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Abstract: Two parties, Alice and Bob, seek to generate a mutually agreed upon string of bits,
unknown to an eavesdropper Eve, by sampling repeatedly from a joint probability distribution.
The secret-key rate has been defined as the asymptotic rate at which Alice and Bob can extract
secret bits after sampling many times from the probability distribution. The secret-key rate has
been bounded above by two information-theoretic quantities, first by the intrinsic information,
and more strongly by the reduced intrinsic information. However, in this paper we prove that the
reduced intrinsic information is 0 if and only if the intrinsic information is 0. This result implies
that at least one of the following two conjectures is false: either the conjecture of the existence of
bound secrecy, distributions where the intrinsic information is positive but the secret-key rate is 0,
or the conjecture that the reduced intrinsic information equals the secret-key rate. Furthermore, we
introduce a number of promising approaches for showing that bound secrecy does indeed exist using
the idea of binarization of random variables. We improve on previous work by giving an explicit
construction for a particular candidate for bound secrecy of an information-erasing binarization.
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1. INTRODUCTION

A common problem in classical information theory is achieving secure communication over a public channel.
Most modern-day cryptographic protocols rely on computational security, a type of security based on the
computational difficulty of solving a certain problem. For example, the RSA protocol, widely used today, is
based on the problem of factoring large integers. Unfortunately, the security of these types of protocols is
always conditional because it relies on the fact that certain problems are computationally difficult, and that
the adversary has limited computational power. Protocols based on information theory avoid this problem
because the secrecy that they obtain is impossible for the eavesdropper to pierce, simply due to the laws of
probability [4].

To achieve information-theoretic secure communication, most protocols begin with a procedure by which
the two parties agree on a secret key. Once this secret key is established, the parties can then encode an
arbitrary message with the key completely securely. For example, suppose the secret key is composed of a
string of bits. Then the message, in the form of another string of bits, can be perfectly secretly encoded by
a one-time pad, which in this case can be performed by bitwise XOR. (Note that although it is perfectly
secure, using a secret key as a one-time pad is not very efficient, and one often uses a cryptographic key
expansion in cases where the secret key is expensive to generate.)

Unfortunately for Alice and Bob, agreeing on an unconditionally secret key is impossible without a source
of secrecy to start with [7, [[T]. An example of such secrecy is if Alice and Bob could both observe the same
random number generator, whose output is not available to an eavesdropper Eve. In this case, the amount of
secrecy Alice and Bob share is simply the entropy of the random number generator, but in more complicated
situations (e.g. if the output of the generator is partially known to Eve) secrecy is not as easy to quantify.
Quantifying how much secrecy Alice and Bob share in a given situation has been attempted by introducing
a number of quantities, such as the intrinsic information and the reduced intrinsic information [, [10]. A
number of properties of these quantities have been discovered [9] [10], suggesting that they are connected
with the original problem of determining whether or not Alice and Bob can agree on a secret key (and if so,
how long the key can be). For example, it has been proven that the intrinsic information is an upper bound
on Alice and Bob’s secret-key rate.

However, some surprising results have shown that there is a gap between these information-theoretic
quantities and Alice and Bob’s ability to generate a secret key [I0]. A number of conjectures of this nature
are currently unresolved, including the long-standing conjecture of the existence of bound secrecy. This
conjecture has its origins in the analogous quantum phenomenon of bound entanglement, discovered in the
late 1990s [3H0, [1I0]; the existence of bound secrecy was conjectured in the early 2000s. Bound secrecy
refers to secrecy (i.e. positive intrinsic information) which cannot be extracted (i.e. the secret-key rate is
0). If bound secrecy exists, it would suggest that classical information theory has surprising connections to
quantum information theory, which was, in general, thought to be of a different nature.

In this paper, we make an important step toward proving the existence of bound secrecy by showing
that, in the crucial case where either intrinsic information or reduced intrinsic information is 0, there is no
gap between the two quantities. This is significant because the original purpose of introducing the reduced
intrinsic information was to provide a stronger upper bound on the secret-key rate, and one of the prevailing
approaches for constructing an example that has bound secrecy was showing the example has a positive
intrinsic information but a reduced intrinsic information of 0 (implying that no secrecy can be extracted).
This paper shows that this approach cannot work.

On the other hand, we suggest an alternative approach for establishing the existence of bound secrecy,
first mentioned in [4], based on the idea of binarizations. Binarizations are ways of processing a random
variable stochastically such that the new random variable has two outputs. We show that the existence of
bound secrecy can be reduced to a simple statement about binarizations and probability. Finally, based on
the idea of binarizations, we suggest a formula for the binarized secret-key rate which we conjecture is equal
to the secret-key rate.

The outline of this paper is as follows. In Section [2| we formally define the secret-key rate, the intrinsic
information, and the reduced intrinsic information, which will be important in the rest of the paper. We also
give context for our result by summarizing the properties of these quantities which have been established
previously. Additionally, we provide the formal statements of a number of important conjectures, such as



the problem of bound secrecy, which are addressed in this paper. In Section [3] we state and prove our result,
which requires a number of intermediate lemmas. In Section [d] we discuss how our result relates to prior
work, showing that given the existence of bound secrecy (which is widely believed to be the case), another
long-standing conjecture is false. In Section [5] we discuss another path of establishing bound secrecy using
binarizations of Alice’s and Bob’s random variables. Finally, in Section [f] we improve on previous results by
giving an explicit construction of a binarization which erases intrinsic information, which appears easier to
generalize than previous non-constructive solutions.

2. BACKGROUND

The setup of the problem is as follows. Let Pxyz be a joint probability distribution of three discrete (but
possibly infinite) random variables X, Y, and Z, with Alice receiving X, Bob Y, and Eve Z. Throughout
this paper we assume that any probability distribution is discrete and has finite entropy. Entropy is denoted
by H and is assumed to be Shannon entropy; as such, all logs are assumed to be base 2.

The secret-key rate S(X : Y||Z) is, informally, the rate at which Alice and Bob can extract secret bits from
many copies of Pxyz. (The notation suggests the interpretation that the secret-key rate is the amount of
information between X and Y given the information in Z). We are interested in the secret-key rate because
if it is non-zero, Alice and Bob can extract their secret bits and thereby communicate securely. A formal
definition of the secret-key rate, first introduced in [7], is as follows.

Definition 2.1. Suppose Alice and Bob are given N independent realizations of a discrete joint probability
distribution Pxy z. Call a protocol e-safe if, at the end of the protocol, Alice and Bob can compute secret,
correlated random variables S4 and Sp such that there exists another random variable S so that

P[Sa=Sp=5]>1—eand I(S:CZ") < e
Here, C stands for any communications that took place during the protocol.

The first condition ensures that Alice and Bob’s variables must agree with probability very close to 1,
so that they share some information. The second condition ensures that this information is not accessible
to Eve. This is defined formally using the mutual information I(X;Y) := H(X)+ HY) — H(X,Y), a
measure of the amount of information two random variables share. The condition requires that the mutual
information between the pieces of data Eve has (ZV and the communications C) and the secret variable S
must be low.

Using the definition of an e-safe protocol, we define the secret-key rate asymptotically.

Definition 2.2. The secret-key rate S(X : Y||Z) is the largest number R such that for all € > 0, there
exists an N such that for all n > N, there exists an e-safe protocol (using n copies of Pxyz and producing

the random variable S) with % > R.

Although the secret-key rate is the quantity we are interested in, as it captures the true number of bits
Alice and Bob can extract, it has been hard to deal with because it allows any communication string C,
and furthermore, is defined asymptotically. Ideally, one would express the secret-key rate S(X : Y||Z) as a
simple function of the distribution Pxyz, but so far no one has been able to figure out how [10]. Instead
a number of upper bounds have been found. One of the first upper bounds on the secret-key rate was the
conditional mutual information I(X : Y|Z) [g], defined as follows.

Definition 2.3. Given a probability distribution Pxy z, the conditional mutual information (X :Y|Z) is
defined as H(X|Z)+ H(Y|Z) — H(XY|Z), where each term is a conditional entropy conditioned on Z.

One strategy for Eve to extract information about X and Y is to pass her variable Z through a channel
P7| 7 [9], which in this case takes the form of a stochastic matrix acting on the vector of probabilities for Z.

So we define the intrinsic conditional mutual information, first introduced in [§].
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Definition 2.4. Given a probability distribution Pxy z, the intrinsic conditional mutual information I(X :
Y | Z), sometimes called the intrinsic information, is defined as

I(X:Y | Z):=inf I(X:Y|Z).
PE|Z
Theorem 2.5. [8, [10] Given a distribution Pxy z, we have S(X : Y||Z) < I(X : Y | Z). However, there
exist distributions with S(X :Y||Z) £ I(X : Y | Z).

Motivated by the fact that S(X : Y||ZU) < S(X : Y||Z) — H(U) holds but the corresponding inequality
for the intrinsic information does not always hold, Renner and Wolf have introduced the reduced intrinsic
conditional mutual information [9).

Definition 2.6. [10] Given a distribution Pxy z, the reduced intrinsic conditional mutual information I(X :
Y || Z), sometimes called the reduced intrinsic information, is defined as
I(X:Y|lZ):= Pinf I(X:Y | ZU)+ H(U).

U|IXYZ

From the definition, we can see that the intrinsic information is an upper bound on the reduced intrinsic
information, by setting U to be trivial. The reduced intrinsic information is bounded from below by the
secret-key rate, informally because in the infimum we can let U be the secret bit that Alice and Bob can
generate.

Theorem 2.7. [10] Given a probability distribution Pxyz, S(X :Y||Z) < I(X :Y || Z).

Intuitively, the reduced intrinsic information takes into account the fact that Eve may have the additional
disadvantage of not knowing how to process her variable Z. Therefore, the knowledge of how to process
Z, as represented by U, can reduce the shared information between X and Y by more than the amount
of information in U itself. This means that the reduced intrinsic information is sometimes less than the
intrinsic information.

Theorem 2.8. [J] There exists a discrete distribution Pxyz where (X :Y | Z)#I1(X :Y || Z).

As the reduced intrinsic information is a strictly stronger bound on the secret-key rate than the intrinsic
information, it is natural to ask whether it in fact equals the secret-key rate. This is an open problem.

Conjecture 2.9. [I0] Given a probability distribution Pxyz, we have S(X : Y||Z) =I(X : Y || Z).

Whereas previous bounds on S, such as the intrinsic information, have been improved by finding properties
that were not shared between those quantities and 5, so far the reduced intrinsic information appears to share
many properties of the secret-key rate. If the conjecture is proven true (i.e. S(X :Y||Z) =I(X : Y || 2)
in all cases), then we would have a relatively simple description, based on only the distribution Pxyz, of
the secret-key rate. This would fulfill one of the original objectives. If the conjecture is proven false, then
it would reveal another potential strategy for Eve. Another significant conjecture is the problem of bound
secrecy, namely secrecy between Alice and Bob that cannot be extracted.

Conjecture 2.10. [4] (Bound secrecy) There exists a distribution Pxyz such that I(X : Y | Z) > 0 but
S(X:Y||Z)=0.

This conjecture is inspired by the analogous problem of bound entanglement: there are quantum entangled
states (analogous to classically correlated random variables) which have secrecy which cannot be distilled [5].
Relatively strong evidence suggesting the existence of bound secrecy has been found in [4, [10] by drawing
connections between the classical and quantum problems. Numerical evidence for bound secrecy has been
given in [6]. Conjectures and are addressed indirectly in this paper.

3. THE GAP BETWEEN THE STANDARD AND REDUCED INTRINSIC INFORMATION

We introduce the main result of this paper.



Theorem 3.1. Given a probability distribution Pxyz, we have

I(X:Y |1 2Z)=0 < I(X:Y |Z)=0.

We first observe that the reverse direction follows because the intrinsic information is an upper bound
on the reduced intrinsic information, which is nonnegative. We focus on the forward direction, whose proof
takes the remainder of this section.

An important tool in the proof is the notion of the trace distance between two random variables.

Definition 3.2. Let two random variables A and B have probability distributions {a;} and {b;} with the
same index set. Then the trace distance between A and B, denoted D(A, B) is defined to be

1
D(A, B) = §Z|ai — byl

2

To prove the forward direction of Theorem we reason as follows. If I(X : Y || Z) = 0, then by
definition inf (I(X:Y | ZU)+ H(U)) = 0. First, suppose that this infimum is a minimum. This means

Py\xvyz

that there exists an XY ZU such that I(X : Y | ZU)+ H({U) =0,s0 HU) =0and I(X : Y | ZU) = 0.
However, since U adds no information, we have 0 = I(X : Y | ZU) = I(X : Y | Z), which is the desired
statement.

From now on, assume that the infimum is not a minimum. This means that both quantities in the sum must
progressively approach 0 for a carefully chosen sequence of distributions. More rigorously, there must exist
a sequence of probability distributions {XY ZU;} such that lim H(U;) = 0 and lim I(X : Y | ZU;) = 0.

1— 00 11— 00

Due to the definition of intrinsic information, there must also exist a sequence of channels {C;} such that
lim I(X : Y|C;(ZU;)) = 0.
71— 00

In order to prove that I(X : Y | Z) = 0, all that we have to do is show that there exists a sequence of
channels {¢;} such that lim I(X : Y|c¢;(Z)) = 0. We show this by showing {¢;} = {C;} works. In order to do
11— 00

this, we incorporate the defining property of the sequence {C;} by showing that lim I(X : Y|C;(Z)) - I(X :
71— 00
Y|C;(ZU;)) = 0 starting from lim H(U;) = 0. In the rest of the proof, the channels {C;} are denoted using
11— 00
bars, and the value of ¢ will be inferred from context.

We first prove a number of lemmas regarding trace distances (denoted as D(A, B)) and entropies. As a
convention, let e; denote a constant random variable, as represented by a unit vector of probabilities with
the first component equal to 1. The size of the range of e; is taken to be contextual (i.e. equal to the range

Also, we assume that if U; is a random variable, then the probabilities for each outcome of U; are ordered
in descending order. Observe that such an ordering exists because the sum of all the probabilities is 1 and
they are nonnegative, so there can only be finitely many probabilities above any threshold z € (0,1). Then
we can order the probabilities that are above x because there are only finitely many, and then order all the
probabilities by repeatedly lowering x.

Proof. Our proof of Theorem [3.1] will go as follows.

1—> 00
- hm D(Ui,el

1—00

— lim D(XYZU;, XY Ze;

1—00

)=20
)=0
== }E&D(XYZUhXYZﬁ) =0
)=0
)=20

— lim I(X;Y|Z0;) — I(X;Y|Ze1

1—00

The first implication is a result of Lemma[3.3] Using Lemma [3.4and replacing Z with XY Z gives the second
implication. Then, using Lemma [3.7| with modified channels {C/} that are identical to {C;}, but they leave
X and Y unchanged gives the third implication. Finally, using Lemma[3.8| gives us the final implication. [



Lemma 3.3. If lim H(U;) = 0 for some sequence of discrete random variables U;, then lim D(U;,e;) = 0.
11— 00 71— 00

Proof. Suppose the probabilities for each outcome of the random variables U; are ay;,ag;,..., with a;; >
az; > .... Then

H(U;) =) —ajilogay;
1
=D ajilog —
7 L
1
> Z aj; log (IT'
. 7
J

1
=log —.
a4

Since log % is nonnegative, if H(U;) — 0, we must have log % — 0. Therefore a;; — 1. So
1
D(Ui,e1) = 5(1 —au+1l—ay)=1-ay

and D(U;,e;) — 0. O

Lemma 3.4. Suppose the sequence of discrete random variables U; satisfies lim D(U;,e1) = 0, and let Z
1— 00

be an arbitrary discrete random variable. Then D(ZU;, Zey) = D(Us;, eq).

Proof. For the purposes of this proof, let “1” be the value that e; attains with probability 1. It follows almost
directly from the definition of trace distance that, summing over all (z,x) so that the expression inside the
sum is positive,

D(ZU;, Zey) ZP =ze1=x2)— P(Z=2"U; =x).

Since e; is always 1, the probability that Z = z and e; = x for any = other than 1 is 0, so the expression
inside the sum will not be positive. Thus the trace distance can be reduced to the following sum, where the
sum is taken over all z so that the expression inside the sum is positive.

D(2U;, Zer) = P(Z =1)-P(Z=2U =1).
But since e; = 1 with probability 1, and P(U; = 1) < 1, it suffices to take

D(ZU;, Zer) = >  P(Z=2)— P(Z = 2,U; =1)

which is just

D(ZUi, Zey) =1-Y P(Z=2U;=1)=1-PU; = 1).

Since “1” is the value that e; attains with probability 1, U; attains this value with the highest probability
(as U; and e; “match up”). So D(U;,e1) =1 — P(U; = 1) and we are done. O

Remark 3.5. The importance of e; is demonstrated by the above lemma, as the lemma becomes false if U;
and ey are replaced by arbitrary random variables. A counterexample is if Z is a fair coin flip and A = Z
while B is an (independent) fair coin flip. Then D(A, B) = 0 because these probability distributions are
identical, but D(ZA, ZB) = 1 because ZA is either both heads or both tails with probability 0.5, while ZB
can be all of the 4 possibilities, each with probability 0.25.



Remark 3.6. The above lemma also shows the importance of transferring the entropies into trace distance
rather than some other form of distance, such as the Kullback-Leibler (KL) divergence, which is defined for
two probability distributions P and @, both over the probability space X', as

Drs(PlQ) = X Plattos (7).

reX

In particular, the lemma above is false if the trace distances are replaced with KL-divergences because there
exists a Z with infinite range such that the KL-divergence of the left-hand side of the lemma diverges.

n

Consider P(Z = z,) = 27" and P(Z = 2,,U; = 1) = 2-"= for all U (the rest of the ZU; probability
distribution can be filled in arbitrarily). Here, as ¢ becomes larger, P(U; = 1) becomes closer to 1, but
calculating the KL-divergence gives

P(Z = z,) 1 |Z]
P(Z =2z,)1 =- = D Zey, ZU;) = — = o0.
( z ) 0og (P(Z Znalri 1)) i KL( €1 ) i

Lemma 3.7. Let U; be a sequence of random variables and let Z be an arbitrary random variable. Suppose
C; is an arbitrary channel whose action is denoted by a bar. Then for all i, D(ZU;, Ze1) < D(ZU;, Zey).

Proof. The proof is similar to that of the analogous quantum result, proven in [2], that trace-preserving
quantum operations are contractive.

For ease of writing let X = ZU; and Y = Ze;. View the probability distributions X and Y by vectors of
their probabilities (Z and %) and view the channel C; as a stochastic matrix which we denote A. We also let
a subscript ¢ on a vector enclosed by parentheses (e.g. (¥);) denote the ith component of the vector.

Using this notation, we have that

D(X,Y) = oo @i-Wi= Y, @i

@ with (Z); —(7):>0 i with (Z—9); >0

Consider the vector £ — 3. We decompose this vector into its positive and negative components as follows.
Let @ be the vector such that (@); = 0 if (Z); — (¥); < 0 and a; = (Z); — (¥); otherwise. Similarly, let b be
the vector such that b; = 0 if (Z); — (¥); > 0 and b; = —((Z); — (¥);) otherwise. By definition, (@); > 0 for

-,

all 4 and (b); > 0 for all i. Therefore

D(X,Y) = % (Z(an + Z@)i) :

i
We now prove the statement:

D(X.T) = 5 3I(4%); - (A7)

IN

5 I(Aa)+](4B)

= 34 + 5 DA,

3

I B
=3 Xi:(@)z‘ t3 > (b

?

= D(X,Y)

where the second to last step follows because the columns of A sum to 1 (as it is stochastic) and therefore
A preserves the sum of the elements of a vector. O



Lemma 3.8. Given Pxyz, we have that

lim D (XYZU;, XYZey) =0 = lim [ (X;Y|Z0;) — I (X;Y|Ze;) = 0.
1— 00

1—00
Proof. Define the following quantities:

e Let X and ) denote the ranges of the random variables X and Y, respectively. For any other variable
V, let Range(V') be the range of V.

eforallx € X, y € YV, z € Range(T[]i), we have p;1(zyz) = P(X:%Y:y,Ziel:z)’ and
piz(zyz) =p(X =2,V =y, ZU; = ).

e Let Z; := Range (ZU;) \ Range (Ze1), and let S; := > p; 2 (zyz). Because S; < D (XY ZU;, XY Zey),
XYZ;
S; tends to 0 as 4 tends to infinity.

Also, if there is a group of random variables in the index of a summation, then the summation is summed over
all values in the range of each variable, where the lowercase variables correspond to each of the uppercase
random variables (e.g. x € X, y € V). Expanding the conditional mutual information expressions gives

I (X;Y|Z0;) — 1 (X;Y|Zey) = (H (XZU;) — H (XZe1)) + (H (YZU;) — H (YZey))
~ (H (XYZU,) - H (XY Zer)) — (H (Z05) - H (Ze)) =

= (P2 (2y2)10g pi2 (2) — pin (xy2)logpin (2) + Y (pi2 (wyz) log pis (xyz) — pia (wy2) log pia (wy2))
XYZU; XYZU;

= (piz (xy2)log pi s (v2) — pia (xy2)logpin (x2)) = Y (pi2 (zy2)logpi2 (y2) — pin (zy2)logpia (yz)).
XYZT, XYZU;

Now, we split the summation into two parts: z € Range(Ze;) or z € Range(Z}). We now deal with the first
part (z € Range(Ze;)). Note that

—H (XY Zey) = Z pin (zyz)logpiq (zyz).

XYZe;,
However, we also have that
SH (XYZ0) = ~H (XY 2T € Zar) = 3 P2l iy (P2l0E))
XYZe; ¢ i
log (1 S')JFLZ 4 (2y2) logpia (zy2) —>
0og i 1-5, pi2 (xyz)logp; o (xyz
XYZe;

Z pi2 (wyz)logp o (zyz) = — (1= S;) H (XY Zey) + (1 — S;)log (1 — S;).
XY Ze;

This means that

Z (pi2 (xyz)log pi 2 (vyz) — pin (wyz)logpiq (zyz)) = S;H (XYTQ) +(1=8;)log(1—-S;).
XYZe;



This approaches 0 as i goes to infinity because S; tends to 0. For the other summations, we can repeat
this logic with —H (XZe;), —H (Y Zey), and —H (Zey). This will produce the expressions S;H (X Zey) +
(1-S)log(1—S5;), S;H (YZer) + (1 — S;)log (1 — S;), and S;H (Zey) + (1 — S;)log (1 — S;), respectively.
Therefore, for each of the four summations, the terms of the sum that are a part of 2 € Ze; approach 0.
This deals with the part z € Ze;.

Now, consider all z € Range(Z). Here, we have p; 1 (-,-,2) = 0 because of the definition of Z}. This
leaves us with

> pia(eyz) (logpis (2) +log iz (vyz) —log pis (v2) —logpia (y2)) =

Xyzr
Di, p z
> (o) log P2EL ST oy log 2202
XY Z; Pi2\¥2)  yz. ry=
z
Zplg (zz)log bi, 2<( 7 Z Di2 (xyz) logp”((y))
Xz: Pi2\P2) vz ryz

We show that both of these summations tend to 0. For the first summation, for all x € X, define

f sz2 mz)log pz2( )

7 pi2 (v2)
Note that by the concavity of log, we have
pi2 (22) g Pi2 (2) pi2(z2)  pi2(2) S;
i, : < pi2(x)lo - — < pi2(x)lo
f P 2 Z Di, 2 pz‘,2 (Z‘Z) P 2 s Z Di, 2 Di,2 (372) Piz ( ) & Di,2 (33)
This means that
0< Z Pi2 (22) log Pz Z f(x) < pr (x)log Si S; Z piz (2) log Si
Xz 5% Pi,2 () 5% S; Pi,2 (x)

= S;H (X|z€ Z}) < S;H (X).

This means that the first summation tends to 0. The second summation also tends to 0 by replacing all
instances of z in the above proof with yz. Since all parts of the summations from the expanded conditional
mutual information expressions tend to 0, we must have (X; Y\ZUi) -1 (X; Y\Zel) tends to 0 as well. [

4. IMPLICATIONS AND EXTENSIONS

Theorem is a strengthening of a remark made by Christandl, Renner, and Wolf in [I]. In [I], the
authors prove that the infimum is a minimum in the definition of the intrinsic information as long as the
range of Z is finite. They remark that an argument analogous to that presented in their paper may prove
that the infimum is a minimum in the definition of the reduced intrinsic information, with certain conditions
on the size of X, Y, Z. This would imply a subcase of our theorem by the argument made briefly at the
start of our proof. Unfortunately, it is unknown whether the arguments in [I] extend to the reduced intrinsic
information measure. However, our present result is stronger than results that might be obtained through
these means because we only require X, Y, Z to have finite entropy, whereas arguments analogous to those
in [I] would require variables to have finite ranges.

Another application of Theorem is demonstrated in the following statement, mentioned briefly at the
end of the Introduction.
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Theorem 4.1. If bound secrecy exists, then there exists a distribution Pxyz such that S(X;Y||Z) #
I(X;Y [ 2).

Proof. Let Pxyz be a distribution that is bound secret, so that I(X;Y | Z) > 0 and S(X;Y]|Z) = 0.
However, by the contrapositive of the forward direction of Theorem we have I(X;Y | Z) > 0 =
I(X;Y || Z) > 0. This means that this distribution satisfies S(X;Y||Z) =0 < I(X;Y || Z), as desired. O

This theorem implies that at least one of the conjectures|2.9|and is false. Since a significant amount of
evidence suggesting the existence of bound secrecy has already been established, we believe that Conjecture

2.9 is false.

Furthermore, the above theorem implies that the approach of showing that a certain distribution is bound
secret by computing a nonzero intrinsic information and a reduced intrinsic information of 0 is guaranteed to
fail. In order for this approach to work, a property that would make Theorem false when the property is
substituted for the reduced intrinsic information must be used. In particular, this property f(XY Z) should
satisfy the following;:

e Given Pxyyz, we have f(XY Z) < I(X;Y | Z), and equality does not always hold.

o f(XYZ) =0 does not imply I(X;Y | Z) = 0.

5. BINARIZATIONS

One possible path for establishing the existence of bound secrecy has been suggested in [4], which we now
investigate. In [4], the authors suggest that the existence of positive intrinsic information which vanishes
upon binarization may be a candidate for bound secrecy. The authors provide an example of a distribution
XoYyZy such that for all binarizations of Xy and Yy, producing X, and Y respectively, I (YO;VO 1 Zp)=0
(Proposition 4) [d]. They also show that for any distribution XY Z, if the secret-key rate S(X;Y||Z) > 0,

then for some N there exist binarizations of X~ and YV such that I(XN;YN | Z¥) > 0 (Proposition 5)
[4]. Therefore, the missing step for establishing bound secrecy for XoYyZy is the following:

Conjecture 5.1. [4] Let XY Z be a distribution. If, for all binary output channels Py x and Py we
have I(X;Y | Z) = 0, then for all N, for all binary output channels PXle ~ and nyle ~, We must have
I(XN;YN | ZN)y =o0.

In fact, it is only necessary to prove Conjecture for the specific distribution XYy Zy, which we will
investigate in the next section. In this section, we reduce Conjecture to a much simpler statement which,
if proven, would establish Conjecture and thereby prove the existence of bound secrecy. (In the statement
of the theorem, the symbol 1L is used to denote independence of random variables.)

Theorem 5.2. Conjecture|5.1] is equivalent to the following:
VX,Y,3Z such that (X ILY)[Z = VYN,YXN, YN, 3ZN such that (XN 1 YN)[ZN
where the channels processing X, Y, XN, YN are assumed to be binarizations.

The statement of the theorem is noteable because it makes no reference to information-theoretic quantities:
it is purely a statement about probabilities. To prove Theorem [5.2] we need the following lemma linking
information and probability.

Lemma 5.3. Given random variables X, Y, Z, we have I(X;Y|Z) =0 if and only if (X LLY)|Z.
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Proof. For the forward direction, we have

0=-I(X;Y|2) =) P(X =2,Y =y|Z = z)log(

TYZz

P(X =z|Z=2)P(Y =y|Z = z))
PX =2,Y =y|Z =2)

1 PX =z|Z=2)P(Y =y|Z ==2)
ngP(X:x’Y:mZ:Z)( P(X =2,Y =y|Z = 2) _1)

Yz
= S (P(X =alZ = 2)P(Y =yl Z = 2) - P(X =2,Y =y|7 = 2)
_IHQWZ =zx|Z ==z =ylZ ==z =x,Y=ylZ==z2
1
1112%; (X =a)P(Y =y) - P(X =2,Y =)
1
=15 (ZI:P(X = x)zy:P(Y =) — 1)
=0
where the second step follows because log, z < 91%21 for all reals x. Since both sides of the above chain are
0, the inequality must be an equality. Since log, x = % if and only if x = 1, the expression inside the

logarithm must always be 1, which means
PX=z|Z=2)PY =yl|Z=2))=P(X =2,Y =y|Z =2)

for all x,y,z. Thus (X 1L Y)|Z.

For the reverse direction, we simply note that

I(X;Y[2) =) —P(X =Y =y|Z = z)log (

TYZz

PX =z|Z=2)PY =y|Z = Z))
PX =zY=y|Z =2)

and if (X 1l Y)|Z, then the expression inside the logarithm is always 1, so each term of the sum becomes 0,
and I(X;Y]Z) =0. O

We now prove Theorem [5.2]

Proof. As in the statement of the theorem, all channels that process X,Y, XY YN are assumed to be
binarizations. We observe that by the definition of the intrinsic information,

VXY, I(X;Y | Z) =0 <= VX,Y,3Z such that I[(X;Y|Z) = 0.
Then using the lemma, we have
VX,Y,37 such that I(X;Y|Z) =0 <= VX,Y,3Z such that (X 1l Y)|Z.
We can repeat the logic for XV, YN ZN . Therefore, showing
VXY, I(X;Y | Z) =0 <= YN,VXN, YN, [(XN:YN | zN)y =0

is equivalent to the statements in terms of independence, which is the desired result. O

6. INDEPENDENCE-INDUCING BINARIZATIONS

We present some progress on proving Conjecture for the specific distribution XY Z, as introduced in
[4]. This would be sufficient to establish bound secrecy for the distribution, as shown below.
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X 1 2 3
Y(Z)
1 (0)]4 (1)[1 (2)
2 [1(3)[2(0)[4 @)
3 ()1 (6)[2 (0)

For this distribution, the value of Z is determined by the values of X and Y, and is indicated by the
number in parentheses in the cell. The unnormalized probability for that xyz triplet is given by the number
not in parentheses.

One method for proving the statement in Theorem for this distribution is by strengthening it to the
following statement and not allowing Alice to binarize (Conjecture [6.1)).

Conjecture 6.1. For the distribution XY Z, for any N > 1 we have
VYN, 3ZV such that (XY 1L YN)|ZN
where the channel processing YV is assumed to be a binarization.

Note that this conjecture implies Theorem because if Alice is not allowed to binarize and Eve can
still erase correlation by processing Z%V, then there would still be no correlation even if Alice binarized her
variable. To prove Conjecture [6.1} we must show that for any binarization that Bob chooses, Eve is able to
process her variable such that Alice and Bob are independent given Eve’s information. Here, we primarily
investigate the cases N =1 and N = 2.

In the case that N = 1, it has been proven that for all binarizations Y of Y, Eve can always find a Z
such that X 1L Y|Z (Proposition 4 of [4]). We have found an explicit construction of the map Z, based on
the following value.

Definition 6.2. We define the independence target value (ITV) 7(z,y, z) for any reals z,y, z as the median
Of 2z+1y4+0z 1lz+0y42z and Oz+2y+1z
3. 3 3

Bob’s map can be defined using the three numbers P?W(G7 1) =mr, ?IY(G’ 2) = s, and Py (
Since Bob’s map is a binarization, we have that Py, (I,1) = 1—r, Py (1,2) = 1 -5, and Py, (1,3) = 1—

The table for the distribution XY Z is as follows, using the same notation as before:

X 1 2 3
Y (2)
2 (0) | 2s(0) | 2t(0)
0 s (3) 4r (1) r(2)
4t (5) t (6) 4s (4)
2 2r (0)]2 — 25 (0)]2 — 2¢ (0)
1 1—s@3)|4—4r (1)|1—r (2)

4—4t (5)| 1=t (6) |4—4s (4)

As mentioned in [4], if Eve receives z # 0, she knows what X is, meaning that X|Z = z is constant and
X 1L Y|Z = z. Therefore, we focus our attention on the case that Z = 0. We consider the same map Pz 4
as mentioned in the proof of Proposition 4 of [4]. In this map, the nonzero values for Z, namely 1, 2, 3, 4,
5, 6 are mapped to 0 with probabilities c, e, a, f, b, and d respectively, and they are mapped to 1,...,6
with probabilities 1 —¢, 1 —e, 1 —a, 1 — f, 1 — b, 1 — d respectively. The value Z = 0 is mapped to 0 with
probability 1. Under this map, the probability distribution PX?\Z:G is as follows:

XY|Z=0 1 2 3
0 2r + as + 4bt der + 2s + dt er+4fs+ 2t
1 (24+a+4b) — (2r+as+4bt)|(dc+2+d) — (der + 25+ dt)[(e+4f +2) — (er + 4fs + 2t)
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In order to have (X 1l Y)|Z = 0, we must have the following:

2r+as+4bt  der +2s+dt  er+4fs+2t
24+a+4b  de+2+d e+ 4f+2

(In the case that the denominators of these fractions are 0 and the numerators nonzero, the independence
condition is satisfied. If both the numerator and denominator of a fraction are equal, it can be ignored since
it imposes no additional conditions.) In [4], it is proven that for any r, s, t there exist a, b, ¢, d, e, f satisfying
the above equations using a topological argument, but here we demonstrate this in a constructive manner
using the ITV:

Theorem 6.3. For numbers r,s,t € R, there exist a,b,c,d, e, f € [0,1] such that

2r+as+4bt  der+2s+dt er+4fs+ 2t ( 0
= = =7(r,s,t).
2+ a-+4b de+2+d e+4f+2 T

Proof. Note that 7(r, s,t) = 7(s,t,r) = 7(t, r, s). This means that if we can find satisfactory a,b € [0, 1] such
that

2r + as + 4bt ( 0
— =17(1,s
2+a+4b T

for any r,s,t € R, then by symmetry we can find satisfactory ¢, d € [0, 1] such that

2s + dt + 4er

for the same set of r,s,t € [0, 1]. Similarly, we can also find e, f € [0, 1] such that

2t 4
2—:6;"7:4}08 =71(t,r,8) =7(r,s,t)

for the same set of r, s, and t. This means that we only need to show that for all r,s,t € R, there exist
a,b € [0, 1] such that

2r + as + 4bt

=T(r,s,t).
2+a+4b ( )

If r = s = t, then both sides of the equation above are equal to r regardless of the choice of a,b. Now,
assume that not all three of 7, s, ¢t are equal. Then we can transform the triple (r, s, ) into some permutation
of (0,z,1) for z € [0, 1] as follows. Note that since the left and right sides of the equation above are computed
from weighted averages of r, s, and ¢, we can scale the variables by a nonzero constant or add a real number
without changing the equation. We can subtract min(r, s, ) from all of variables and since all of the variables
are not equal, we can divide these new variables by max(r, s,t) — min(r, s,t) # 0. We have now transformed
(r,s,t) to some permutation of (0, z,1), where = € [0, 1].

Our new variables are thus one of the circular shifts of (0,,1) or (0, 1,z) for some z € [0, 1]. In the latter
case, we can multiply the triple —1 and add 1 to get a circular shift of (0,1 — 2,1). This means that we can
assume without loss of generality that (r, s,t) is some circular shift of (0,z,1) for some z € [0, 1].

Since the ITV is invariant under circular shifts, we now have 7(r,s,t) = 7(0, z, 1), which is the median of
and 122, Note that £ is the least of these three, so the median is min(21+20) 1, < 1, then this is

3
. 1 .9
~=*, and if z > 3, then this is 3.

We now take cases on which of these circular shifts of (0,x,1) that (r, s,t) has been transformed into:

z 2
37 37
1422

o (r,5,t) = (0,z,1): f z < %, then we can take a = 0 and b = %. If x > %, then we can take a = 0
and b= 1.

o (r,s,t)=(1,0,2): Ifx < %, then we can takea =0 and b=1. If x > %, then we can take a = 1 and
b=0.
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This covers all of the cases, so we are done. O]

This resolves the N = 1 case. We attempt to extend the use of the ITV for N = 2. Bob’s map may
be parameterized by the values a;; := 2y (0,i5) for ¢,5 € {1,2,3}. In this case, we cannot focus on

the Z2 = 00 case alone, because if Z? = 01 for example, Eve is unsure of whether Alice has X? = 12,
X? =22, or X2 = 32. If neither of the first nor second components of Z?2 are 0, Eve will be certain of what
Alice has, so these cases are resolved (i.e. no processing is necessary). This means that we must repeat the
above procedure for Z2? = 00,01,02,...,06,10,20,...,60. We believe that the target value for the fractions
corresponding to these values are the following.

Conjecture 6.4. Define q;; := lez(o, rs) for r, s € {1,2, 3}, and let the target values 7 : {00,01,02,...,
06,10,20,...,60} — [0, 1] be defined as follows:

e 75(0i) = 7(a1;, a2, as;), where j = [£] and 1 < i <6,
e 75(i0) = 7(aj1, aj2,a;3), where j = [£] and 1 < i <6,
e 75(00) = 7(7(a11, a1z, a13), 7(az21, azz, az3), 7(as1, asz, ass)).

Then there exists a channel Pz ,, such that P(Y? =0|X?, 72 = %) = 75(2) for all z in the domain of 7.

The choice of j = f%] is motivated by the fact that in this distribution, if Eve receives Z = i, then she

knows that Bob has Y = [§] = j. We observe that these target values give the correct values for a particular

class of Bob’s strategies which we term product strategies:

Definition 6.5. A product strategy for Bob @o has YV = Y1Y5...Yy) is a binarization of YV so that
the N-dimensional matrix of probabilities P(YN = 0|]YN = y) for y € YV is the tensor product of the N
vectors P(YN =0|Yy =41), ..., P(YN = 0|Yy = yn) where each y; takes on every value in ).

The reason that this target value choice works for product strategies is due to the following property of
the ITV:

Theorem 6.6. For real numbers by, by, ba, cg, c1,c2 € [0,1],

7(7(boco, bico, baco), T(bocr, bici, bact), T(boca, bica, baca)) = T(bo, b1, ba)T(co, €1, c2).

Proof. Note that 7(bgco, bico, baco) = co7(bo, b1, ba) because we can factor the ¢y from the set of weighted
averages considered when calculating the ITV. We can use this repeatedly to get that the left-hand side is
equal to

T(coT(bo, b1,b2), c17(bo, b1, b2), caT(by, b1,b2)) = 7(bg, b1, ba)T(co, €1, C2).

O

Note that if the vectors P(Y2 = 0|Y; = 0) and P(Y2 = 0|Y5 = 0) are (bg, b1, b2) and (cg, c1, c2), respectively,
then the product strategy this corresponds to is the map a;; = b;c; for all 4,5 € {0,1,2}. Using the
target value for Z2 = 00 is equal to 7(bg, b1, b2)7(co, c1, c2). Therefore, we can use our results from the N = 1
case for each of components for Y2, and then multiply them together to construct our map.

We believe that this choice for the target value can also be used for any strategy/map that Bob uses for
the N = 2 case, and similarly constructed target values (i.e. iterating over triplets) can be used for N > 3.
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7. CONCLUSION

In this paper, we have shown a new relation between two well-known information-theoretic quantities: the
intrinsic information and the reduced intrinsic information. Namely, for a given Pxyz, when the reduced
intrinsic information of this distribution is 0, then so is the intrinsic information. This relation has many
important ramifications for significant conjectures in information theory. For example, out of the two long-
standing conjectures of the secret-key rate being equal to the reduced intrinsic information and the conjecture
of bound secrecy[10)], at least one of them must be incorrect. Another implication is that the reduced intrinsic
information cannot be used to prove that a distribution is bound secret. Future work in this direction would
be to develop an information-theoretic quantity which has the property that it is not necessarily equal to 0
if the intrinsic information is equal to 0, and use this property to demonstrate that a particular distribution
is bound secret.

We have also made progress on a possible approach for showing that a bound secret distribution does
exist, using the idea of binarization of random variables[]. In particular, we have reduced bound secrecy
to a problem that does not require the use of information-theoretic quantities to formulate, instead using
only basic ideas from probability. We have made progress on proving this statement for the candidate dis-
tribution introduced in [4], by creating an explicit construction for an information-erasing binarization. The
construction makes generalizing the information-erasing binarization much easier compared to the previous
non-constructive results.

8. ACKNOWLEDGEMENTS

We would like to thank the MIT PRIMES-USA program for the opportunity to conduct this research. We
would also like to thank Peter Shor for suggesting this problem to us. We also acknowledge Stefan Wolf,
Matthias Christandl, and Renato Renner for their helpful answers to our questions regarding their papers.



16

[1] M. Christandl, R. Renner, and S. Wolf. A property of the intrinsic mutual information. In IEEFE international
symposium on information theory, pages 258—-258, 2003.

[2] I. Chuang and M. Nielsen. Quantum computation and quantum information. Cambridge University Press,
Cambridge, 2000.

[3] N. Gisin, R. Renner, and S. Wolf. Bound information: The classical analog to bound quantum entanglemen. In
European Congress of Mathematics, pages 439-447. Springer, 2001.

[4] N. Gisin, R. Renner, and S. Wolf. Linking classical and quantum key agreement: Is there a classical analog to
bound entanglement? Algorithmica, 34(4):389-412, 2002.

[5] M. Horodecki, P. Horodecki, and R. Horodecki. Mixed-state entanglement and distillation: Is there a “bound”
entanglement in nature? Physical Review Letters, 80(24):5239-5242, jun 1998.

[6] S. Khatri and N. Liitkenhaus. Numerical evidence for bound secrecy from two-way postprocessing in quantum
key distribution. Physical Review A, 95(4):042320, 2017.

[7] U. M. Maurer. Secret key agreement by public discussion from common information. IEEE transactions on
information theory, 39(3):733-742, 1993.

[8] U. M. Maurer and S. Wolf. Unconditionally secure key agreement and the intrinsic conditional information.
IEEE Transactions on Information Theory, 45(2):499-514, 1999.

[9] R. Renner, J. Skripsky, and S. Wolf. A new measure for conditional mutual information and its properties. In
IEEE International Symposium on Information Theory, pages 259-259, 2003.

[10] R. Renner and S. Wolf. New bounds in secret-key agreement: The gap between formation and secrecy extrac-
tion. In International Conference on the Theory and Applications of Cryptographic Techniques, pages 562-577.
Springer, 2003.

[11] C. E. Shannon. Communication theory of secrecy systems. The Bell system technical journal, 28(4):656-715,
1949.



	New Properties of Intrinsic Information and Their Relation to Bound Secrecy
	Abstract
	Contents
	Introduction
	Background
	The Gap Between the Standard and Reduced Intrinsic Information
	Implications and Extensions
	Binarizations
	Independence-Inducing Binarizations
	Conclusion
	Acknowledgements
	References


