm a sophomore. One fun fact is that I have a younger sister.
Hi, my name is Sophia Hou and I’m a sophomore.
Hi, my name is Sophia Hou and I’m a sophomore.

One fun fact is that I have a younger sister.
Groups
Introduction to Groups

Definition

A group \((G, \ast)\) is a set \(G\) with a binary operation \(\ast\) that has three requirements satisfied:

1. **Associativity:** \(a \ast (b \ast c) = (a \ast b) \ast c\) for all elements \(a, b, c \in G\).

2. **Identity:** there is an element \(e \in G\) in which \(a \ast e = e \ast a = a\) for all elements of \(G\). The identity for groups under multiplication is 1, under addition it is 0.

3. **Inverse:** For an element \(a \in G\), there is the inverse of \(a\) (let's say \(b\)) that satisfies \(a \ast b = b \ast a = e\).
Introduction to Groups

Definition

A group \((G, +)\) is a set \(G\) with a binary operation \(*\) that has three requirements satisfied:

1. Associativity: \(a \ast (b \ast c) = (a \ast b) \ast c\) for all elements \(a, b, c \in G\).

2. Identity: there is an element \(e \in G\) in which \(a \ast e = e \ast a = a\) for all elements of \(G\). The identity for groups under multiplication is 1, under addition it is 0.

3. Inverse: For an element \(a \in G\), there is the inverse of \(a\) (let’s say \(b\)) that satisfies \(a \ast b = b \ast a = e\).
Example 1

The group \((\mathbb{Z}/n\mathbb{Z}, +)\), which is the set \(\{0, 1, 2, \ldots, n-1\}\) under addition taken modulo \(n\), is a group.

1. This set satisfies associativity because addition is associative. Addition fulfills \((a + b) + c = a + (b + c)\).

2. Identity is 0 because for addition, 0 will always be identity. Identity is any number that produces \(a\) for \(a + e = e + a\).

3. Inverse of \(x\) will be \(n - x\). This is an example of a cyclic group, which is a special type of group in which every element can be written as iterated copies of a single element \(a\) called a generator of \(G\).
Example 1

Example

The group \((\mathbb{Z}/n\mathbb{Z}, +)\), which is the set \(\{0, 1, 2, \ldots, n - 1\}\) under addition taken modulo \(n\), is a group.
Example 1

Example

The group \((\mathbb{Z}/n\mathbb{Z}, +)\), which is the set \(\{0, 1, 2, \ldots, n - 1\}\) under addition taken modulo \(n\), is a group.

1. This set satisfies associativity because addition is associative. Addition fulfills \((a + b) + c = a + (b + c)\).
Example 1

Example

The group \((\mathbb{Z}/n\mathbb{Z}, +)\), which is the set \(\{0, 1, 2, \ldots, n - 1\}\) under addition taken modulo \(n\), is a group.

1. This set satisfies associativity because addition is associative. Addition fulfills \((a + b) + c = a + (b + c)\).

2. Identity is 0 because for addition, 0 will always be identity. Identity is any number that produces \(a\) for \(a + e = e + a\).
Example 1

The group \((\mathbb{Z}/n\mathbb{Z}, +)\), which is the set \(\{0, 1, 2, \ldots, n - 1\}\) under addition taken modulo \(n\), is a group.

1. This set satisfies associativity because addition is associative. Addition fulfills \((a + b) + c = a + (b + c)\).

2. Identity is 0 because for addition, 0 will always be identity. Identity is any number that produces \(a\) for \(a + e = e + a\).

3. Inverse of \(x\) will be \(n - x\).
Example 1

The group \(\mathbb{Z}/n\mathbb{Z}, + \), which is the set \(\{0, 1, 2, \ldots, n - 1\} \) under addition taken modulo \(n \), is a group.

1. This set satisfies associativity because addition is associative. Addition fulfills \((a + b) + c = a + (b + c) \).

2. Identity is 0 because for addition, 0 will always be identity. Identity is any number that produces \(a \) for \(a + e = e + a \).

3. Inverse of \(x \) will be \(n - x \).

This is an example of a cyclic group, which is a special type of group in which every element can be written as iterated copies of a single element \(a \) called a generator of \(G \).
Example 2

The set $\text{GL}_2(\mathbb{R})$ of invertible 2×2 real matrices is a group under matrix multiplication.

1. Matrix multiplication is associative, so the binary operation here is associative.
2. The identity matrix is
 \[
 \begin{pmatrix}
 1 & 0 \\
 0 & 1
 \end{pmatrix}
 \]
3. The inverse of the 2×2 matrix
 \[
 \begin{pmatrix}
 a & b \\
 c & d
 \end{pmatrix}
 \]
 is
 \[
 \begin{pmatrix}
 d & -b \\
 -c & a
 \end{pmatrix}
 \]
 which is in $\text{GL}_2(\mathbb{R})$.
Example 2

Example

The set $\text{GL}(2, \mathbb{R})$ of invertible 2×2 real matrices is a group under matrix multiplication.
Example 2

Example

The set $\text{GL}(2, \mathbb{R})$ of invertible 2×2 real matrices is a group under matrix multiplication.

1. Matrix multiplication is associative, so the binary operation here is associative.
Example 2

Example

The set $\text{GL}(2, \mathbb{R})$ of invertible 2×2 real matrices is a group under matrix multiplication.

1. Matrix multiplication is associative, so the binary operation here is associative.

2. The identity matrix is $\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$.
Example 2

Example

The set $GL(2, \mathbb{R})$ of invertible 2×2 real matrices is a group under matrix multiplication.

1. Matrix multiplication is associative, so the binary operation here is associative.

2. The identity matrix is $\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$.

3. The inverse of the 2×2 matrix $\begin{pmatrix} a & b \\ c & d \end{pmatrix}$ is

$$\frac{1}{ad-bc} \begin{pmatrix} d & -b \\ -c & a \end{pmatrix},$$

which is in $GL(2, \mathbb{R})$.

Example 3

The free group on two elements $\langle a, b \rangle$ consists of all words formed by a, b, a^{-1}, b^{-1}.

1. It is associative because it is essentially concatenation of words.
2. The identity is the empty word, usually denoted e.
3. The inverse of every word can be formed by reversing the order and then taking the inverse of each letter.

Note that this group is not commutative.
Example 3

Example

The free group on two elements $\langle a, b \rangle$ consists of all words formed by a, b, a^{-1}, b^{-1}.
Example 3

The free group on two elements $\langle a, b \rangle$ consists of all words formed by a, b, a^{-1}, b^{-1}.

1. It is associative because it is essentially concatenation of words.
Example 3

Example

The free group on two elements $\langle a, b \rangle$ consists of all words formed by a, b, a^{-1}, b^{-1}.

1. It is associative because it is essentially concatenation of words.
2. The identity is the empty word, usually denoted e.
Example 3

The free group on two elements $\langle a, b \rangle$ consists of all words formed by a, b, a^{-1}, b^{-1}.

1. It is associative because it is essentially concatenation of words.
2. The identity is the empty word, usually denoted e.
3. The inverse of every word can be formed by reversing the order and then taking the inverse of each letter.
Example 3

The free group on two elements \(\langle a, b \rangle \) consists of all words formed by \(a, b, a^{-1}, b^{-1} \).

1. It is associative because it is essentially concatenation of words.
2. The identity is the empty word, usually denoted \(e \).
3. The inverse of every word can be formed by reversing the order and then taking the inverse of each letter.

*Note that this group is not commutative.
Nonexample 1

The set $\text{Mat}_2(\mathbb{R})$ is not a group under multiplication because not every matrix has an inverse. For example, \[
\begin{pmatrix}
0 & 0 \\
0 & 0
\end{pmatrix}
\] does not have a multiplicative inverse because the determinant is 0.
Nonexample 1

Non-Example

The set $\text{Mat}_2(\mathbb{R})$ is not a group under multiplication

The set is not a group under multiplication because not every matrix has an inverse. For example, \[
\begin{pmatrix}
0 & 0 \\
0 & 0
\end{pmatrix}
\]
does not have a multiplicative inverse because the determinant is 0.
Nonexample 1

Non-Example

The set $\text{Mat}_2(\mathbb{R})$ is not a group under multiplication

The set is not a group under multiplication because not every matrix has an inverse. For example, \[
\begin{pmatrix}
0 & 0 \\
0 & 0
\end{pmatrix}
\] does not have a multiplicative inverse because the determinant is 0.
Nonexample 2

Nonexample

Integers under multiplication \((\mathbb{Z}, \times)\) are not a group. This set is not a group because the inverse does not exist. For instance, there is no inverse of 2 since \(\frac{1}{2}\) is not an integer.
Non-Example

Integers under multiplication \((\mathbb{Z}, \times)\) are not a group.
Nonexample 2

Non-Example

Integers under multiplication \((\mathbb{Z}, \times)\) are not a group

This set is not a group because the inverse does not exist. For instance, there is no inverse of 2 since \(1/2\) is not an integer.
Generators and Relations
Free Group

Definition

The free group on elements $\langle x_1, x_2, \ldots, x_n \rangle$ consists of all finite-length words formed by $x_1, x_2, \ldots, x_n, x_1^{-1}, x_2^{-1}, \ldots, x_n^{-1}$.

The free group on one element is \mathbb{Z}.

The free group on two elements was discussed in Example 3.
Free Group

Definition

The free group on elements $\langle x_1, x_2, ..., x_n \rangle$ consists of all finite-length words formed by $x_1, x_2, ..., x_n, x_1^{-1}, x_2^{-1}, ..., x_n^{-1}$.

The free group on one element is \mathbb{Z}. The free group on two elements was discussed in Example 3.
Free Group

Definition

The free group on elements $\langle x_1, x_2, ..., x_n \rangle$ consists of all finite-length words formed by $x_1, x_2, ..., x_n, x_1^{-1}, x_2^{-1}, ..., x_n^{-1}$.

The free group on one element is \mathbb{Z}.
Free Group

Definition

The free group on elements \(\langle x_1, x_2, \ldots, x_n \rangle \) consists of all finite-length words formed by \(x_1, x_2, \ldots, x_n, x_1^{-1}, x_2^{-1}, \ldots, x_n^{-1} \).

The free group on one element is \(\mathbb{Z} \).

The free group on two elements was discussed in Example 3.
Generators and Relations

Definition
Consider the free group on n elements, x_1, x_2, \ldots, x_n. Let r_1, r_2, \ldots, r_m be elements in this group (these are just words).
The group $\langle x_1, x_2, \ldots, x_n | r_1, r_2, \ldots, r_m \rangle$ is the quotient we get by setting each r_i equal to identity.
Generators and Relations

Definition

Consider the free group on \(n \) elements, \(x_1, x_2, \ldots, x_n \). Let \(r_1, r_2, \ldots, r_m \) be elements in this group (these are just words). The group

\[
\langle x_1, x_2, \ldots, x_n \mid r_1, r_2, \ldots, r_m \rangle
\]

is the quotient we get by setting each \(r_i \) equal to identity.
Presentation of a Group

Definition

A presentation of a group, G, is an expression of G in terms of generators and relations (shown in previous slide).
Definition

A presentation of a group, G, is an expression of G in terms of generators and relations (shown in previous slide).
Example 1

The group \(\mathbb{Z}/3\mathbb{Z} \) has a presentation \(\langle x | x^3 = e \rangle \).

The \(x \) represents the element 1, so \(x^3 = e \) just means that \(1 + 1 + 1 = 0 \) (mod 3).
Example 1

The group $\mathbb{Z}/3\mathbb{Z}$ has a presentation $\langle x \mid x^3 = e \rangle$.
Example 1

The group $\mathbb{Z}/3\mathbb{Z}$ has a presentation $\langle x \mid x^3 = e \rangle$.

The x represents the element 1, so $x^3 = e$ just means that $1 + 1 + 1 = 0 \pmod{3}$.
Example 2

The group \mathbb{Z}_2 has a presentation $\langle x, y \mid xy = yx \rangle$.

The x and y represent elements $(1, 0)$ and $(0, 1)$, and the relation $xy = yx$ just means that x and y commute.
Example

The group \mathbb{Z}^2 has a presentation $\langle x, y \mid xy = yx \rangle$.
Example 2

The group \mathbb{Z}^2 has a presentation $\langle x, y \mid xy = yx \rangle$.

The x and y represent elements (1, 0) and (0, 1), and the relation $xy = yx$ just means that x and y commute.
Example 3

The symmetric group \(S_4 \) has presentation

\[
\langle x_1, x_2, x_3 | x_2^2 = x_2 x_1 x_2 = x_2 x_3 x_2 = e \rangle.
\]

The \(x_i \) represents the transpositions \((i, i+1)\).
Example 3

The symmetric group S_4 has presentation

$$\langle x_1, x_2, x_3 \mid x_1^2 = x_2^2 = x_3^2 = (x_1x_2)^3 = (x_2x_3)^3 = e \rangle.$$
Example 3

The symmetric group S_4 has presentation

\[\langle x_1, x_2, x_3 \mid x_1^2 = x_2^2 = x_3^2 = (x_1x_2)^3 = (x_2x_3)^3 = e \rangle. \]

The x_i represents the transpositions $(i, i + 1)$.
Propositions

Every group has a presentation. Every group has presentation
\[\langle \{ x_g \} \mid x_g x_g' = x_g g g' \forall g, g' \in G \rangle. \]
(Note that the number of generators and relations may be infinite, which is ok).
This is really large to work with by hand, so our examples have much nicer presentations!
Propositions

Proposition

Every group has a presentation.
Proposition

Every group has a presentation.

Every group has presentation \(\langle \{ x_g \mid g \in G \} \mid x_g x_g' = x_{gg'} \forall g, g' \in G \rangle \). (Note that the number of generators and relations may be infinite, which is ok).
Every group has a presentation.

Every group has presentation \(\langle \{ x_g \mid g \in G \} \mid x_g x_{g'} = x_{gg'} \forall g, g' \in G \rangle \). (Note that the number of generators and relations may be infinite, which is ok). This is really large to work with by hand, so our examples have much nicer presentations!
Fun problems
Problem 1: Unlooping a rope

Consider two poles that extend infinitely to the sky (and imagine we are living on the \(\mathbb{R}^2 \) plane). You want to loop a rope around the two poles and connect the ends such that the rope cannot be removed from the poles. One simple way to do this is: However, you want to be able to remove the rope by removing either one of the poles. In the picture above, removing a pole does not untangle the rope from the remaining pole. How can you do it?
Problem 1: Unlooping a rope

Consider two poles that extend infinitely to the sky (and imagine we are living on the \mathbb{R}^2 plane).
Problem 1: Unlooping a rope

Consider two poles that extend infinitely to the sky (and imagine we are living on the \mathbb{R}^2 plane). You want to loop a rope around the two poles and connect the ends such that the rope cannot be removed from the poles.
Problem 1: Unlooping a rope

Consider two poles that extend infinitely to the sky (and imagine we are living on the \mathbb{R}^2 plane). You want to loop a rope around the two poles and connect the ends such that the rope cannot be removed from the poles. One simple way to do this is:
Problem 1: Unlooping a rope

Consider two poles that extend infinitely to the sky (and imagine we are living on the \mathbb{R}^2 plane). You want to loop a rope around the two poles and connect the ends such that the rope cannot be removed from the poles. One simple way to do this is:
Problem 1: Unlooping a rope

Consider two poles that extend infinitely to the sky (and imagine we are living on the \mathbb{R}^2 plane). You want to loop a rope around the two poles and connect the ends such that the rope cannot be removed from the poles. One simple way to do this is:

![Diagram of two poles connected by a loop.]

However, you want to be able to remove the rope by removing either one of the poles. In the picture above, removing a pole does not untangle the rope from the remaining pole.
Problem 1: Unlooping a rope

Consider two poles that extend infinitely to the sky (and imagine we are living on the \mathbb{R}^2 plane). You want to loop a rope around the two poles and connect the ends such that the rope cannot be removed from the poles. One simple way to do this is:

![Diagram of two poles with a rope looped around them.]

However, you want to be able to remove the rope by removing either one of the poles. In the picture above, removing a pole does not untangle the rope from the remaining pole. How can you do it?
Problem 1: Loops as group elements

Fix a base point away from the poles. A loop (beginning and ending at this base point) going counterclockwise around the left pole is denoted as \(a\) and a loop going counterclockwise around the right pole is denoted as \(b\). Loops (beginning and ending at the base point, up to homotopy) form a group by concatenation, with inverse being the reverse direction of the loop. This is called the fundamental group: in this case, the group is \(\langle a, b \rangle\).
Problem 1: Loops as group elements

Fix a base point away from the poles.
Problem 1: Loops as group elements

Fix a base point away from the poles. A loop (beginning and ending at this base point) going counterclockwise around the left pole is denoted as a and a loop going counterclockwise around the right pole is denoted as b.
Problem 1: Loops as group elements

Fix a base point away from the poles. A loop (beginning and ending at this base point) going counterclockwise around the left pole is denoted as a and a loop going counterclockwise around the right pole is denoted as b.
Problem 1: Loops as group elements

Fix a base point away from the poles. A loop (beginning and ending at this base point) going counterclockwise around the left pole is denoted as a and a loop going counterclockwise around the right pole is denoted as b.

Loops (beginning and ending at the base point, up to homotopy) form a group by concatenation, with inverse being the reverse direction of the loop. This is called the fundamental group: in this case, the group is $\langle a, b \rangle$.
Problem 1: Reformulation in group theory

A loop is an element of this group \langle a, b \rangle. A loop that is entangled around the poles and cannot be removed is an element that is not the identity. Removing the left pole is the same as setting \(a\) to be the identity element. Similarly, removing the right pole is the same as setting \(b\) to be the identity element.

We must find an element \(x \in \langle a, b \rangle\) that is not identity, but when either \(a\) or \(b\) is set to identity, \(x\) becomes the identity.
Problem 1: Reformulation in group theory

A loop is an element of this group \(\langle a, b \rangle \).
Problem 1: Reformulation in group theory

A loop is an element of this group $\langle a, b \rangle$. A loop that is entangled around the poles and cannot be removed is an element that is not the identity.
Problem 1: Reformulation in group theory

A loop is an element of this group $\langle a, b \rangle$. A loop that is entangled around the poles and cannot be removed is an element that is not the identity. Removing the left pole is the same as setting a to be the identity element. Similarly, removing the right pole is the same as setting b to be the identity element.
Problem 1: Reformulation in group theory

A loop is an element of this group $\langle a, b \rangle$.
A loop that is entangled around the poles and cannot be removed is an element that is not the identity.
Removing the left pole is the same as setting a to be the identity element. Similarly, removing the right pole is the same as setting b to be the identity element.
We must find an element $x \in \langle a, b \rangle$ that is not identity, but when either a or b is set to identity, x becomes the identity.
Problem 1: Resolution

An element that satisfies these conditions is $aba^{-1}b^{-1}$.

Generalization: If instead of 2 poles, there are n poles, can you find a loop which cannot be disentangled, but once any of the n poles are removed, then the loop can be removed?
Problem 1: Resolution

An element that satisfies these conditions is $aba^{-1}b^{-1}$.
Problem 1: Resolution

An element that satisfies these conditions is \(aba^{-1}b^{-1} \).
Problem 1: Resolution

An element that satisfies these conditions is $aba^{-1}b^{-1}$.

Generalization: If instead of 2 poles, there are n poles, can you find a loop which cannot be disentangled, but once any of the n poles are removed, then the loop can be removed?
Problem 1: Resolution

Let \(a_1, a_2, \ldots, a_n \) be the generators of the fundamental group, where \(a_i \) is the counterclockwise loop around the \(i \)th pole.
Problem 1: Resolution

Let \(a_1, a_2, \ldots, a_n \) be the generators of the fundamental group, where \(a_i \) is the counterclockwise loop around the \(i \)th pole.
Let \(x_{n-1} \) be the solution representing \(n - 1 \) poles. The element \(x_{n-1}a_nx_{n-1}^{-1}a_n^{-1} \) represents the solution for \(n \) poles.
Problem 1: Resolution

Let a_1, a_2, \ldots, a_n be the generators of the fundamental group, where a_i is the counterclockwise loop around the ith pole. Let x_{n-1} be the solution representing $n - 1$ poles. The element $x_{n-1}a_nx_{n-1}^{-1}a_n^{-1}$ represents the solution for n poles. Why? When either one of the poles from 1 to $n - 1$ are removed, x_{n-1} becomes the identity and the element becomes $a_n a_n^{-1}$, which is identity. If the nth pole is removed, the element becomes $x_{n-1}x_{n-1}^{-1}$, which is also identity.
The Alphabet group

Let's consider the free group generated by 26 generators, say $a, b, c, d, \ldots, x, y, z$. Now impose the relations of homophones: that is, for every pair of words which are homophones (i.e., read and red), set them equal (i.e., read = red, where the generators are being multiplied). What is this group?

Answer: There are many ways to arrive at the same answer. Here is one plausible solution.
The Alphabet group

Let’s consider the free group generated by 26 generators, say a,b,c,d,...,x,y,z. Now impose the relations of homophones: that is, for every pair of words which are homophones (i.e. read and red), set them equal (i.e., read=red, where the generators are being multiplied). What is this group?
The Alphabet group

Let’s consider the free group generated by 26 generators, say a, b, c, d, ..., x, y, z. Now impose the relations of homophones: that is, for every pair of words which are homophones (i.e. read and red), set them equal (i.e., read = red, where the generators are being multiplied). What is this group? Answer: There are many ways to arrive at the same answer. Here is one plausible solution.
Possible Solutions
Possible Solutions

(1) $by = bye \implies e = 1$
Possible Solutions

(1) \(by = bye \implies e = 1\)
(2) \(see = sea \implies a = 1\)
Possible Solutions

(1) $by = bye \implies e = 1$
(2) $see = sea \implies a = 1$
(3) $buy = by \implies u = 1$
Possible Solutions

(1) \(by = bye \implies e = 1\)
(2) \(see = sea \implies a = 1\)
(3) \(buy = by \implies u = 1\)
(4) \(fir = fur \implies i = 1\)
Possible Solutions

(1) $by = bye \quad \Rightarrow \quad e = 1$
(2) $see = sea \quad \Rightarrow \quad a = 1$
(3) $buy = by \quad \Rightarrow \quad u = 1$
(4) $fir = fur \quad \Rightarrow \quad i = 1$
(5) $whole = hole \quad \Rightarrow \quad w = 1$
(6) $hour = our \quad \Rightarrow \quad h = 1$
(7) $in = inn \quad \Rightarrow \quad n = 1$
(8) $knot = not \quad \Rightarrow \quad k = 1$
(9) $die = dye \quad \Rightarrow \quad y = 1$
(10) $ad = add \quad \Rightarrow \quad d = 1$
(11) $all = awl \quad \Rightarrow \quad l = 1$
(12) $arc = ark \quad \Rightarrow \quad c = 1$
Possible Solutions continued...
Possible Solutions continued...

(13) \(ate = eight \implies g = 1 \)
(14) \(base = bass \implies s = 1 \)
(15) \(berry = bury \implies r = 1 \)
(16) \(boos = booze \implies s = 1 \)
(17) \(bat = batt \implies t = 1 \)
(18) \(check = cheque \implies q = 1 \)
(19) \(idle = idol \implies o = 1 \)
(20) \(lam = lamb \implies b = 1 \)
(21) \(coo = coup \implies p = 1 \)
(22) \(faze = phase \implies f = 1 \)
(23) \(genes = jeans \implies j = 1 \)
(24) \(flex = flecks \implies x = 1 \)
(25) \(gamma = gama \implies m = 1 \)
Explanation of Solution:

All letters except v are identity. Merriam-Webster finds that there are also no relations in v, so it turns out the quotient group is just $\langle v \rangle \cong \mathbb{Z}$.
Explanation of Solution:

All letters except ν are identity. Merriam-Webster finds that there are also no relations in ν, so it turns out the quotient group is just $\langle \nu \rangle \cong \mathbb{Z}$.
Acknowledgements

We would like thank the MIT Math Department, MIT PRIMES, our family, you the audience, and Merrick Cai, our amazing mentor.