
Understanding High-Level Properties of Low-Level
Programs Through Transformers

Student: Zifan (Carl) Guo
MIT PRIMES

Cambridge, MA, USA
carlguo@mit.edu

Mentor: William S. Moses
MIT CSAIL

Cambridge, MA, USA
wmoses@mit.edu

Abstract—Transformer models have enabled breakthroughs
in the field of natural language processing largely because
unlike other models, Transformers can be trained on a large
corpus of unlabeled data. One can then perform fine-tuning
on the model to fit a specific task. Unlike natural language,
which is somewhat tolerant of minor differences in word choices
or ordering, the structured nature of programming languages
means that program meaning can be completely redefined or
be invalid if even one token is altered. In comparison to high-
level languages, low-level languages are less expressive and more
repetitive with more details from the computer microarchitecture.
Whereas recent literature has examined how to effectively use
Transformer models on high-level programming semantics, this
project explores the effectiveness of applying Transformer models
on low-level representations of programs that can shed light on
better optimizing compilers. In this paper, we show that Trans-
former models can translate C to LLVM-IR with high accuracy,
by training on a parallel corpus of functions extract from 1
million compilable, open-sourced C programs (AnghaBench) and
its corresponding LLVM-IR after compiling with Clang. Our
model shows a 49.57% verbatim match when performed on the
AnghaBench dataset and a high BLEU score of 87.68. We also
present another case study that analyzes x86 64 basic blocks for
estimating their throughput and match the state of the art. We
show through ablation studies that a collection of preprocessing
simplifications of the low-level programs especially improves the
model’s ability to generate low level programs and discuss data
selection, network architecture, as well as limitations to the use
of Transformers on low-level programs.

Index Terms—machine learning, NLP, compilers, LLVM, ma-
chine translation

I. INTRODUCTION

In recent years, natural language processing has witnessed
many breakthroughs due to the emergence of the Trans-
former machine learning model [55], pretraining objectives
[14][58][33], and usage of an increasing amount of data and
parameters [5]. Researchers have also started applying Trans-
formers to other logic tasks, such as solving math problems
[12][31] or understanding and performing downstream tasks
on programming languages [16][45][34]. Most recently, Chen
et al. [9] developed Codex, an engine that powers GitHub
Copilot1 that interprets commands in natural language and
generates corresponding programs, and shows the tremendous
real-world impact of language models applied on code in terms
of increasing developer’s efficiency.

1https://github.com/features/copilot

void foo();
void caller() {
foo()
foo()

}

declare void @foo()

define void @caller() {
entry:
call void @foo() #2
call void @foo() #3
ret void

}
#2 = { readonly }
#3 = { writeonly }

Fig. 1: A sample C program (top) and its corresponding LLVM
IR representation (bottom).

While the field found success in learning high-level pro-
grams, interpreting low-level programs requires additional
thought. Despite being easily comprehensible because of their
numerous English-based keywords, high-level programs need
to be transformed through a compiler into low-level programs
for the computer to understand the commands waiting to be
executed. As a result, low-level programs are more verbose
and less readable but more robust and precise than high-
level languages. As shown in Fig. 1, there is more than
twice the number of tokens in the LLVM low-level program
than in the corresponding C program. Given the assumption
that altering any token would cause the program to not
compile, this additional verbosity provides more locations that
a language model could predict incorrectly and, thus, produce
un-compilable programs. Meanwhile, low-level programs tend
to be more precise with more information than high-level
programs; in Fig. 1, the keywords #2 and #3 gives the foo()
functions attributes like readonly and writeonly that
were previously hidden in the high-level programs. Due to its
more verbose nature, each token in a low-level LLVM program
contains less information, which makes it harder for language
models to comprehend.

Allowing language models to comprehend low-level pro-
grams is essential to performance boost and optimization.
Consider the code snippet in Fig. 2 that normalizes a vector.

mailto:carlguo@mit.edu
mailto:wmoses@mit.edu

__attributes__((const));
double mag(int n, const double *A);
void norm(int n, double *restrict out,

const double *restrict in){
for(int i = 0; i < n; i++){

out[i] = in[i] / mag(n, in);
}

}

void norm(int n, double *restrict out,
const double *restrict in){

double precomputed = mag(n, in);
for(int i = 0; i < n; i++){

out[i] = in[i] / precomputed;
}

}

Fig. 2: The left shows the original program to normalize a vector that operates in Θ(n2) time, and the right shows the program
that computes in Θ(n) time after the compiler performs loop invariant code motion (LICM) [38] on it.

The loop invariant code motion (LICM) [38] optimization
pass can reduce its computation time from Θ(n2) to Θ(n)
by moving the mag function out of the loop. Selecting the
right optimization pass can significantly improve the program’s
performance. Making such a selection needs comprehension
on the low level because it provides extra information hidden
on the high level but crucial for making the right decision.
In Fig. 2, LICM is only legal if mag is marked readonly
and the two pointers are marked restrict, meaning the
two memory locations in and out don’t overlap. Such
information is unlikely to be explicitly written on most high
level programs, whereas the low level not only contains this
information when relevant but can also derive these properties.

Understanding low-level programs is important because
better code optimization can greatly reduce resources devoted
to running programs and, thus, reduce the operational cost of
large data center applications. Moreover, such optimization can
create a significant difference as Merouani et al. [37] pointed
out that an optimized implementation of a deep learning
neural network, such as XLNet [58], is 1.8× faster than the
conventional PyTorch implemented counterpart.

This need for optimization and less time-consuming, better-
performing compilers is especially true with complex, large
programs. The larger the program, the lower the possibility that
computer scientists could manually tune the program for better
efficiency. Moreover, such optimization from manual tuning
is specific to the target architecture, which posts a barrier
in generalizing performance to all target architectures. This
obstacle, in turn, fuels the development of automatic compiler
optimization that utilizes machine learning.

With the renaissance of machine learning in other fields,
ML-based compiler optimization is similarly starting to be
explored in depth. While most studies employ supervised
machine learning strategies, more recent works have employed
unsupervised techniques, such as reinforcement learning or
deep learning [59][23][19]. The usage of Transformer models
is growing but remains rare [51].

We attempt to tackle the compiler optimization problem
by leveraging recent breakthroughs in Transformer models.
We treat low-level languages, specifically, LLVM intermediate
representation (IR) and x86 64 assembly, syntactic token by
token, utilizing mature tokenization and preprocessing tech-
niques that were proven successful in high-level programming
languages. We built pre-trained models using the Masked Lan-
guage Modelling objective [14] and fine-tuned them on parallel

corpora of C to unoptimized LLVM-IR datasets, receiving
proof that the Transformer model can successfully translate
C functions into LLVM-IR. We find similar results when we
try to translate C to LLVM-IR optimized with -O1 flag. Such
success attempts reflect the ability of Transformer models to
understand the inner workings of LLVM-IR language syntax,
despite its repetitiveness, and shed light on the possibility
of applying Transformer architecture to provide better opti-
mization than standard optimization flags. Our work shows
that selecting the right C compilation dataset is the key to
Transformers’ performance, and reducing the repetition within
unoptimized LLVM-IR programs and presenting data in prefix
notations can help the model to perform better in translation.
In another case study, we attempt to renovate Mendis et al.
[36] ’s hierarchical LSTM model that estimates throughputs
of x86 64 basic blocks with Transformer models and yields
results that match state-of-the-art.

II. RELATED WORK

A. Unsupervised Language Models

Vaswani et al. [55] developed the Transformer model
that revolutionizes the traditional Recurrent Neural Network
(RNN) model that is slow to train and suffers from the vanish-
ing gradients problem in long data sequences. Attempts such
as LSTM [22] try to solve vanishing gradients but are slower
because the process is still strictly sequential. Transformer
model trains sequences in parallel through calculating attention
[4], which, most importantly, can be done while disregarding
their distances in the input or output sequence.

BERT establishes Masked Language Modeling (MLM) as
an effective pre-train objective. Cross-lingual Language Pre-
training Model (XLM) [29] upgrades the BERT model to
better perform translation between multiple languages with
training objectives like Back-Translation, first established by
Lample et al. [30]. It also adds the Byte-Pair Encoding (BPE)
[48] to increase the shared vocabulary between languages that
BERT lacks. The input data can only bring a fixed vocabulary,
but translation should be an open-vocabulary problem in real
life. BPE splits words into sub-words so the program can better
deal with these potential rare and unknown words that do not
previously exist in the vocabulary, bettering the performance
of BERT on cross-lingual translation [30].

B. Unsupervised Language Models on Programs

Researchers also applied Transformer models to high-level
programming languages. Kanade et al. [27] developed a BERT
model to obtain contextual embedding of Python source
code, training with five classification tasks. Feng et al. [16]
presented CodeBERT, a pre-trained model aiming to capture
the semantic similarity between natural and programming
languages. They showed that pretraining could improve the
performance of downstream tasks like code searches and
documentation generation. The most prominent and relevant
work is Roziere et al. [45] ’s TransCoder, an unsupervised
model that translates C++, Java, and Python 3 to each other
based on open-sourced GitHub monolingual source code data
accessed through Google BigQuery2. Roziere et al. [47] up-
dates TransCoder with more parallel training data by taking
an already trained TransCoder to generate predicted translation
and leveraging an automated unit-test tool to filter out invalid
prediction. Ahmed and Devanbu [2] highlighted that different
implementations of the same code in multiple programming
languages could preserve identifiers naming patterns well,
which can serve as an anchor point for training and amplifying
performance.

The amount of research on Transformer’s applications on
programs grows in the meantime. Researchers experimented
with different implementations of the traditionally successful
nature language model T5 [43] on code [41][56][11]. Novel,
code-specific, pretraining objectives, such as de-obfuscation of
variable names [46] and contrastive code representation[25],
also appeared. Code-specific benchmark datasets, such as
CodeNet [42], CodeSearchNet[24], and CodeXGLUE [34],
and evaluation metrics, such as CodeBLEU[44] and APPS [21]
that measures functional correctness, also were established
to facilitate research in the area better. Recent Transformer
research has many applications, including generating unit
tests [54], AlphaCode [32], a Transformer model that solves
competitive programming questions, and OpenAI Codex[9],
which provides accurate suggestions to complete functions
based on docstrings. Tufano et al. [53] and Drain et al. [15]
attempted using Transformers to fix bugs by translating buggy
code to correct ones.

C. Automatic Compiler Optimization

Ashouri et al. [3] identified two main issues for better
optimization: optimization selection and phase-ordering. The
former focuses on what content of optimization to adopt,
and the latter surrounds the order of applying the chosen
optimizations. The latter exists because sometimes a particular
optimization pass A would transform the code in a way that
might ”hinders the effect of some optimizations that otherwise
could have been performed by the following pass B”[3]. On the
other hand, having a particular transformation before another
might lead to better performance. The optimization problem
lies in choosing a sequence of the right code transformations
from the repertoire in the right order.

2https://console.cloud.google.com/marketplace/details/github/github-repos

Existing compilers contain numerous preconstructed code
transformation passes; for example, Clang has more than
150 transformations, such as the loop invariant code motion
(LICM) mentioned earlier, loop tiling, and inlining. The sheer
number of code transformation passes leaves little room for the
already complicated heuristics to improve, hence, the need to
apply machine learning.

The automatic compilation optimization literature contains
many attempts to use supervised machine learning. For super-
vised machine learning, Ashouri et al. [3] split the related work
based on how the model characterizes the programs. Some
previous attempts select specific static features of the source
code or the compilation process as proxies for the whole
program when training. Some select source-code features, such
as the name of the current function, the values of compiler
parameters, or the pass ordering in the current run of the
compiler, using tools like[17]’s Milepost GCC. The benefit of
static feature extraction is that collecting such features doesn’t
require the code to be executed, which makes the process less
resource-intensive and accessible.

Other existing attempts use a more dynamic approach to
characterize code through performance counters that provide
information on how well the code runs. Cavazos et al. [8]
built a machine learning model to predict the set of code opti-
mization sequences based on performance counters, despite
that such characterization is usually architecture-dependent.
Traditionally, those optimization models using performance
counters performed a lot better than those using source-code
features, but one needs to run the program multiple times to
collect such data.

To achieve a middle ground, some models adopt graph-
based features. For example, Park et al. [40] built a novel
model for speedup prediction based on the graph-based char-
acterization of the intermediate through control flow graphs
(CFG). Doing so maintains a high level of expressiveness
as performance counter features but remains ”static” like the
source-code features. Tools like LLVM’s Opt exist to easily
extract control flow graphs from a function or a program [3].
However, such characterization can still be limited, as they
only select parts of a program to feed into the machine learning
model for training.

Many unsupervised works mainly surround genetic algo-
rithms such as Neuro Evolution of Augmenting Topologies
(NEAT). Kulkarni et al. used such an algorithm to address
both the optimization selection [52] and the phrase ordering
problem [28].

Recently, reinforcement learning and deep learning have
been applied as well. With a relatively simpler objective of
speedup prediction, Merouani et al. [37] applied deep learning
to build a cost model implemented in the Tirasimu compiler,
trying to tackle phase-ordering. Merouani et al. [37] addresses
two problems in previous cost models: it only applies to
basic assembly blocks instead of full programs and is heavily
engineered. However, the model only assesses a few code
transformations revolving around loops, such as loop fusion
or tiling. Adams et al. [1] built a similar cost model to

automatically schedule Halide programs for image processing.
Mendis et al. [36] developed an effective hierarchical LSTM
model, Ithemal, for a similarly narrow question, estimation of
throughput given x86 64 assembly basic blocks.

Zhu et al. [59] developed a framework for integrating
ML into an industrial compiler and implemented inlining-for-
size heuristics and register-allocation reinforcement learning
models that outperform current heuristics to determine whether
to adopt certain optimization passes. Jayatilaka et al. [26]
focused on automatically ordering between -01, -02, and -
03 pipeline based on code structure with ML. Tackling the
phase-ordering problem, Huang et al. [23] optimized the
phase ordering for HLS compilers with deep reinforcement
learning, and Mammadli et al. [35] similarly did so with deep
reinforcement learning but relied on the statically-attainable
intermediate representation of the source code.

Another way to optimize programs without needing to
worry about specific optimization passes is super-optimization,
which finds a semantically equivalent but more optimized
version of a given program. While doing so relied on brute
force search for a long time, Bunel et al. [7] used rein-
forcement learning to optimize a stochastic search that im-
proves super-optimization’s efficiency. Shi et al. [49] attempted
to learn symbolic expression simplification useful to super-
optimization with reinforcement learning but has the possi-
bility to contain redundancies. As the state of art, Shypula
et al. [50] uses a seq2seq Transformer model for super-
optimization with a Self Imitation Learning for Optimization
(SILO) approach.

Despite more and more attempts of using unsupervised
ML to inform the optimization process, the use of Trans-
former remains sparse, and most of the current attempts have
their limitations. Our projects aim to look at the optimized
intermediate representation on a language level, i.e., all of
the available static features, which serves as a more holistic
approach than the current literature. Our work shows the
potential and serves as a first step toward utilizing Transformer
models to tackle optimization selection and phase-ordering
problems.

III. MODEL

To translate C to unoptimized LLVM-IR, we base our
model structure and code implementation on TransCoder [45]:
a sequence-to-sequence (seq2seq) Transformer model with
attention that consists of an encoder and decoder 3. The
TransCoder model follows the three principles first set out
by XLM [29] for cross-lingual natural language translation:
initialization, language modeling, and back-translation. We use
the first two steps but adopt a machine translation objec-
tive rather than back translation, pretraining with the MLM
objective on all the C and LLVM data and training with
denoising auto-encoding and back-translation objectives only
on the standalone, static function.

3https://github.com/facebookresearch/TransCoder

A. Preprocessing

To process into the ML pipeline, we use separate tokenizers
for C and LLVM-IR similar to Roziere et al. [45] because
different languages use keywords for drastically different
meanings. For example, ”;” indicates the end of one line in C
but indicates the start of a comment in LLVM-IR. Facebook
researchers originally implemented the C tokenizer using a
Python binding of Clang, but later switched to Tree-sitter4 in
their newly updated CodeGen GitHub repository5. The two to-
kenizers function slightly differently, but both accomplish the
desired task properly; for example, for preprocessor directives
like #define, Clang would tokenize it into two tokens # and
define respectively, while Tree-sitter keeps it as one token.
We use the Clang C tokenizer because of its internal logic’s
similarity to the LLVM-IR tokenizer that we implement,
which utilizes similar libraries. We extend the LLVM library
using PyBind11 6 to access the LLLexer as our LLVM
tokenizer. It provides the token types, and we can parse out
the string representation of the tokens correspondingly. We
then learn BPE codes on these tokens concatenated together,
using fastBPE7, and split them into subword units.

B. Training Objectives

Lample et al. [30] concluded the importance of pretraining
in unsupervised machine translation by mapping similar se-
quences with similar meanings, regardless of the languages.
Roziere et al. [45] identified the cross-lingual nature of the
pretraining model comes from the number of common to-
kens (anchor points), such as shared keywords like define,
variable names, and digits. We believe that the task of trans-
lating from C to LLVM inherently presents worse cross-
lingual representation than a translation between two high-
level languages because of the higher syntactical and structural
difference between C and LLVM, similar to the logic that
an English-French model would have more ”cross-linguality”
than an English-Chinese model because of the similar alphabet
[45]. We show that enough anchor points exist to consider
the C-LLVM model as cross-lingual, but unexplored specifics
still exist to form a conclusion with higher certainty. For the
specific pretraining objective, we use the masked language
model (MLM) objective [14] following Roziere et al. [45].
Namely, it takes in a text sequence at each iteration, masks
out some tokens, and asks the model to predict the missing
tokens based on their context.

While the encoder matches the architecture of the pre-
trained XLM model, the decoder needs extra parameters on
the source attentions, randomly initialized following Lample
and Conneau [29]. As the decoder has never been trained to
decode a sequence before, the model trains the encoder and
decoder with the Denoising Auto-Encoding (DAE) objective,
which asks the model to predict the sequence of tokens based

4https://tree-sitter.github.io/tree-sitter/
5https://github.com/facebookresearch/CodeGen
6https://github.com/pybind/pybind11
7https://github.com/glample/fastBPE

on a corrupted version with additional noise, first established in
Lample et al. [30]. The noise is randomly masking, removing,
and shuffling tokens in the input sequences. This step trains
the encoder to be robust against noise to perform the latter
machine translation objective better [45].

With the pretraining MLM and denoising auto-encoding
objectives, the model would be able to translate but has
low performance because it depends on the inherent and un-
changeable ”cross-linguality” based on the number of common
anchor points [45]. Fine-tune tasks are adopted to boost the
model’s performance.

TransCoder [45] and XLM [29] are trained on the back-
translation objective, which translates the sequence in the
source language to the target language and back to the
source language, on which the loss function is performed.
However, as TransCoder-ST [47] identifies, back-translation
is a mediocre solution to the lack of parallel data using only
monolingual data. Back-translation is less direct than machine
translation and creates more noise. In the case of translating
from C to LLVM-IR, we can easily access such parallel corpus
as long as the C program can compile and choose to fine-tune
with a machine translation task.

We train machine translation and denoising auto-encoding
in parallel until they converge.

C. Preprocessing Modifications

We first clean up the C data before compiling to gener-
ate LLVM-IR with clang -E, which writes out all the
preprocessing directives such as imported libraries. We also
made several attempts to clean out unnecessary parts of the
LLVM data that can facilitate better training while ensuring
that it would not tamper with the compilation results. This re-
moved information includes target data layout, target hardware
architecture, comments, alignments, global attribute groups,
and metadata. In some statements, such as load, store, or
getelementptr inbounds, the data type always appears
twice, once as itself and another as the pointer to it. In this
case, we remove one of the two appearances and construct a
detokenizer that can restore it.

We remove all comments as they are filtered out in the com-
pilation process and would not provide meaningful information
for translation.

At the same time, because we want to eventually compile
the translated hypotheses but only train on the level of
functions instead of the whole file, some information is
inevitably lost in the process and cannot be recovered.
While some we can restore back an unexpressive global
variable definition or function declaration to reach the
bare minimum for the program to compile, the definition
of any struct is permanently lost and would hinder
the program’s compilation. We can simply replace
the references of a non-recursive struct with their
definitions without losing meaning. For a struct
like %struct.S5 = type { i16, i32, i24 },
we can replace all occurrences of %struct.S5 with
{ i16, i32, i24 }. While it adds complexity to the

model than translating directly into %struct.S5 because
it needs to make the extra inference, it seems to be a
worthwhile sacrifice to make sure the machine learning
predictions compile.

Furthermore, for each C representation of a string, LLVM-
IR would automatically generate a global string constant with
names such as @.str.1 or @.str.2. Of course, the string
information would be lost when we only extract functions to
train. However, as long as we know the length of the string,
we could also fill in random character tokens to make the
programs compile, which seems to be a more effective solution
because it gives the model an easier task to learn. For other
global constants, the call expressions have enough information
to reconstruct at least a declaration, which is a bare minimum
for the program to compile.

Moreover, the complex type variables in
LLVM are difficult for the model to learn. For
instance, an array in LLVM-IR is defined like
@ptr = [3 x i32] [i32 1, i32 2, i32 3],

which is a hard syntax for the machine to learn because it
has to consider the scope of the array and where the []
ends. In a more extreme example, a struct with the type
{ [4 x i8], i32, { i8, i32 }} is even harder to
comprehend. Griffith and Kalita [18] showed that Transformer
models would do better in solving arithmetic problems when
the arithmetic expressions, as the data, are in prefix notation
instead of the conventional infix notation. We made similar
attempts that remove structures of [] or {} and write out
the types in prefix notation, converting the above struct into
STRUCT 5 ARR 3 4 x i8 i32 STRUCT 2 i8 i32.
By recording the length of the struct, the detokenizer can
faithfully restore them to evaluate the model’s performance.
Representing data in prefix notation is easier for the
Transformer model to understand.

IV. EXPERIMENT

A. Training Details

Basing off of Roziere et al. [45]’s TransCoder, we train our
model with a transformer of 6 layers, 8 attention heads, with
a single encoder and a single decoder for both high-level and
low-level programming languages. At training time, we use
batches of around 3500 tokens. We use the GELU [20] as
an activation function. We add in a 10% dropout rate and a
10% attention dropout rate. We optimize the model with the
Adam optimizer and a learning rate of 10−4. It is worth noting
that we have fewer computing resources than the researchers
producing the work to which this paper is referencing; we
train using 1 GeForce RTX 3090 GPU while Roziere et al.
[45] trained with 32 V100 GPUs. Such limitations can also
make sure that our work on compiler optimization can be
realistic and applicable to the vast majority of developers
without robust GPUs.

B. Training Data

We have considered multiple data sources for our training
data, including CSmith [57], Project CodeNet [42], GitHub

Google BigQuery8, and AnghaBench [13].
CSmith by Yang et al. [57] is a randomized test-case

generation tool for C programs, built initially to discover
unknown compiler bugs. Regarding the state-of-art when it
was published in 2011, it could generate random programs that
are comparatively more expressive, containing complex code
using many C language features. We first attempted our model
on CSmith but received poor results due to its randomness,
repetitiveness, and complexity, lacking proximity to humanly
written code. It only utilizes relatively simple data structures
and operations, which might not represent all the C programs.
It only utilizes relatively simple data structures and operations,
which might not represent all the C programs. The functions
are usually too long, and machine learning models work better
with shorter sequences.

Project CodeNet provides a set of benchmarks scrawled
from two online judge websites, AIZU Online Judge9 and
AtCoder10. These websites contain a finite set of questions
for which coding enthusiasts could submit solutions, and
these solutions span different languages. Project CodeNet’s
strength is an established set of parallel data spanning different
languages, but unfortunately, we only need the C files. As it
turned out, the solutions people submit, especially for simpler
questions, can be highly similar and do not generalize well
to the LLVM language as a whole. On the C level, different
syntax exists to implement the exact same function, such as
the difference between writing a for loop in one line and
in multiple lines, or the difference between writing a while
loop and a for loop. However, such a visible difference on
the C level disappears on the LLVM-IR level, as long as the
C codes attempt to achieve the same functionalities.

Google BigQuery provides a public crawl to all available
GitHub open-sourced repositories; such a scrawl can generate
3 million C files alone. However, because we have next to no
knowledge of the libraries dependencies the C files need, only
a limited amount of those files can be compiled with natural
Clang and used for our projects. We eventually decided not
to use this dataset for training due to the difficulty of training.

AnghaBench is a benchmark of more than 1 million C func-
tions, with the required minimal C code to compile them. Built
by crawling C files on GitHub, the authors extracted individual
functions and applied type-inference to reconstruct the missing
definitions required to compile them, such as declarations of
auxiliary functions, type definitions, etc. AnghaBench has, by
far, the most amount of usable data, which can help saturate
the model. Having only one extracted function in each file
facilitates the model’s training, and our model found success
on this benchmark dataset.

While we pre-train on all the source code available, we train
with DAE and back-translation objection on only the static
functions in C and their corresponding LLVM-IR.

8https://console.cloud.google.com/marketplace/details/github/github-repos
9https://onlinejudge.u-aizu.ac.jp/home
10https://atcoder.jp/

C. Evaluation

We evaluate our results on four metrics, the training accu-
racy generated by the loss function, perfect reference matches,
the industry convention BLEU [39] score, and compilation
accuracy.

Training accuracy describes how well the model performs
on the machine translation objective at hand with the training
data. The rest considers a new batch of testing data that the
model has never seen before. Reference match refers to a
percentage out of all translation prediction units that match
the ground truth verbatim. The BLEU [39] score, on the
other hand, is a widely accepted evaluation metric for natural
language translation that evaluates the quality of the text of
predicted translation by comparing its similarity with their
referencing ground truth. The BLEU score performs such
evaluation by taking the geometric mean of multiple modified
n-gram (unigram, bigram, trigram, and 4-gram) precision
scores, with 0 as completely different and 100 as exactly the
same. The BLEU score presented in the paper is an average
of the BLEU scores performed on each translation case.
Lastly, for the datasets for which we successfully constructed
a detokenizer, we report the compilation accuracy, namely the
number of programs out of the total number that were suc-
cessfully compiled. Because those that match the ground truth
verbatim would definitely compile, the compilation accuracy
is always higher than the reference match score. For high-
level programs, prior research has concluded that functional
correctness is the best evaluation metric for such machine
learning models [45][9][47], and since we can only compile,
but not run, a low-level program, compilation accuracy is the
best proxy.

TransCoder has to rely on back-translation, evaluating a
BLEU score between the original C code and predicted C code
after translating twice. However, back-translation might make
BLEU score uninformative, because the model can translate
into some LLVM-IR gibberish but translate back to proper C.
Because generating parallel matching data for C and LLVM-
IR isn’t as hard, the direct machine translation approach used
by our project makes the evaluation of BLEU score more
informative. Despite BLEU’s ease to use, it has its limitation
that it does not evaluate naturalness unique to programming
languages, such as important syntactic and semantic features,
which are especially critical for interpreting code with such
rigid structures.

Recent development such as CodeBLEU [44][34] offers
a new evaluation metric that updates BLEU to be code-
specific, taking an additional AST (Abstract Syntax Tree) and
a dataflow graph comparison into consideration to evaluate
the code’s structure. However, CodeBLEU requires language-
by-language specific implementation and lacks portability. As
Ren et al. [44] aims CodeBLEU to serve the community of
machine learning on high-level programs, it is yet to be applied
to evaluating low-level programs like LLVM-IR. Building a
metric to evaluate low-level programs is of future interest.

TABLE I: Results of unsupervised machine translation
on the AnghaBench test set. Ablation studies with various
preprocessing modifications. We apply syntactic cleaning and
representation in prefix notation based on the original dataset,
documented in the second column labeled C̈leaned,änd train
another model with an additional restoration of global vari-
ables in the third column. The fourth column trains LLVM
data with the -O1 flag.

AnghaBench Dataset Original Cleaned Cleaned & Global -O1
Training Acc. 99.03 99.60 99.36 97.87
Reference Match 13.33 49.57 38.61 38.73
BLEU 69.21 87.68 82.55 77.03
Compilation Acc. 14.97 NA 41.45 NA

TABLE II: Results of unsupervised machine translation on
the Csmith and CodeNet test set. The models trained on both
datasets are subpar to that on the AnghaBench dataset mostly
due to a limited amount of and their inherent unnaturalness.

Csmith CodeNet
Testing Accuracy 90.73 93.66
Reference Match N/A 5.76
BLEU 43.39 51.01

D. Results

The current results are reported in the following tables. We
report the results on our AnghaBench test set, with ablation
studies with various preprocessing modifications, in Table I. In
the table, the first column labeled Original, we show the results
after training the model on the original, unmodified dataset on
which we only perform the standard clang -E preprocessing
to rid the preprocessing directives. Despite giving us a high
training accuracy of 99.03%, the model does not generalize
well to unseen testing data, giving us the lowest reference
match accuracy (13.33%) and BLEU score (69.21); such low
performance is most likely due to the sheer amount of unin-
formative tokens that overwhelm the number of informative
tokens. The second column, labeled Cleaned, illustrates the
training result after converting data representation to prefix
notations. As we previously explained in the Section III , prefix

mysig_t mysignal (int sig , mysig_t act) {
return (signal (sig , act)) ;

}

define dso_local i32 @mysignal (i32 %0 , i32 %1) #0 {
%3 = alloca i32
%4 = alloca i32
store i32 %0 , i32 * %3
store i32 %1 , i32 * %4
%5 = load i32 , i32 * %3
%6 = load i32 , i32 * %4
%7 = call i32 @signal (i32 %5 , i32 %6)
ret i32 %7
}

Fig. 3: Example of LLVM-IR prediction with our Trans-
former model. The top is the original source code in C, and
the bottom is a verbatim copy in LLVM-IR to the excepted
compiler output.

notations remove uninformative tokens such as brackets and
commas and condense such information into one token that
describes the array or struct’s length. Such an endeavor
boosts the performance by a large amount, but doing so ignores
definitions of global variables. Global struct definitions are
permenantly lost on the function level, which, in turn, prevent
us from completely detokenizing the programs and compiling
them as an evaluation metric.

In the third column, labeled Cleaned & Globalwe report the
results of the model on AnghaBench dataset after converting
data structures in infix notation to prefix notation and writing
out global variables and structs as their respective declarations
and definitions. While doing so makes sure we can later restore
the global definitions to compile the programs, it expands the
already complex syntax and assumes information that does not
exist on th high level, making it harder for language models
to understand. Our result justifies this claim by showing that
this preprocessing modification slightly hinders the model’s
performance, in comparison to only cleaning the syntax and
writing in prefix notation. The fourth column shows the
result of training on LLVM-IR optimized with -O1 flag. It
serves as a preliminary look into the possibility of language
models understanding both optimized and unoptimized low-
level programs and shows promising results.

We give an example of such unsupervised translation from
C to LLVM-IR tested on AnghaBench in Fig. 3. We conclude
that applying prefix notation transformation and removing
redundant language syntax help the model to perform better,
but writing out global variable and struct definitions inside
functions, despite being necessary for accurate recovery, hin-
ders the performance.

We report the results of training on Csmith and CodeNet
data in Table II. We observe that the transformer model
performs better on the AnghaBench dataset than on Csmith
[57] and CodeNet[42], giving better reference matches and
BLEU sscores AnghaBench dataset is more expansive than
both Csmith and CodeNet, and a lot closer as a proxy to the
humanly written high-level programs than Csmith. While we
find moderate success in training with CodeNet data, we worry
that a model solely based on CodeNet contains internal biases
and cannot generalize well to the LLVM-IR language because
it contains duplications of similar answers.

V. THROUGHPUT ESTIMATION OF X86 64 ASSEMBLY
BASIC BLOCK

In another separate case study, we have also attempted
to renovate Mendis et al. [36]’s Ithemal, which utilizes a
hierarchical LSTM model, with transformer models. Accurate
throughput estimation is an essential tool to inform the com-
puter on how to choose the proper optimization passes.

A. Setup

We train our transformer model on the BHive [10] bench-
mark dataset, with 320,000+ x86 64 basic blocks mapped to
throughput when running on the Intel Haswell microarchitec-
ture. An example of the data can be found in Fig. 4. We

TABLE III: Results of applying transformer model to estimate the throughput of x86 64 basic blocks. Spearman correlation
measures the strength and direction of monotonic association between the given assembly program and its throughput, while
Pearson correlation evaluates only the linear relationship between the two variables. For validation accuracy, as long as the
data point is within a 25% margin of error, it counts as correct.

Spearman Corr. Pearson Corr. Validation Accuracy
(< 25% margin of error)

Proj. layer Only 90.04 94.95 55.27
Proj. layer & Embedding 89.35 63.73 51.04
Proj. layerlabel2id 95.29 91.95 76.06
Proj. layer & Embeddinglabel2id 95.74 93.69 75.19
Replicated Ithemal 96.0 91.8 88.39

TABLE IV: Examples of throughput prediction made by the Transformer model and Ithemal. While Ithemal produces
more accurate results for smaller data points, it struggles with large data points and can produce results drastically different
from the ground truth; such data points are marked as red in the table.

(a) Fine-tuning projection layer with
lab2id

Predicted Actual
53.0 49.0
345.0 301.0
1779.0 1697.0
3287.5 3087.5
61.0 59.0
2481.25 2295.0

(b) Fine-tuning projection layer & embed-
ding with lab2id

Predicted Actual
56.0 49.0
277.0 301.0
1479.0 1697.0
3107.0 3087.5
61.0 59.0
2415.0 2295.0

(c) Reproduced Ithemal

Predicted Actual
33.02 33.00
99.13 98.00
309.76 304.00
139.45 1400.00
70.00 399.00
644.00 2295.00

mov rdx, qword ptr [rbx+0x50]
xor mov mov
ecx, ecx
esi, 0x01178629 rdi, rbp

110.0
Fig. 4: The above figure is an example of the data points in the
BHive dataset. The top illustrates one x86 64 basic block, and
the bottom shows its corresponding throughput as a numerical
value.

follow the preprocessing structure outlined in Ithemal, adopt-
ing a DynamoRIO [6] tokenizer. DynamoRIO recovers hidden
information in the Intel syntax; for example, the tokenizer will
recover mul ecx into mul eax ecx, edx eax. Unlike
the LLVM-IR tokenizer that recognizes brackets as separate
tokens, DynamoRIO can remove unnecessary syntaxes, such
as brackets and memory displacements. Furthermore, because
assemblies do not contain any English elements, the vocab for
assemblies is small (less than 2000 tokens), so there is no need
to perform BPE on the assembly basic blocks.

B. Results

We pre-train the model with Masked Language Modelling
and fine-tuned it with MSE loss for regression on the same
dataset. We report the results in Table III. The transformer
model yields results that match the original Ithemal model.
After pretraining on all available, we provide ablation stud-
ies between training only on the prediction layer or both
the prediction layer and the language embedding and be-
tween mapping to the throughput’s raw values or mapping

to a dictionary of labels (label2id) that can greatly shorten
the range of possible values. We evaluate our results on
three metrics, Spearman correlation (rank correlation), Pearson
correlation (linear correlation), and percentage of accurate
predictions within ± 25% of margin of error. Among the
different ablations of transformer models, fine-tuning with the
projection layer and label2id dictionary performs the best, with
a validation accuracy of 76.06%, but the difference is almost
indistinguishable with the model that fine-tunes on both the
projection layer and embedding and mapping throughputs with
label2id, with a validation accuracy of 75.10%.

While statically, the transformer model performs worse or
matching to the original Ithemal model [36], it performs better
in another unique way. The majority of the BHive [10] data
points fall under a value between 20.0 and 1000.0, but the
maximum can go up to 1,600,450, and the model frequently
treats them as outliers. While both Ithemal and transformer
struggle with large values, we observe that Ithemal can be
more exact for the small data points but is really far off for
these big outliers, and the Transformer model seems to model
the big data points better but be less exact for all data points.
Examples of such a difference are shown in Table IV.

VI. DISCUSSION

This project serves as the first attempt of transformer models
to be applied to low-level programming languages. It opens
the literature for future work to use transformer models for
automatic compiler optimization tasks. Through our two case
studies, we believe that a cross-lingual model on both high-
level and low-level programs can perform better, as the two

levels complement each other to build a holistic understanding
of the program at hand.

While our model finds success training on the AnghaBench
dataset, whether such a dataset contains a certain bias is
unclear. We tested our model on a section of the AnghaBench
dataset, so future work to evaluate the same model using other
sources of C programs might shed light on whether the C to
LLVM-IR model we built can generalize to the entire LLVM-
IR language.

For translations between high-level languages, transformer
models can often find exact matches of keywords on a token-
to-token level and are syntactically similar. However, C has
much more abstraction than LLVM-IR, and LLVM-IR often
has to represent one line of C code in multiple lines. The
model can be overwhelmed by the quantity of rather unimpor-
tant lines to pinpoint the informative lines. Especially when
AnghaBench contains mostly short functions, which facilitates
the model’s training, future work should examine whether
the machine learning model can generate long, complicated
functions with multiple branches. Attempts to directly apply
long, complicated functions through Csmith did not seem to
work well.

We did not need to worry about library dependencies in the
AnghaBench dataset, but in programs that do, such function
definitions will show in LLVM-IR but not in C. It would add
bias to library dependencies.

Another area for possible future work is to evaluate the
translation of C to LLVM-IR without using BPE. While BPE
can help to limit the vocab, the vocab of LLVM-IR is already
limited, and its only English-based components are in strings
and function names. Similar to the DynamoRIO tokenizer, a
tokenizer with a fixed vocabulary might make more sense for
LLVM-IR.

While the transformation of C to LLVM-IR can already
be achieved with rule-based compilers, the reverse, converting
LLVM-IR to humanly readable C, lacks implementations.
Julia Computing has ”resurrected” the LLVM C backend
(llvm-cbe)11, it generates C++ API calls to recreate the
LLVM-IR basic blocks instead of recovering the control
flow. Although our primitive explorations remain unsuccessful,
future work on the transformer models can shed light on
bettering such a reserved transformation.

VII. CONCLUSION

In this paper, following successful efforts of applying
transformer models to natural languages and programming
languages, we explore the effectiveness of the Transformer
model on low-level compiler programs, specifically LLVM-
IR and x86 64 basic blocks. Our study shows that such an
unsupervised approach to low-level programs holds water and
can successfully translate C to LLVM-IR while matching state-
of-the-art for estimating basic blocks’ throughput. Selecting
the proper dataset and modifying the tokenization of the low-
level languages can improve the model’s performance, but

11https://github.com/JuliaComputingOSS/llvm-cbe

some constraints to the performance remain and need further
exploration.

ACKNOWLEDGMENT

We thank Susan Tan, Yebin Chon, and Johannes Doerfert
for thoughtful discussions on using similar machine learning
models for decompilization from LLVM-IR to C, the real-
world application of the de-obfuscation objective [46]pre-train
objective, and its implementation on the C language. We thank
MIT and the MIT PRIMES program for making the research
possible. This research was supported in part by a DOE
Computational Sciences Graduate Fellowship DESC0019323;
in part by LANL grant 531711; and in by the United States
Air Force Research Laboratory and was accomplished un-
der Cooperative Agreement Number FA8750-19-2-1000. The
views and conclusions contained in this document are those
of the authors and should not be interpreted as representing
the official policies, either expressed or implied, of the United
States Air Force or the U.S. Government.

REFERENCES

[1] Andrew Adams, Karima Ma, Luke Anderson, Riyadh
Baghdadi, Tzu-Mao Li, Michaël Gharbi, Benoit Steiner,
Steven Johnson, Kayvon Fatahalian, Frédo Durand, et al.
Learning to optimize halide with tree search and random
programs. ACM Transactions on Graphics (TOG), 38(4):
1–12, 2019.

[2] Toufique Ahmed and Premkumar Devanbu. Multilin-
gual training for software engineering. arXiv preprint
arXiv:2112.02043, 2021.

[3] Amir H. Ashouri, William Killian, John Cavazos, Gian-
luca Palermo, and Cristina Silvano. A survey on compiler
autotuning using machine learning. ACM Computing
Surveys, 51(5):1–42, Jan 2019. ISSN 1557-7341. doi: 10.
1145/3197978. URL http://dx.doi.org/10.1145/3197978.

[4] Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Ben-
gio. Neural machine translation by jointly learning to
align and translate. arXiv preprint arXiv:1409.0473,
2014.

[5] Tom B Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind Nee-
lakantan, Pranav Shyam, Girish Sastry, Amanda Askell,
et al. Language models are few-shot learners. arXiv
preprint arXiv:2005.14165, 2020.

[6] Derek Bruening, Qin Zhao, and Saman Amarasinghe.
Transparent dynamic instrumentation. In Proceedings of
the 8th ACM SIGPLAN/SIGOPS conference on Virtual
Execution Environments, pages 133–144, 2012.

[7] Rudy Bunel, Alban Desmaison, M Pawan Kumar,
Philip HS Torr, and Pushmeet Kohli. Learning to su-
peroptimize programs. arXiv preprint arXiv:1611.01787,
2016.

[8] John Cavazos, Grigori Fursin, Felix Agakov, Edwin
Bonilla, Michael F.P. O’Boyle, and Olivier Temam.
Rapidly selecting good compiler optimizations using per-
formance counters. In International Symposium on Code

http://dx.doi.org/10.1145/3197978

Generation and Optimization (CGO’07), pages 185–197,
2007. doi: 10.1109/CGO.2007.32.

[9] Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan,
Henrique Ponde de Oliveira Pinto, Jared Kaplan, Harri
Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman,
et al. Evaluating large language models trained on code.
arXiv preprint arXiv:2107.03374, 2021.

[10] Yishen Chen, Ajay Brahmakshatriya, Charith Mendis,
Alex Renda, Eric Atkinson, Ondřej Sỳkora, Saman Ama-
rasinghe, and Michael Carbin. Bhive: A benchmark
suite and measurement framework for validating x86-
64 basic block performance models. In 2019 IEEE
International Symposium on Workload Characterization
(IISWC), pages 167–177. IEEE, 2019.

[11] Colin B Clement, Dawn Drain, Jonathan Timcheck,
Alexey Svyatkovskiy, and Neel Sundaresan. Pymt5:
multi-mode translation of natural language and
python code with transformers. arXiv preprint
arXiv:2010.03150, 2020.

[12] Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Ja-
cob Hilton, Reiichiro Nakano, Christopher Hesse, and
John Schulman. Training verifiers to solve math word
problems. arXiv preprint arXiv:2110.14168, 2021.

[13] Anderson Faustino da Silva, Bruno Conde Kind,
José Wesley de Souza Magalhães, Jerônimo Nunes
Rocha, Breno Campos Ferreira Guimaraes, and Fernando
Magno Quinão Pereira. Anghabench: A suite with one
million compilable c benchmarks for code-size reduction.
In 2021 IEEE/ACM International Symposium on Code
Generation and Optimization (CGO), pages 378–390.
IEEE, 2021.

[14] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. Bert: Pre-training of deep bidirec-
tional transformers for language understanding, 2018.

[15] Dawn Drain, Chen Wu, Alexey Svyatkovskiy, and Neel
Sundaresan. Generating bug-fixes using pretrained trans-
formers. In Proceedings of the 5th ACM SIGPLAN In-
ternational Symposium on Machine Programming, pages
1–8, 2021.

[16] Zhangyin Feng, Daya Guo, Duyu Tang, Nan Duan,
Xiaocheng Feng, Ming Gong, Linjun Shou, Bing Qin,
Ting Liu, Daxin Jiang, and Ming Zhou. Codebert: A pre-
trained model for programming and natural languages,
2020.

[17] Grigori Fursin, Yuriy Kashnikov, Abdul Wahid Memon,
Zbigniew Chamski, Olivier Temam, Mircea Namolaru,
Elad Yom-Tov, Bilha Mendelson, Ayal Zaks, Eric Cour-
tois, et al. Milepost gcc: Machine learning enabled
self-tuning compiler. International journal of parallel
programming, 39(3):296–327, 2011.

[18] Kaden Griffith and Jugal Kalita. Solving arithmetic word
problems automatically using transformer and unambigu-
ous representations. In 2019 International Conference on
Computational Science and Computational Intelligence
(CSCI), pages 526–532. IEEE, 2019.

[19] Ameer Haj-Ali, Nesreen K. Ahmed, Ted Willke,

Yakun Sophia Shao, Krste Asanovic, and Ion Stoica.
NeuroVectorizer: End-to-End Vectorization with Deep
Reinforcement Learning, page 242–255. Association
for Computing Machinery, New York, NY, USA, 2020.
ISBN 9781450370479. URL https://doi.org/10.1145/
3368826.3377928.

[20] Dan Hendrycks and Kevin Gimpel. Gaussian error linear
units (gelus), 2020.

[21] Dan Hendrycks, Steven Basart, Saurav Kadavath, Mantas
Mazeika, Akul Arora, Ethan Guo, Collin Burns, Samir
Puranik, Horace He, Dawn Song, et al. Measuring
coding challenge competence with apps. arXiv preprint
arXiv:2105.09938, 2021.

[22] Sepp Hochreiter and Jürgen Schmidhuber. Long short-
term memory. Neural computation, 9:1735–80, 12 1997.
doi: 10.1162/neco.1997.9.8.1735.

[23] Qijing Huang, Ameer Haj-Ali, William Moses, John
Xiang, Ion Stoica, Krste Asanovic, and John Wawrzynek.
Autophase: Juggling hls phase orderings in random
forests with deep reinforcement learning, 2020.

[24] Hamel Husain, Ho-Hsiang Wu, Tiferet Gazit, Miltiadis
Allamanis, and Marc Brockschmidt. Codesearchnet chal-
lenge: Evaluating the state of semantic code search. arXiv
preprint arXiv:1909.09436, 2019.

[25] Paras Jain, Ajay Jain, Tianjun Zhang, Pieter Abbeel,
Joseph E Gonzalez, and Ion Stoica. Contrastive code rep-
resentation learning. arXiv preprint arXiv:2007.04973,
2020.

[26] Tarindu Jayatilaka, Hideto Ueno, Giorgis Georgakoudis,
EunJung Park, and Johannes Doerfert. Towards Compile-
Time-Reducing Compiler Optimization Selection via Ma-
chine Learning. Association for Computing Machinery,
New York, NY, USA, 2021. ISBN 9781450384414. URL
https://doi.org/10.1145/3458744.3473355.

[27] Aditya Kanade, Petros Maniatis, Gogul Balakrishnan,
and Kensen Shi. Learning and evaluating contextual
embedding of source code. In Proceedings of the 37th
International Conference on Machine Learning, ICML
2020, 12-18 July 2020, Proceedings of Machine Learning
Research. PMLR, 2020.

[28] Sameer Kulkarni and John Cavazos. Mitigating the com-
piler optimization phase-ordering problem using machine
learning. SIGPLAN Not., 47(10):147–162, October 2012.
ISSN 0362-1340. doi: 10.1145/2398857.2384628. URL
https://doi.org/10.1145/2398857.2384628.

[29] Guillaume Lample and Alexis Conneau. Cross-lingual
language model pretraining, 2019.

[30] Guillaume Lample, Myle Ott, Alexis Conneau, Ludovic
Denoyer, and Marc’Aurelio Ranzato. Phrase-based &
neural unsupervised machine translation. In Proceedings
of the 2018 Conference on Empirical Methods in Natural
Language Processing (EMNLP), 2018.

[31] Aitor Lewkowycz, Anders Andreassen, David Dohan,
Ethan Dyer, Henryk Michalewski, Vinay Ramasesh, Am-
brose Slone, Cem Anil, Imanol Schlag, Theo Gutman-
Solo, et al. Solving quantitative reasoning problems

https://doi.org/10.1145/3368826.3377928
https://doi.org/10.1145/3368826.3377928
https://doi.org/10.1145/3458744.3473355
https://doi.org/10.1145/2398857.2384628

with language models. arXiv preprint arXiv:2206.14858,
2022.

[32] Yujia Li, David Choi, Junyoung Chung, Nate Kush-
man, Julian Schrittwieser, Rémi Leblond, Tom Eccles,
James Keeling, Felix Gimeno, Agustin Dal Lago, et al.
Competition-level code generation with alphacode. arXiv
preprint arXiv:2203.07814, 2022.

[33] Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis, Luke
Zettlemoyer, and Veselin Stoyanov. Roberta: A robustly
optimized bert pretraining approach, 2019. URL https:
//arxiv.org/abs/1907.11692.

[34] Shuai Lu, Daya Guo, Shuo Ren, Junjie Huang, Alexey
Svyatkovskiy, Ambrosio Blanco, Colin Clement, Dawn
Drain, Daxin Jiang, Duyu Tang, et al. Codexglue: A ma-
chine learning benchmark dataset for code understanding
and generation. arXiv preprint arXiv:2102.04664, 2021.

[35] Rahim Mammadli, Ali Jannesari, and Felix Wolf. Static
neural compiler optimization via deep reinforcement
learning, 2020. URL https://arxiv.org/abs/2008.08951.

[36] Charith Mendis, Alex Renda, Saman Amarasinghe, and
Michael Carbin. Ithemal: Accurate, portable and fast
basic block throughput estimation using deep neural net-
works. In International Conference on machine learning,
pages 4505–4515. PMLR, 2019.

[37] Massinissa Merouani, Mohamed-Hicham Leghettas,
Riyadh Baghdadi, Taha Arbaoui, and Karima Benatchba.
A Deep Learning Based Cost Model for Automatic Code
Optimization in Tiramisu. PhD thesis, 10 2020.

[38] Steven S. Muchnick. Advanced Compiler Design and
Implementation. Morgan Kaufmann Publishers Inc., San
Francisco, CA, USA, 1998. ISBN 1558603204.

[39] Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. Bleu: A method for automatic evalua-
tion of machine translation. In Proceedings of the
40th Annual Meeting on Association for Computa-
tional Linguistics, ACL ’02, page 311–318, USA, 2002.
Association for Computational Linguistics. doi: 10.
3115/1073083.1073135. URL https://doi.org/10.3115/
1073083.1073135.

[40] Eunjung Park, John Cavazos, and Marco A. Alvarez.
Using graph-based program characterization for predic-
tive modeling. In Proceedings of the Tenth Interna-
tional Symposium on Code Generation and Optimiza-
tion, CGO ’12, page 196–206, New York, NY, USA,
2012. Association for Computing Machinery. ISBN
9781450312066. doi: 10.1145/2259016.2259042. URL
https://doi.org/10.1145/2259016.2259042.

[41] Long Phan, Hieu Tran, Daniel Le, Hieu Nguyen, James
Anibal, Alec Peltekian, and Yanfang Ye. Cotext: Multi-
task learning with code-text transformer. arXiv preprint
arXiv:2105.08645, 2021.

[42] Ruchir Puri, David S Kung, Geert Janssen, Wei Zhang,
Giacomo Domeniconi, Vladmir Zolotov, Julian Dolby,
Jie Chen, Mihir Choudhury, Lindsey Decker, et al.
Project codenet: A large-scale ai for code dataset for

learning a diversity of coding tasks. arXiv preprint
arXiv:2105.12655, 2021.

[43] Colin Raffel, Noam Shazeer, Adam Roberts, Katherine
Lee, Sharan Narang, Michael Matena, Yanqi Zhou, Wei
Li, and Peter J Liu. Exploring the limits of transfer
learning with a unified text-to-text transformer. arXiv
preprint arXiv:1910.10683, 2019.

[44] Shuo Ren, Daya Guo, Shuai Lu, Long Zhou, Shujie
Liu, Duyu Tang, Neel Sundaresan, Ming Zhou, Ambro-
sio Blanco, and Shuai Ma. Codebleu: a method for
automatic evaluation of code synthesis. arXiv preprint
arXiv:2009.10297, 2020.

[45] Baptiste Roziere, Marie-Anne Lachaux, Lowik Chanus-
sot, and Guillaume Lample. Unsupervised translation of
programming languages. Advances in Neural Information
Processing Systems, 33, 2020.

[46] Baptiste Roziere, Marie-Anne Lachaux, Marc Szafraniec,
and Guillaume Lample. Dobf: A deobfuscation pre-
training objective for programming languages, 2021.

[47] Baptiste Roziere, Jie M Zhang, Francois Charton, Mark
Harman, Gabriel Synnaeve, and Guillaume Lample.
Leveraging automated unit tests for unsupervised code
translation. arXiv preprint arXiv:2110.06773, 2021.

[48] Rico Sennrich, Barry Haddow, and Alexandra Birch.
Neural machine translation of rare words with subword
units. In Proceedings of the 54th Annual Meeting of
the Association for Computational Linguistics (Volume
1: Long Papers), pages 1715–1725, Berlin, Germany,
August 2016. Association for Computational Linguistics.
doi: 10.18653/v1/P16-1162. URL https://www.aclweb.
org/anthology/P16-1162.

[49] Hui Shi, Yang Zhang, Xinyun Chen, Yuandong Tian,
and Jishen Zhao. Deep symbolic superoptimization
without human knowledge. In International Confer-
ence on Learning Representations, 2020. URL https:
//openreview.net/forum?id=r1egIyBFPS.

[50] Alex Shypula, Pengcheng Yin, Jeremy Lacomis,
Claire Le Goues, Edward Schwartz, and Graham Neubig.
Learning to superoptimize real-world programs. arXiv
preprint arXiv:2109.13498, 2021.

[51] Alex Shypula, Pengcheng Yin, Jeremy Lacomis,
Claire Le Goues, Edward Schwartz, and Graham Neubig.
Learning to superoptimize real-world programs. arXiv
preprint arXiv:2109.13498, 2021.

[52] Douglas Simon, John Cavazos, Christian Wimmer, and
Sameer Kulkarni. Automatic construction of inlining
heuristics using machine learning. In Proceedings of
the 2013 IEEE/ACM International Symposium on Code
Generation and Optimization (CGO), CGO ’13, page
1–12, USA, 2013. IEEE Computer Society. ISBN
9781467355247. doi: 10.1109/CGO.2013.6495004. URL
https://doi.org/10.1109/CGO.2013.6495004.

[53] Michele Tufano, Cody Watson, Gabriele Bavota, Massi-
miliano Di Penta, Martin White, and Denys Poshyvanyk.
An empirical study on learning bug-fixing patches in the
wild via neural machine translation. ACM Transactions

https://arxiv.org/abs/1907.11692
https://arxiv.org/abs/1907.11692
https://arxiv.org/abs/2008.08951
https://doi.org/10.3115/1073083.1073135
https://doi.org/10.3115/1073083.1073135
https://doi.org/10.1145/2259016.2259042
https://www.aclweb.org/anthology/P16-1162
https://www.aclweb.org/anthology/P16-1162
https://openreview.net/forum?id=r1egIyBFPS
https://openreview.net/forum?id=r1egIyBFPS
https://doi.org/10.1109/CGO.2013.6495004

on Software Engineering and Methodology (TOSEM), 28
(4):1–29, 2019.

[54] Michele Tufano, Dawn Drain, Alexey Svyatkovskiy,
Shao Kun Deng, and Neel Sundaresan. Unit test case
generation with transformers and focal context. arXiv
preprint arXiv:2009.05617, 2020.

[55] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz Kaiser,
and Illia Polosukhin. Attention is all you need, 2017.

[56] Yue Wang, Weishi Wang, Shafiq Joty, and Steven CH
Hoi. Codet5: Identifier-aware unified pre-trained
encoder-decoder models for code understanding and gen-
eration. arXiv preprint arXiv:2109.00859, 2021.

[57] Xuejun Yang, Yang Chen, Eric Eide, and John Regehr.
Finding and understanding bugs in c compilers. SIG-
PLAN Not., 46(6):283–294, June 2011. ISSN 0362-1340.
doi: 10.1145/1993316.1993532. URL https://doi.org/10.
1145/1993316.1993532.

[58] Zhilin Yang, Zihang Dai, Yiming Yang, Jaime Car-
bonell, Russ R Salakhutdinov, and Quoc V Le. Xl-
net: Generalized autoregressive pretraining for lan-
guage understanding. In H. Wallach, H. Larochelle,
A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Gar-
nett, editors, Advances in Neural Information Pro-
cessing Systems, volume 32. Curran Associates, Inc.,
2019. URL https://proceedings.neurips.cc/paper/2019/
file/dc6a7e655d7e5840e66733e9ee67cc69-Paper.pdf.

[59] Hang Zhu, Varun Gupta, Satyajeet Singh Ahuja, Yuan-
dong Tian, Ying Zhang, and Xin Jin. Network planning
with deep reinforcement learning. In Proceedings of the
2021 ACM SIGCOMM 2021 Conference, pages 258–271,
2021.

https://doi.org/10.1145/1993316.1993532
https://doi.org/10.1145/1993316.1993532
https://proceedings.neurips.cc/paper/2019/file/dc6a7e655d7e5840e66733e9ee67cc69-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/dc6a7e655d7e5840e66733e9ee67cc69-Paper.pdf

	Introduction
	Related Work
	Unsupervised Language Models
	Unsupervised Language Models on Programs
	Automatic Compiler Optimization

	Model
	Preprocessing
	Training Objectives
	Preprocessing Modifications

	Experiment
	Training Details
	Training Data
	Evaluation
	Results

	Throughput Estimation of x86_64 Assembly Basic Block
	Setup
	Results

	Discussion
	Conclusion

