1) Background Information
 a) Defining a Graph
 b) Defining a Matrix
2) Exploring Specific Graphs and Matrices
 a) Directed Graph
 b) Weighted Graph
 c) Incidence Matrix
 d) Transition Matrix
3) Exploring Applications of Graph Theory
 a) Dijkstra Algorithm
 b) PageRank
But first… why might we care about Graph Theory?
Preview of Important Applications of Graph Theory

In our presentation, we will cover two real life applications of Graph Theory: Dijkstra Algorithm and PageRank.
In our presentation, we will cover two real life applications of Graph Theory:

Dijkstra Algorithm and **PageRank**.

- **Dijkstra Algorithm** is used to help find the shortest path from one point to another.
In our presentation, we will cover two real life applications of Graph Theory: Dijkstra Algorithm and PageRank.

- **Dijkstra Algorithm** is used to help find the shortest path from one point to another.
- **PageRank** is used to determine the most relevant webpages when a user makes a search in a search engine.
In our presentation, we will cover two real life applications of Graph Theory: Dijkstra Algorithm and PageRank.

- **Dijkstra Algorithm** is used to help find the shortest path from one point to another.
- **PageRank** is used to determine the most relevant webpages when a user makes a search in a search engine.
- Both of these applications are used by us everyday without even realizing it.
What is a Graph?

Graph: a collection of edges and vertices
What is a Graph?

Graph: a collection of edges and vertices

An example of a graph with a labelled edge and vertex
What is a Matrix?

- **Matrix**: a set of numbers arranged in rows and columns so as to form a rectangular array
- Matrices often provide valuable information about graphs.
What is a Matrix?

- **Matrix**: a set of numbers arranged in rows and columns so as to form a rectangular array
- Matrices often provide valuable information about graphs.

An example of a matrix with two labelled entries:
Weighted Graph

Weighted Graph: A graph where each edge is assigned a certain value or “weight”
Weighted Graph: A graph where each edge is assigned a certain value or “weight”

An example of a weighted graph with a labelled weighted edge: An example of a edge between vertex 2 and vertex 4 with a weight of 2.

An example of a weighted graph with a labelled weighted edge.
Directed Graph

- **Directed Graph**: A graph with directed edges
Directed Graph

- **Directed Graph**: A graph with directed edges
 - Each edge has a starting vertex and a destination vertex.
Directed Graph

- **Directed Graph**: A graph with directed edges
 - Each edge has a starting vertex and a destination vertex.

An example of a directed edge leaving vertex 2 and arriving at vertex 4.

A directed graph with a labelled directed edge.
Incidence Matrix

Incidence Matrix:

- The matrix of a directed graph made up of 1’s, -1’s, and 0’s
 - 1 = leaving a vertex
 - -1 = arriving at a vertex
 - 0 = vertex is not involved
Incidence Matrix

Incidence Matrix:

- The matrix of a directed graph made up of 1’s, -1’s, and 0’s
 - 1 = leaving a vertex
 - -1 = arriving at a vertex
 - 0 = vertex is not involved
- Each column in an incidence matrix represents an edge between two vertices.
Incidence Matrix

Incidence Matrix:

- The matrix of a directed graph made up of 1’s, -1’s, and 0’s
 - 1 = leaving a vertex
 - -1 = arriving at a vertex
 - 0 = vertex is not involved
- Each column in an incidence matrix represents an edge between two vertices.
- Each row in an incidence matrix represents a particular vertex in a graph.
Incidence Matrix

Incidence Matrix:

- The matrix of a directed graph made up of 1’s, -1’s, and 0’s
 - 1 = leaving a vertex
 - -1 = arriving at a vertex
 - 0 = vertex is not involved
- Each column in an incidence matrix represents an edge between two vertices.
- Each row in an incidence matrix represents a particular vertex in a graph.

This is an example of an incidence matrix created based on a directed graph.
Incidence Matrix

Incidence Matrix:

- The matrix of a directed graph made up of 1’s, -1’s, and 0’s
 - 1 = leaving a vertex
 - -1 = arriving at a vertex
 - 0 = vertex is not involved
- Each column in an incidence matrix represents an edge between two vertices.
- Each row in an incidence matrix represents a particular vertex in a graph.

This is an example of an incidence matrix created based on a directed graph.

![Incidence Matrix Diagram]

An incidence matrix to represent the graph above.

This entry of -1 represents that the edge between vertex 3 and 1 is leaving vertex 3 and arriving at vertex 1.
Transition Matrix:

- A matrix based on the weights assigned to each edge in a directed weighted graph.
- Rows represent the weight of the edges arriving at a vertex.
- Columns represent the weight of the edges departing from a vertex.

A transition matrix based on the graph above:

\[
\begin{bmatrix}
0 & 2 \\
1 & 0 \\
\end{bmatrix}
\]

This is an example of a transition matrix created based on a directed weighted graph.
So how can all of this information be applied?
1st Application of Graph Theory: Dijkstra Algorithm

- The **Dijkstra Algorithm** is used to find the shortest path from the ‘source node/vertex’ to all the adjacent/surrounding nodes.
1st Application of Graph Theory: Dijkstra Algorithm

- The **Dijkstra Algorithm** is used to find the shortest path from the ‘source node/vertex’ to all the adjacent/surrounding nodes.
- This method is still currently used by navigational apps, including Google Maps, Apple Maps, and more.
Representation of Dijkstra Algorithm

- Dijkstra Algorithm can be used on a weighted or unweighted graph, it can also be used on a directed or undirected graph
Representation of Dijkstra Algorithm

- Dijkstra Algorithm can be used on a weighted or unweighted graph, it can also be used on a directed or undirected graph.
- On the graph, initially, the vertices have infinity signs in order to indicate that the shortest path from the source node to a certain node has not yet been identified.
Representation of Dijkstra Algorithm

- Dijkstra Algorithm can be used on a weighted or unweighted graph, it can also be used on a directed or undirected graph.
- On the graph, initially, the vertices have infinity signs in order to indicate that the shortest path from the source node to a certain node has not yet been identified.
- When updating the distances to the vertices, we check if there are shorter paths to the vertices than their labelled distances; if there are, we update the label accordingly.
Representation of Dijkstra Algorithm

- Dijkstra Algorithm can be used on a weighted or unweighted graph, it can also be used on a directed or undirected graph.
- On the graph, initially, the vertices have infinity signs in order to indicate that the shortest path from the source node to a certain node has not yet been identified.
- When updating the distances to the vertices, we check if there are shorter paths to the vertices than their labelled distances; if there are, we update the label accordingly.
- When the shortest path has been identified, a number representing the weight of that shortest path is put in place of the infinity sign on the node.
Representation of Dijkstra Algorithm

- Dijkstra Algorithm can be used on a weighted or unweighted graph, it can also be used on a directed or undirected graph.
- On the graph, initially, the vertices have infinity signs in order to indicate that the shortest path from the source node to a certain node has not yet been identified.
- When updating the distances to the vertices, we check if there are shorter paths to the vertices than their labelled distances; if there are, we update the label accordingly.
- When the shortest path has been identified, a number representing the weight of that shortest path is put in place of the infinity sign on the node.
Dijkstra Algorithm can be used on a weighted or unweighted graph, it can also be used on a directed or undirected graph.

On the graph, initially, the vertices have infinity signs in order to indicate that the shortest path from the source node to a certain node has not yet been identified.

When updating the distances to the vertices, we check if there are shorter paths to the vertices than their labelled distances; if there are, we update the label accordingly.

When the shortest path has been identified, a number representing the weight of that shortest path is put in place of the infinity sign on the node.
2nd Application of Graph Theory: PageRank System

- **PageRank** determines the relevance of a webpage based on how many other webpages link back to that particular webpage.
PageRank determines the relevance of a webpage based on how many other webpages link back to that particular webpage.

This system was adopted in place of a text based ranking system, which was used up until the 1990s.
2nd Application of Graph Theory: PageRank System

- **PageRank** determines the relevance of a webpage based on how many other webpages link back to that particular webpage.
- This system was adopted in place of a text based ranking system, which was used up until the 1990s.

An example of what page ranking may look like. Because all the other web pages link to webpage 3, webpage 3 would be considered the most important.
Representation of PageRank

PageRank can be represented using a directed a graph.
Representation of PageRank

PageRank can be represented using a directed a graph.

- An arrow moving away from a webpage shows that the webpage links to the webpage that the arrow is pointed toward.
Representation of PageRank

PageRank can be represented using a directed a graph.

- An arrow moving away from a webpage shows that the webpage links to the webpage that the arrow is pointed toward.
- An arrow moving toward a webpage shows that the webpage that the arrow comes from links to the webpage that the arrow is pointing to.
Representation of PageRank

PageRank can be represented using a directed graph.

- An arrow moving away from a webpage shows that the webpage links to the webpage that the arrow is pointed toward.
- An arrow moving toward a webpage shows that the webpage that the arrow comes from links to the webpage that the arrow is pointing to.

This is an example of the connections between website 1 and 4. The graph shows that website 1 links to 4 and website 4 links to website 1.
Page Rank Can Also Be Represented by a Directed Weighted Graph and Transition Matrix as Shown Below:

This is an example of directed weighted graph that shows the links between 4 websites.
Page Rank Can Also Be Represented by a Directed Weighted Graph and Transition Matrix as Shown Below:

This is an example of directed weighted graph that shows the links between 4 websites.

- The weight to each arrow leaving the same web page is equal and the weights of all the arrows leaving the same web pages add up to 1.
Page Rank Can Also Be Represented by a Directed Weighted Graph and Transition Matrix as Shown Below:

This is a transition matrix created based on the graph to the left.

This entry of \(\frac{1}{2} \) represents the weight of the edge arriving at vertex 3 and leaving vertex 4.

This is an example of directed weighted graph that shows the links between 4 websites.

- The weight to each arrow leaving the same web page is equal and the weights of all the arrows leaving the same web pages add up to 1.
Page Rank Can Also Be Represented by a Directed Weighted Graph and Transition Matrix as Shown Below:

This is a transition matrix created based on the graph to the left.

- Each column represents the weight of the arrows leaving a particular website.
- This entry of $\frac{1}{2}$ represents the weight of the edge arriving at vertex 3 and leaving vertex 4.

This is an example of directed weighted graph that shows the links between 4 websites.

- The weight to each arrow leaving the same web page is equal and the weights of all the arrows leaving the same web pages add up to 1.
Page Rank Can Also Be Represented by a Directed Weighted Graph and Transition Matrix as Shown Below:

This is an example of directed weighted graph that shows the links between 4 websites.
- The weight to each arrow leaving the same web page is equal and the weights of all the arrows leaving the same web pages add up to 1.

This entry of $\frac{1}{2}$ represents the weight of the edge arriving at vertex 3 and leaving vertex 4.

This is a transition matrix created based on the graph to the left.
- Each column represents the weight of the arrows leaving a particular website.
- Each row represents the weight of an arrow arriving at a particular website.
Thanks for Listening!