
Deep Learning for Solving and Estimating Dynamic Macro-Finance

Models

Benjamin Fan1,†, Edward Qiao2,†, Anran Jiao3, Zhouzhou Gu4, Wenhao Li4, and Lu Lu3,*

1University High School, Irvine, CA
2The Bishop’s School, La Jolla, CA

3Department of Chemical and Biomolecular Engineering, University of Pennsylvania,
Philadelphia, PA 19104, USA

4Marshall School of Business, University of Southern California, Los Angeles, CA
†These authors contributed equally to this work.

*Corresponding author. Email: lulu1@seas.upenn.edu

Abstract

Deep learning has been shown to be an effective method for solving partial differential equa-
tions (PDEs) by embedding the PDE residual into the neural network loss function. In this
paper, we design a methodology that utilizes deep learning to simultaneously solve and estimate
canonical continuous-time general equilibrium models in financial economics, including (1) in-
dustrial dynamics of firms and (2) macroeconomic models with financial frictions. Through
these applications, we illustrate the advantages of our method:

Keywords: Dynamic macro-finance models; Industrial dynamics of firms; Macroeconomic models with
financial frictions; Partial differential equations; Deep learning; Parameter estimation

1 Introduction

Dynamic equilibrium models are the cornerstones of the fast-growing macro-finance literature that tries to
understand how financial frictions and asset prices influence economic dynamics, in addition to addressing
important policy questions including the design and impact of financial regulation, industrial policy, and
monetary policy [1, 2, 3, 4, 5, 6, 7, 8, 9]. These models feature high degrees of nonlinearity originating from
either agents’ financial constraints or preferences, which make the linearization methods widely used in the
macro literature infeasible.

The literature has thus far mostly focused on highly tractable models with a small number of state
variables (typically one or two). Furthermore, since solving these models is quite time-consuming, model
parameters are usually picked by calibration, which involves intensive model evaluation. Matching moments
involves solving the model, simulating the model for a long period and calculating the moment value, and
repeating the same procedure for a large number of parameter combinations. Although simulated methods
of moment have been applied to corporate-finance models [10, 11, 12, 13], those more explicit and standard
methods applied to dynamic equilibrium models are restricted by the curse of dimensionality. Additionally,
taking expectations is typical in dynamic problems, but it incurs a significant computational burden. Fi-
nally, for different problems, researchers typically need to tailor their numerical methods, which limits the
accessibility of the literature, and these methods do not automatically take advantage of the rapidly evolving
computational tools.

In this paper, we apply deep-learning methods for solving partial differential equations [14] to economic
settings, simultaneously solving and estimating model parameters and allowing for heterogeneous agents.

1

Our methods have the following advantages: (1) the model is solved globally; (2) the method allows for
higher dimensionality; (3) deep learning is a proven and effective method in solving PDEs; (4) estimation
and solution are in one step; (5) differentiation is handled analytically which increases numerical accuracy;
(6) the underlying package automatically applies the state-of-art machine-learning algorithm, so the method
keeps improving itself; (7) the method is versatile and can be applied to a vast variety of problems.

Machine learning (ML) models have already been used in economics and finance, but mainly for the
purpose of better predicting economic and financial outcomes in markets such as stocks, insurance, corpo-
rate bankruptcy, cryptocurrency, etc. Recent papers, including [15, 16, 17], use deep learning methods to
solve economic models. Our paper contributes to this growing literature by combining equilibrium-model
estimation with solution and building on the rapidly-improving deep-learning-based solution methods for
PDEs in physics and science.

The machine-learning method in [14] is a type of physics-informed neural networks (PINNs). PINNs
work by embedding PDE residual into the loss function of the neural network via automatic differentiation
[18]. As such, approximating the PDE is no more than minimizing the loss function, which can be done with
gradient descent techniques. This method of solving PDEs is mesh-free and simple, and it can be applied to
a wide variety of PDE types. In addition to solving forward problems, PINNs can be easily implemented to
solve inverse PDE problems. These involve predicting the values of parameters given a set of measurements
of the function. PINNs have achieved success with both forward and inverse problems in a diverse range of
fields, including optics [19], systems biology [20], fluid mechanics [21, 22], and biomedicine [23, 24]. However,
there have been fewer applications to problems in economics, which this paper will explore.

In this paper, we will consider two models. First, we solve a model of industrial dynamics with financial
frictions, which considers an industrial equilibrium of a banking sector that takes deposits, makes loans,
and uses labor input to manage deposits and loans. Then, we consider a macroeconomic model with the
financial sector featuring binding constraints, non-linear financial amplifications, and boundary singularity.
We demonstrate the advantage of our methodology in providing a general framework for solving PDEs, as
opposed to traditional methods, which require designing different algorithms for different problems. We
also display the ease of solving inverse problems, in which we assume parameters are unknown and impose
moment conditions. Thus, we are able to simultaneously solve and estimate parameters.

In Section 2, we introduce the physics-informed neural network method for solving both forward and
inverse partial differential equations, along with the Python library DeepXDE. Following this introduction,
in Sections 3 and 4 we apply the PINN method to solve several equations in economics.

2 Machine learning for PDEs

We first describe general deep neural networks, allowing us to present the framework of physics-informed
neural networks (PINNs), which will be leveraged to solve forward and inverse PDEs (i.e., model solution
and model estimation). Afterward, overview the hyperparameters used in the following sections.

2.1 Deep neural networks

Although there are several different types of deep neural networks, throughout this paper, we use the feed-
forward neural network (FNN). We define an L-layer FNN as a function NL(x) : Rdin → Rdout and say that
there are L − 1 hidden layers such that the ℓ-th layer has Nℓ neurons. Clearly, N0 = din and NL = dout.
Furthermore, for each 1 ≤ ℓ ≤ L, we define a weight matrix Wℓ ∈ RNℓ×Nℓ−1 and bias vector bℓ ∈ RNℓ .
Then, letting T ℓ(x) = Wℓx+bℓ be the affine transformation in the ℓ-th layer, for some non-linear activation
function σ, we say

NL(x) = TL ◦ σ ◦ TL−1 ◦ . . . ◦ σ ◦ T 1(x).

A network with L = 4 can be visualized in Fig. 1. There are several possible activation functions σ, and in
this paper, we use both the hyperbolic tangent (tanh) and the swish [25] activation functions. The former
is the most typical activation function in machine learning, while the latter can better deal with problems
with steep gradients, which are features of the problems we will discuss.

2

Figure 1: Visualization of a deep neural network described in Section 2.1. In this diagram, the number of
layers L is 4.

2.2 PINNs for solving forward PDEs

We first discuss the use of PINNs to solve forward PDEs. Consider the following PDE parameterized by λ
with solution u(x, t) for x = (x1, . . . , xd) over the domain Ω ⊂ Rd:

f

(
x;

∂u

∂x1
, . . . ,

∂u

∂xd
;

∂2u

∂x1∂x1
, . . . ,

∂2u

∂x1∂xd
; . . . ;λ

)
= 0, x ∈ Ω (2.1)

with boundary conditions
B(u,x) = 0 on ∂Ω.

To find the solution, we create a neural network û(x;θ) with trainable parameters θ. When training the
network, we use Tf points inside the domain and Tb points on the boundary. Then, the loss function is
defined as

L(θ, T) = wfLf (θ; Tf) + wbLb(θ; Tb) (2.2)

with

Lf (θ; Tf) =
1

|Tf |
∑
x∈Tf

∥∥∥∥f (x; ∂û∂x1 , . . . , ∂û∂xd ; ∂2û

∂x1∂x1
, . . . ,

∂2û

∂x1∂xd
; . . . ;λ

)∥∥∥∥2
2

,

Lb(θ, Tb) =
1

|Tb|
∑
x∈Tb

∥B(û,x)∥22,

for weights wf and wb. Now that we have defined a loss function, where the two losses are the L2 norms of
the residuals, we can train like any normal neural network using gradient-based optimizers such as Adam
[26] and L-BFGS [27]. Training the network produces an approximation of u(x, t).

2.3 PINNs for solving inverse PDEs

Next, we discuss using PINNs to solve inverse PDEs. Inverse problems involve some unknown parameters λ
in Eq. (2.1) to be solved for, but we are given some extra information about some points Ti ∈ Ω besides the
PDE and boundary conditions [28, 14]:

I(u,x) = 0 for x ∈ Ti.

Training the PINN in the inverse method is almost identical to training the forward PINN, except that the
loss function Eq. (2.2) has an extra term:

L(θ,λ; T) = wfLf (θ,λ; Tf) + wbLb(θ,λ; Tb) + wiLi(θ,λ; Ti),

3

where

Li(θ,λ; Ti) =
1

|Ti|
∑
x∈Ti

∥I(û,x)∥22,

the L2 norm of the residual. Optimizing θ and λ together, our solution is θ∗,λ∗ = argminθ,λ L(θ,λ; T).
The above approach incorporates model solution (solving function u) and model estimation (solving

parameter λ) together in a consistent way. Furthermore, we can easily generalize the above to a PDE system
with multiple functions to be solved.

2.4 Implementation

We will apply PINNs to solve several forward and inverse PDE problems in economics, and we implement
these with the Python library DeepXDE [14]. In all examples, we use the Glorot uniform initializer. In
addition, we occasionally enforce boundary conditions automatically through an output transform [29].
Throughout the paper, we use a learning rate decay with the formula

γn =
γ0

1 + αn/S
,

where n is the number of iterations, γn is the learning rate after n iterations, γ0 is the initial learning rate,
α is the decay rate, and S is the decay step. The other hyperparameters are listed in Table 1.

Table 1: Hyperparameters used for each problem.

Section Depth Width Activation Function Optimizer Learning Rate #Iterations

3.2 7 64 tanh Adam 5× 10−4 7.5× 104

3.3.2 7 64 tanh Adam 1× 10−3 1.5× 105

3.3.3 7 64 tanh Adam 1× 10−3 1.5× 105

4.2 7 128 swish Adam 1× 10−3, 1× 10−5 3.0× 105

4.3.1 6 64 swish Adam 1× 10−4 2.0× 105

4.3.2 6 64 swish Adam 5× 10−4 1.5× 105

3 A model of industrial dynamics with financial frictions

In this section, we consider an industrial equilibrium of a banking sector that takes deposits, makes loans,
and uses labor input to manage deposits and loans. Labor productivity determines the number of loans and
deposits that each bank can take. Both loan rate and deposit rates are endogenously determined via the
competitive market equilibrium that features bank entry, exit, and equity payouts. The challenges of this
problem are twofold: first, banks endogenously determine whether or not to enter or exit the market, so the
problem features endogenous entry and exit boundaries; second, we need to track the entire distribution of
banks in order to clear the market.

3.1 Problem setup

Time evolves continuously. All bank assets and debts are modeled as short-term. Banks can borrow via
deposits at a rate rd, and via capital market at a rate r (think of this as the policy rate, e.g., FFR). Banks
can lend at loan rate rl, or the capital market rate r. Banks need to hire workers to serve their deposits and
loans. For banks with productivity z, the number of loans that l units of labor can serve is

f(z, l) = zlα, α ∈ (0, 1)

which features decreasing return to scale. A rationale for this assumption is that as banks get bigger, it is
increasingly difficult to find new depositors and new borrowers on which they can earn a profit. Similarly,
the amount of deposits that d units of labor can serve is

f(z, d) = zdα.

4

Because banks can borrow and lend freely in the capital market at a rate r, they are not constrained by
lending and deposit-taking choices, as long as they are nonnegative.

The stochastic process for zt is given exogenously as

dzt = µ(zt)dt+ σ(zt)dBt,

with two reflecting boundaries z and z̄.
Denote bank equity as e. We impose the financial friction as follows:

f(z, l) ≤ ϕe,

f(z, d) ≤ ϕe.

Banks incur a fixed operating cost cf , and thus the instantaneous profit is

π(et, zt, lt, dt) = rltztl
α
t︸ ︷︷ ︸

lending revenue

− rdt ztd
α
t︸ ︷︷ ︸

deposits interest expense

+ (ztd
α
t + et − ztl

α
t)rt︸ ︷︷ ︸

net capital market lending

−wt · (lt + dt)︸ ︷︷ ︸
labor cost

− cf .︸︷︷︸
fixed cost

To keep the problem simple, we assume full symmetry between the deposit market and the loan market.
Both loan demand and deposit demand functions are in the same form:

rl − r = β(L+ L0)
−ε,

r − rd = β(D +D0)
−ε,

where D and L are the aggregate amount of deposits and loans, respectively. We assume L0 = D0 for
simplicity. Due to the full symmetry, the loan spread is equal to the deposit spread, rl− r = r− rd. In what
follows, we will only use the notations on the loan side.

Since the bank can freely adjust its labor input and scales of operations at each instance, the optimal
decisions are,

l∗ = d∗ = min

{(
(rl − r)zα

w

) 1
1−α

,

(
ϕe

z

)1/α
}
.

Therefore, the optimized profit function is

π∗(e, z) = 2
(
rl − r

)
z (l∗)

α
+ e · r − 2wl∗ − cf .

Denote v(e, z) as the value function for a bank with equity e and productivity z, with v(e) = e the reser-
vation value if a bank exists. We assume that banks pay out equity when they are financially unconstrained,
and the equity payout function is

ζ(e, z) = max {κ (ϕe− f(z, l∗)) , 0} .

In other words, equity payout smoothly increases as the bank gets further away from the financial constraint.
Then we can write the bank equity dynamics as

det =
(
π∗(et, zt)− 1(et,zt)∈Cc · ζ(et, zz)

)︸ ︷︷ ︸
≡µe(et,zt)

dt− 1v(et,zt)<v(et) · et,

where the last term reflects the immediate exit when the bank continuation value is smaller than the liqui-
dation value.

Banks optimize the expected discounted cash flows at the rate r. The HJB equation is:

r · v(e, z) = max

{
π∗(e, z)(1 + v′e) + (1− v′e)ζ(e, z)1(e,z)∈C c + v′zµ(z) +

1

2
v′′zzσ(z)

2, rv(e)

}
,

5

where the set C is the region where the bank is financially constrained, and the unconstrained indicator
1(e,z)∈C c is

1(e,z)∈Cc = 1

((

rl − r
)
zα

w

) 1
1−α

<

(
ϕe

z

)1/α
 .

At the reflecting barriers, we have

∂zv(e, z) = ∂zv(e, z̄) = 0, for any e.

We also have the boundary condition

v(e, z) = v(e) = 0.01 when e = 0.01.

Banks will exit the market with zero equity, because det ≤ 0 for et = 0, and π(0) = −cf < 0, i.e., zero equity
is an absorbing state, and continuing the operations when equity is zero will guarantee negative profit and
thus is worse than exiting the market.

Finally, we describe entry dynamics. Banks first decide whether or not to enter, and then draw their
productivity from the distribution ψ(z). We assume that entry incurs a one-time cost ce, and each entrant
has the same initial equity of e0. The mass of firms entering the market is determined by

m = m̄ exp

(
βM

(∫∫
e,z

v(e, z)ψ(e, z)dzde− ce

))
.

The above is a softer version of the free-entry condition. When βM → ∞, entry incentive with respect to
entry benefit is going to infinity, so the present value of entry must be zero and we arrive at the free-entry
condition ∫∫

e,z

v(e, z)ψ(e, z)dzde− ce = 0.

Solve for invariant distribution and estimation: Denote the stationary bank distribution as g(e, z).
This distribution does not include banks that exit the market, so we have

g(e, z) = 1v(e,z)>v(e)g(e, z),

where the assumption is that when banks are indifferent between staying or exiting the market, they choose
to exit the market.

The Kolmogorov Forward Equation (KFE) for the stationary distribution in banking industrial dynamic
model is

0 = − ∂

∂z
(µz(z)g(e, z))−

∂

∂e
(µe(e, z)g(e, z)) +

1

2

∂2

∂z2
(
σ(z)2g(e, z)

)
+mψ(e, z), v(e, z) > v(e). (1)

With the stationary distribution, we can get the aggregate loan

L =

∫∫
g(e, z)f(z, l∗(e, z))dzde.

Furthermore, the equilibrium loan spread is determined by the household loan demand function,

rl − r = β(L+D0)
−ε (2)

for D0 =
∫∫
e,z
d(e, z)g(e, z)dzde (here g is not normalized), where d = z(l∗)α. We assume that ψ(e, z) is a

truncated normal distribution (Φ(·) is the c.d.f. of normal distribution)

ψ(e, z) =
1

ē× (Φ(z−zmσψ
)− Φ(z−zmσψ

))

1√
2πδ2ψ

exp

(
− (z − zm)2

2δ2ψ

)
× 1e<ē × 1z∈[z,z]

6

Boundary conditions: (1) Banks exit at v(e) = e (absorbing boundary), which means g(e, z) = 0 when
v(e, z) = e. (2) Reflecting boundary for stochastic productivity z: −µz(z)g(e, z) + 1

2
∂
∂z (σ(z)

2g(e, z)) = 0,
when z = z, z.

Specification: Model parameter specifications are shown in Table 2, and additional problem setup
details can be found in Appendix A.

Table 2: Parameter specification of model in Section 3.1.

Description Value

Bank equity payout rate κ = 0.005
Share of labor α = 0.3
Leverage constraint parameter ϕ = 10
Benchmark interest rate r = 0.03
Fixed operating cost cf = 0.03
Entry cost ce = 0.1
Boundary and mean of productivity z = 0.2, z = 10, zm = 5
Lower and upper bound of state space emin = 0.01, emax = 1.2
Drift and volatility of z µ(z) = −0.005(z − zm), σ(z) = 0.08
Deposit/Loan supply function’s constant D0 = L0 = 1.0

Entrance distribution parameters σψ = z−z
4 , ē = 0.15, m̄ = 0.1.

Entrance elasticity βM = 1× 103

3.2 Solving the model

Our goal is to solve for v(e, z) and g(e, z). To do so, we employ a technique simplifying the model by
eliminating the role of m from training.

3.2.1 Elimination of m

The only equation in which m directly shows up is the KFE (Eq. (1)), in which g(e, z) scales linearly in m.
Linear scaling of g(e, z) does not affect the values of the moment targets because g(e, z) is normalized in
those calculations. However, scaling g(e, z) affects Eq. (2), in which

L =

∫∫
e,z

g(e, z)f(z, l∗(e, z))dzde

is scaled by the same factor. Our goal is to exactly satisfy Eq. (2) by scaling g(e, z). Afterwards, in order
to still satisfy the KFE, we scale m by the same factor. To implement this idea with a PINN, we fix m = 1
throughout training. After training, let Ng(e, z) be the PINN-predicted value of g(e, z). We calculate

NL =

∫∫
e,z

Ng(e, z)f(z, l
∗(e, z))dzde.

To automatically satisfy Eq. (2), we set m to be

rl − r = β(NLm−D0)
−ε

=⇒ m =

β
rl−r −D0

L
,

in which we use ε = 1. After solving for m, our final prediction of g(e, z) is g(e, z) = mNg(e, z).

7

3.2.2 Other technical details

We solve the model with the unknown endogenous boundary rl. When training the PDE, we enforce the
Dirichlet boundary condition on v via a soft boundary condition and the Dirichlet boundary condition on g
through a hard boundary condition. Furthermore, we enforce the Neumann boundary condition on g via a
soft boundary condition. We use loss weights of 106 for the HJB residual, 5× 104 for the KFE residual, 103

for the free-entry condition, 102 for the Dirichlet boundary condition on v, 103 for the Neumann boundary
condition on v, and 105 for the Neumann boundary condition on g.

Additionally, we train with 216 training points sampled inside the domain, 210 training points sampled
on the boundary, and 216 points sampled inside the domain for testing. When estimating rl, we scale it up
100 times while training and scale it back down afterwards. Lastly, we use a learning rate scheduler, with
an initial learning rate of 5× 10−4, decay rate 1.0, and decay step 6000.

The training results are displayed in Fig. 2 while the predicted value of rl andm after training is displayed
in Table 3. The training loss decreases steadily (Fig. 2A), and the endogenous variable rl converges to its
true value. The L2 relative errors for v and gc

1 are 0.54% and 4.32%, respectively.

Figure 2: Example in Section 3.2: PINN results for forward HJB equation. (A) The trajectory of train
loss throughout training. (B) The convergence of rl throughout training. (C) 2D heatmap for predicted solution for
v using PINN. (D) 2D heatmap for reference solution for v using Matlab. (E) 2D heatmap for predicted solution for
g using PINN. (F) 2D heatmap for reference solution for g using Matlab.

Table 3: Example in Section 3.2: Predicted values of endogenous variables rl and m after training.

Variable True Value Predicted Value Error

rl 0.043337 0.043343 0.01%
m 0.2194 0.2242 2.12%

3.3 Simultaneously solving and estimating the model

In practice, we may want to estimate some unknown parameters of the model, which requires additional
information in the form of moment targets. First, we describe techniques which will make estimation easier.

1gc is defined as the c.d.f of g, i.e., gc(e, z) =
∫ z

z

∫ e

0
g(e′, z′)de′dz′.

8

3.3.1 Elimination of free-entry condition in training

In Subsections 3.3.2 and 3.3.3, we predict the value of ce, along with several other parameters. Note that ce
only appears in the free-entry condition. To take advantage of this, we train the PINN without the free-entry
condition, and after training, we predict ce by calculating

ce =

∫∫
e,z

v(e, z)ψ(e, z)dzde.

3.3.2 Estimation of two parameters

In this example, we estimate the two parameters α and ce. Define the density g′(e, z) as max{g(e, z), 0} dis-
counted by normalization factor2: 1∫∫

e,z
max{g(e,z),0}dzde , representing the normalized density. In estimation,

we adjust the unknown parameters to match the average productivity ztarget and average labor l∗target:

ztarget =

∫∫
e,z

zg′(e, z)dzde,

l∗target =

∫∫
e,z

l∗g′(e, z)dzde.

When training the PDE, we enforce the Dirichlet boundary condition on v via a soft boundary condition
and the Dirichlet boundary condition on g through an output transform. Furthermore, we enforce the
Neumann boundary condition on g via a soft boundary condition. We use loss weights of 106 for the HJB
residual, 5×104 for the KFE residual, 101 for ztarget, 10

6 for l∗target, 10
2 for the Dirichlet boundary condition

on v, 103 for the Neumann boundary condition on v, and 105 for the Neumann boundary condition on g.
Furthermore, we train with 214 training points sampled inside the domain, 29 training points sampled on the
boundary, and 214 points sampled inside the domain for testing. When estimating α, we scale it up 10 times
while training and scale it back down afterwards. For ce, we employ the technique described in Section 3.3.1.
Lastly, we use a learning rate scheduler, with an initial learning rate of 10−3, decay rate 1.0, and decay step
2500.

The training results are displayed in Fig. 3. In addition, the predictions and errors for ce and α are
displayed in Table 4, along with the predictions and errors for ztarget and l

∗
target. The training loss decreases

steadily (Fig. 3A), and the L2 relative error of v ends at 3.28%. The trajectory of α is displayed in Fig. 3B.
As shown in Figs. 3C and D, the PINN predicts the solution for v accurately. Furthermore, Figs. 3E and
F demonstrate that the PINN predicts the solution for g accurately. The errors of both the predicted
parameters and the moments of the predicted solution are under 5% (Table 4). Finally, the L2 relative
errors of v and gc are 3.28% and 4.24%, respectively.

2As KFE operator L̂∗ is the Markov process’s generator, the distribution is always positive when evolving over
time. However, in numerical exercise, g(e, z) at some point can be negative.

9

Figure 3: Example in Section 3.3.2: PINN results for inverse HJB equation with estimation of two
parameters. (A) The trajectory of train loss throughout training. (B) The convergence of α throughout training.
(C) 2D heatmap for predicted solution for v using PINN. (D) 2D heatmap for reference solution for v using Matlab.
(E) 2D heatmap for predicted solution for g using PINN. (F) 2D heatmap for reference solution for g using Matlab.

Table 4: Example in Section 3.3.2: PINN results for inverse HJB equation with estimation of two
parameters. Both unknown parameters ce and α and moment targets ztarget and l∗target are shown.

True Value Predicted Value Error

ce 0.1 0.0959 4.10%
α 0.3 0.299 0.31%

ztarget 7.524 7.611 1.15%
l∗target 0.00647 0.00637 1.46%

3.3.3 Estimation of three parameters

Now, we estimate three parameters: α, ce, and cf . We will match four moment conditions: average equity
etarget, average productivity ztarget, average leverage ℓtarget, and average labor l∗target. They are defined as

etarget =

∫∫
e,z

eg′(e, z)dzde,

ztarget =

∫∫
e,z

zg′(e, z)dzde,

ℓtarget =

∫∫
e,z

f(z, l∗(e, z))

e
g′(e, z)dzde,

l∗target =

∫∫
e,z

l∗g′(e, z)dzde.

When training the PDE, we enforce the Dirichlet boundary condition on v via a soft boundary condition
and the Dirichlet boundary condition on g through an output transform. Furthermore, we enforce the
Neumann boundary condition on g via a soft boundary condition. We use loss weights of 106 for the HJB
residual, 5×104 for the KFE residual, 102 for etarget, 10

1 for ztarget, 10
0 for ℓtarget, 10

6 for l∗target, 10
2 for the

10

Dirichlet boundary condition on v, 103 for the Neumann boundary condition on v, and 105 for the Neumann
boundary condition on g. Furthermore, we train with 216 training points sampled inside the domain, 210

training points sampled on the boundary, and 216 points sampled inside the domain for testing. When
estimating α and cf , we scale them up 10 and 100 times, respectively. After training, we scale them back
down. For ce, we employ the technique described in Section 3.3.1. Lastly, we use a learning rate scheduler,
with an initial learning rate of 1× 10−3, decay rate 1.0, and decay step 2500.

The training results are displayed in Fig. 4. In addition, the predictions and errors for ce, α, and cf are
displayed in Table 5, along with the predictions and errors for etarget, ztarget, ℓtarget, and l

∗
target. The training

loss decreases steadily (Fig. 4A). We see that both α and cf converge to a values close to the true values
(Figs. 4B and C). As shown in Figs. 3C and D, the PINN predicts the solution for v accurately. Furthermore,
Figs. 3E and F demonstrate that the PINN predicts the solution for g accurately. The errors of both the
predicted parameters and the moments of the predicted solution are under 10% (Table 5). Finally, the L2

relative errors of v and gc are 8.53% and 13.21%, respectively.

Figure 4: Example in Section 3.3.3: PINN results for inverse HJB equation with estimation of three
parameters. (A) The trajectory of train loss throughout training. (B) The convergence of α throughout training.
(C) The convergence of cf throughout training. (D) 2D heatmap for predicted solution for v using PINN. (E) 2D
heatmap for reference solution for v using Matlab. (F) 2D heatmap for predicted solution for g using PINN. (G) 2D
heatmap for reference solution for g using Matlab.

Table 5: Example in Section 3.3.3: PINN results for inverse HJB equation with estimation of three
parameters. Unknown parameters ce, α, and cf as well as moment targets etarget, ztarget, ℓtarget and l∗target are
shown.

True Value Predicted Value Error

ce 0.1 0.0934 6.60%
α 0.3 0.314 4.59%
cf 0.03 0.0299 0.49%

etarget 0.418 0.385 7.96%
ztarget 7.524 7.786 3.47%
ℓtarget 4.697 4.955 5.50%
l∗target 0.00647 0.00677 4.70%

11

4 A macroeconomic model with the financial sector

The next problem we discuss describes the model in (author?) [2]. The problem features occasional binding
constraints, non-linear financial amplifications, and singularity at the boundary. We describe the model only
briefly—see [2] for the detailed model setup.

4.1 Problem setup

There are two types of agents, a continuum mass of bankers and a continuum mass of households, both with
risk-neutral utility. There are two types of assets: productive capital and risk-free asset. Per unit of capital,
banker productivity is a while household productivity is a < a. Both bankers and households can borrow
and lend at the risk-free rate. Banker discount rate δ is smaller than the household discount rate, which
motivates them to borrow from households.

To solve for the equilibrium, we need to solve the value of capital q(ω) and the endogenous marginal
value of wealth θ(ω) for the banker, where ω is the fraction of the banker wealth among total wealth and is
the state variable that determines asset prices and allocations. There is an endogenous boundary η∗ where
banks pay dividends. The function q(η) is increasing and θ(η) is decreasing over [0, η∗], with boundary
conditions

q(0) = q, θ(η∗) = 1, q′(η∗) = 0, θ′(η∗) = 0, and lim
η→0

θ(η) = ∞,

where the boundary value q is determined by

q = max
q

a− ι(x)

r − (Φ(x)− δ)
. (3)

Note that the maximum possible value of q(η) is determined by the following equation:

a− ι(q̄)

q̄
+Φ(q̄)− δ − r = 0,

where ι(·) and Φ(·) are given by

Φ(x) =
x− 1

κ
and ι(x) = Φ(x) +

1

2
κΦ(x)2.

Functions q(η) and θ(η) are second-order ODEs. Thus, we need two boundary conditions for q(η) and two
boundary conditions for θ(η). The above are five conditions, but we also have an unknown boundary η∗.

To solve the model, we first find ψ ∈ (η, η + q(η)/q′(η)), such that

a− a

q(η)
+ δ − δ + (σ + σq(η))σθ(η) = 0, (4)

where

ση(η)η =
(ψ − η)σ

1− (ψ − η)q′(η)/q(η)
, σq(η) =

q′(η)

q(η)
ση(η)η, and σθ(η) =

θ′(η)

θ(η)
ση(η)η.

We can easily prove that the left side of equation (4) is monotonic in ψ and has a unique solution. If the
above solution indicates ψ > 1, then we set ψ = 1 and recalculate ση(η), σq(η), and σθ(η).

Next, we compute the second-order derivatives, via

q′′(η) =
2 (µq(η)q(η)− q′(η)µη(η)η)

ση(η)2η2
, (5)

θ′′(η) =
2
(
µθ(η)θ(η)− θ′(η)µη(η)η

)
ση(η)2η2

, (6)

where

µη(η) = − (ψ − η)(σ + σq(η))(σ + σq(η) + σθ(η))

η
+
a− ι(q(η))

q(η)
+ (1− ψ)(δ − δ),

12

µq(η) = r − a− ι(q(η))

q(η)
− Φ(q(η)) + δ − σσq(η)− σθ(η) · (σ + σq(η)), and µθ = ρ− r.

Specification: Model parameter specifications are shown in Table 6 and additional problem setup details
and derivations can be found in Appendix B.

Table 6: Parameter specification of model in Section 4.1

Description Value

Capital productivity (experts) a = 0.11
Capital productivity (households) a = 0.05
Discount rate (experts) ρ = 0.06
Discount rate (households) r = 0.06
Unit volatility of capital σ = 0.025
Capital depreciation rate (experts) δ = 0.03
Capital depreciation rate (households) δ = 0.08
Loss factor in investment κ = 10

4.2 Solving the model

Our goal is to solve for the functions q, θ, and ψ. To do this, we use an assortment of techniques.

4.2.1 Change of variable to deal with singularity

First, when training the model, we perform a change of variable for θ. We define the function θ̂(η) = 1
θ(η) .

The motivation behind this is to deal with the singularity for θ at η = 0. With this change of variable, we
rewrite all the boundary conditions:

lim
η→0

θ(η) = ∞ −→ θ̂(0) = 0,

θ(η∗) = 1 −→ θ̂(η∗) = 1,

θ′(η∗) = 0 −→ θ̂′(η∗) = 0.

We now rewrite the ODEs in the problem setup with the new variable θ̂. We compute

σθ(η)θ̂(η) = −θ̂(η)′ση(η)η.

This allows us to rewrite (4) as(
a− a

q
+ δ − δ

)
θ̂(η) + (σ + σq)σ

θ(η)θ̂(η) = 0.

We also rewrite these definitions as

µη(η)ηθ̂(η) = −(ψ − η)(σ + σq)(θ̂(η)(σ + σq) + σθ(η)θ̂(η)) + ηθ̂(η)

(
a− ι

q
+ (1− ψ)(δ − δ)

)
,

µq(η)θ̂(η) = θ̂(η)

(
r − a− ι(q(η))

q
− Φ(q(η)) + δ − σσq

)
− σθ(η)θ̂(η) · (σ + σq(η)).

Lastly, (5) and (6) are now rewritten as

q′′(η)ση(η)2η2θ̂(η) = 2(µq(η)θ̂(η)q(η)− q′(η)µη(η)ηθ̂(η)),

ση(η)2η2 · (2θ̂′(η)2 − θ̂(η)θ̂′′(η)) = 2(µθ θ̂(η)2 + θ̂′(η)µη(η)θ̂(η)).

13

4.2.2 Explicitly solving for ψ

While training, we simultaneously solve for q and θ̂. We train ψ as an auxiliary function that updates every
1000 iterations, given that q and θ̂ are increasing. Our initial guess for ψ is ψ(η) = 1. This guess for ψ

is flexible since it is updated once q and θ̂ are increasing, which generally happens quickly. To compute ψ
when training, we solve for the function explicitly. We have

σq(η) =
q′(η)

q(η)
ση(η)η

=
q′(η)(ψ − η)σ

q(η)− (ψ − η)q′(η)
.

Then,

σq(η) + σ =
q′(η)(ψ − η)σ

q(η)− (ψ − η)q′(η)
+ σ

=
q′(η)(ψ − η)σ + σq(η)− σ(ψ − η)q′(η)

q(η)− (ψ − η)q′(η)

=
σq(η)

q(η)− (ψ − η)q′(η)
.

Furthermore,

(σ + σq(η))σθ(η) =

(
σq(η)

q(η)− (ψ − η)q′(η)

)
θ′(η)(ψ − η)σ

θ(η)(1− (ψ − η)q′(η)/q(η))

=

(
σq(η)

q(η)− (ψ − η)q′(η)

)
q(η)θ′(η)(ψ − η)σ

θ(η)(q(η)− (ψ − η)q′(η))

=
θ′(η)

θ(η)

(
(σq(η))2(ψ − η)

(q(η)− (ψ − η)q′(η))2

)
.

The condition on ψ becomes

a− a

q(η)
+ δ − δ + (σ + σq(η))σθ(η) = 0

=⇒ a− a

q(η)
+ δ − δ +

θ′(η)

θ(η)

(
(σq(η))2(ψ − η)

(q(η)− (ψ − η)q′(η))2

)
= 0

=⇒ θ(η)(q(η)− (ψ − η)q′(η))2(a− a+ q(η)(δ − δ)) + σ2q(η)3(ψ − η)θ′(η) = 0,

from which we may solve for ψ using the quadratic formula, after performing the change of variable θ̂(η) =
1

θ(η) .

4.2.3 Other technical details

We explicitly calculate q. Solving Eq. (3), we find that q = 0.4862.
We employ several additional techniques when constructing the model to improve its results. To satisfy

the boundary conditions, we enforce hard boundary conditions in addition to soft boundary conditions [29].
We construct the solution

q(η) = (η − η∗)2Nq(η) + C,

θ̂(η) = η(η − η∗)2Nθ̂(η)− (η/η∗)2 + 2η/η∗,

where C is a trainable variable that represents q(η∗) while Nq(η) and Nθ̂(η) are the first and second compo-
nents of the network output, respectively. This automatically satisfies the boundary conditions q′(η∗) = 0,

θ̂(0) = 0, θ̂(η∗) = 1, and θ̂′(η∗) = 0. For the final boundary condition q(0) = q, we use a soft boundary
condition.

14

As discussed, we train two variables C = q(η∗) and η∗, and we set initial guesses of C = 1.0 and η∗ = 0.4.
While the value of C is flexible, the initial guess for η∗ comes from experimentation.

Lastly, initial testing suggests that q(η) features a steep gradient for small η. As a result, we employ
two techniques to capture this gradient better. We first add a feature layer via an input transform [20]. The
feature layer used enables us to stretch the input domain, making it easier to capture the sharp increase
for small η. Another technique used involves adding an additional ten anchor training points in the interval
[0, 10−4].

Next, we want to ensure that q is increasing and θ is decreasing. By the change of variable, θ decreasing
is equivalent to θ̂ increasing, so to enforce q increasing and θ̂ increasing, we add loss terms

Lq =
∫ η∗

0

(min(q′(η), 0))2dη and Lθ̂ =
∫ η∗

0

(min(θ̂′(η), 0))2dη,

representing loss from the mean squared value of min(q′(η), 0) and min(θ̂′(η), 0). This pushes the functions
to have positive derivatives, which would mean they are increasing. We use loss weights of 106 for the ODE
system, q increasing, and θ̂ increasing losses, and a loss weight of 1 for the boundary condition q(0) = q.

Furthermore, we train with 103 training points sampled inside the domain, 2 points sampled on the boundary,
and 103 points sampled inside the domain for testing.

While training, we use two different learning rate schedulers. The first learning rate scheduler has an
initial learning rate of 1 × 10−3 with a decay rate of 0.5 and decay step of 1500. We use this scheduler for
the first 1× 105 iterations. Then, we switch to a learning rate scheduler with initial learning rate 1× 10−5,
decay rate 0.5, and decay step 1500 for another 2× 105 iterations.

The training results are displayed in Fig. 5 while the predicted value of η∗ is displayed in Table 7. When
calculating the L2 error for these results, we only consider the portion of the graph where η < η∗. This is
an accurate measurement since the final result features a prediction for η∗ that is very close to the reference
value. The prediction for q (Fig. 5A) has an L2 relative error of 1.14%. The prediction for θ (Fig. 5B) has
an L2 relative error of 0.258%. Finally, the prediction for ψ (Fig. 5C) has an L2 relative error of 0.273%.

15

Figure 5: Example in Section 4.1: PINN results for forward B&S model. (A) The reference value and
prediction for q after training. (B) The reference value and prediction for θ after training. (C) The reference value
and prediction for ψ after training. (D) The trajectory of train loss throughout training. (E) The convergence of η∗

throughout training.

Table 7: Example in Section 4.1: Predicted value of η∗ after training.

Variable Ref Prediction

η∗ 0.3648 0.3644

4.3 Simultaneously solving and estimating the model

In this section, we simultaneously solve the model and also estimate one or two parameters of the model.

4.3.1 Estimation of one parameter

First, we estimate only one parameter. Specifically, we assume a is unknown and impose a moment condition.
There are two ways to match the moment condition.

The first method is simulation. We simply simulate ηt according to its law of motion,

dηt
ηt

= µη(ηt)dt+ ση(ηt)dBt,

and then take the average moment value to match the target.
A more efficient method is through the Kolmogorov Forward Equation (KFE). We can solve for the KFE

that describes the ODE of the stationary density function of ηt, f(η). The equation is

− ∂

∂η
(µη(η)ηf(η)) +

∂2

∂η2

(
1

2
ση(η)2η2f(η)

)
≡ ∂

∂η
J(η) = 0,

16

with boundary condition −µηηf(η) + 1
2
∂
∂η

(
ση(η)2f(η)

)
|η=η∗ = 0. For simplicity, we define the function Q

as

Q(η) =
2µη(η)η − ∂

∂η (σ
η(η)2η2)

ση(η)2η2
.

Then, according to Appendix C, the density function can be written as

f(η) = A exp

(
−
∫ η∗

η

Q(η′)dη′

)
,

where A is the normalization factor

1

A
=

∫ η∗

0

exp

(
−
∫ η∗

η′
Q(η)dη

)
dη′.

We match the moment target

atarget =

∫ η∗

0

[ψ(η)a+ (1− ψ(η))a]f(η)dη

where we define atarget = 0.1095. In this paper, we use method 2, employing the KFE.
For the inverse problem, we maintain the same techniques used in the forward problem. While training,

we scale a up by 10, and we scale it back down for the results. Furthermore, we restrict η∗ to (0.3, 0.5).
Also, we use loss weights: 5× 104 for the ODE on q′′, 1× 104 for the ODE on θ′′, 1× 105 for q increasing,
103 for θ decreasing, 104 for the atarget boundary condition, and 100 for the q(0) = q boundary condition.

We train with 213 − 2 points in the domain, 2 points on the boundary, and 213 points for testing. Lastly,
with the learning rate scheduler, we have 1 × 10−4 as the initial learning rate, 1.0 as the decay rate, and
2000 as the decay step.

The detailed training results for one trial is displayed in Fig. 6. The figure shows that the PINN
achieves accurate estimations of q, θ, ψ, and a. Furthermore, running several trials, we find that the solution
consistently converges to the global minimum no matter the initial guess of a. To demonstrate this consistent
convergence, we run ten trials in which we randomly select a from the range (0.06, 0.16). The parameter a
is accurately estimated, and the final value is a = 0.1099± 0.0007 (Table 8) with L2 errors of less than 1%
for q, θ, and ψ.

17

Figure 6: Example in Section 4.3.1: PINN results for inverse B&S model with one unknown parameter.
(A) The reference value and prediction for q. (B) The reference value and prediction for θ. (C) The reference value
and prediction for ψ. (D) The trajectory of train loss throughout training. (E) The convergence of η∗ throughout
training. (F) The convergence of a throughout training.

Table 8: Example in Section 4.3.1: Results from several trials of inverse B&S model with one unknown
parameter. The choices of a are random in the range (0.06, 0.16), and the table depicts the final results for each
trial.

Trial a atarget L2 relative errors
Initial Final Value Error q θ ψ

1 0.1500 0.1098 0.1093 0.16% 0.17% 0.53% 0.06%
2 0.0921 0.1098 0.1093 0.22% 0.22% 0.69% 0.08%
3 0.1472 0.1100 0.1095 0.01% 0.01% 0.02% 0.00%
4 0.1230 0.1099 0.1094 0.11% 0.12% 0.36% 0.04%
5 0.1236 0.1098 0.1094 0.14% 0.14% 0.45% 0.05%
6 0.1005 0.1098 0.1093 0.22% 0.23% 0.71% 0.09%
7 0.1509 0.1099 0.1094 0.08% 0.08% 0.26% 0.03%
8 0.1415 0.1099 0.1094 0.07% 0.07% 0.21% 0.03%
9 0.0889 0.1099 0.1094 0.09% 0.09% 0.29% 0.03%
10 0.0645 0.1098 0.1093 0.15% 0.16% 0.49% 0.06%

18

4.3.2 Estimation of two parameters

Now, we estimate parameters a and σ. We define our moment conditions:

atarget =

∫ η∗

0

[ψ(η)a+ (1− ψ(η))a]f(η)dη and Voltarget =

√∫ η∗
0

(q − q̄)2f(η)dη

q̄
,

where q̄ is defined as
∫ η∗
0
q(η)f(η)dη, atarget = 0.1095, and Voltarget = 0.04126. Again, we employ the KFE.

To implement the integrals in the moment conditions, we use numerical integration. When creating the
model, we use the same change of variable for θ. However, instead of explicitly solving for ψ, noting that the
left hand side of equation (4) is monotonic, we utilize a basic bisection algorithm provided by the Python
library scipy to solve for ψ. While training, we scale a up by 10 and σ up by 100, and we scale them back
down for the results. Once again, we restrict η∗ to (0.3, 0.5). We also use loss weights: 106 for the ODE on
q′′, 2×105 for the ODE on θ′′, 106 for q increasing, 104 for θ decreasing, 105 for the atarget moment condition,
5 × 103 for the Voltarget moment condition, and 101 for the q(0) = q boundary condition. Furthermore, we

train with 213 − 2 training points sampled inside the domain, 2 points sampled on the boundary, and 213

points sampled inside the domain for testing. Lastly, with the learning rate scheduler, we have 5× 10−4 as
the initial learning rate, 1.0 as the decay rate, and 1500 as the decay step. We train this model for 1.5× 105

iterations.
With our model, we find that the convergence and final values are sensitive to the initial guess of σ but

not to the initial guess of a. Furthermore, we find that the prediction of a is consistently accurate, regardless
of the initial guess. Although the predictions of σ are less accurate, there are initial guesses that result in
accurate predictions of σ. An example is demonstrated in Fig. 7. In this example, the train loss decreases
steadily (Fig. 7D). Furthermore, with the final predicted values for a and σ, the predictions of atarget and
Voltarget are very close to the true values (Figs. 7E and F). Similarly, the graphs of q, θ, and ψ are very close
to their true values (Figs. 7A, B, and C).

To illustrate this convergence, the trajectories of five trials that converge to the global minimum are
displayed in Fig. 8A. Furthermore, the trajectories of five trials that converge to a local minimum instead
are displayed in Fig. 8B.

In practice, trials that converge to a local minimum can be identified because atarget and Voltarget are
farther from the true values (Table 9). We consider the results with three runs of ten random trials each, in
which we select a and σ at random in the ranges (0.6, 1.6) and (0.01, 0.04). We generally receive satisfactory
results (Fig. 9A). For the next runs, we run five random trials and then apply Bayesian optimization to
determine the next five initial guesses. Bayesian optimization is a method that uses Bayes’ theorem to
maximize a continuous function without information about derivatives [30]. Through this, we find that
Bayesian optimization consistently produces better results than random trials (Fig. 9B).

19

Figure 7: Example in Section 4.3.2: PINN results for inverse B&S model with two unknown parameters.
(A) The reference value and prediction for q. (B) The reference value and prediction for θ. (C) The reference value
and prediction for ψ. (D) The trajectory of train loss throughout training. (E) The convergence of a throughout
training. (F) The convergence of σ throughout training. (G) The trajectory of atarget throughout training. (H) The
trajectory of Voltarget throughout training.

Figure 8: Example in Section 4.3.2: Trajectories in the parameter space (σ, a). The black star represents
the true value (σ, a), the shaded-in shape represents the initial guess, the empty shape represents the final estimation,
and the path connecting them is the trajectory. (A) Five trajectories that converged to the global minimum. (B)
Five trajectories that converged to a local minimum.

20

Table 9: Example in Section 4.3.2: PINN parameter estimation from different initial values of a and
σ. Trials 1–5 converge to the global minimum. Trials 6–10 converge to a local minimum.

Trial Initial values Final values atarget Voltarget L2 relative errors
a σ a σ Value Error Value Error q θ ψ

1 0.1489 0.0183 0.1100 0.0249 0.1095 0.00% 0.0412 0.19% 0.06% 0.10% 0.05%
2 0.1286 0.0217 0.1100 0.0257 0.1095 0.01% 0.0416 0.88% 0.33% 0.56% 0.22%
3 0.0809 0.0203 0.1100 0.0247 0.1095 0.01% 0.0411 0.37% 0.15% 0.26% 0.10%
4 0.0987 0.0192 0.1100 0.0239 0.1095 0.01% 0.0407 1.43% 0.55% 0.87% 0.37%
5 0.0653 0.0216 0.1099 0.0262 0.1094 0.07% 0.0419 1.47% 0.65% 1.20% 0.38%

6 0.0612 0.0292 0.1100 0.0307 0.1096 0.04% 0.0392 5.00% 1.96% 2.79% 1.31%
7 0.1446 0.0113 0.1100 0.0212 0.1100 0.42% 0.0391 5.23% 2.71% 4.45% 1.41%
8 0.0655 0.0104 0.1104 0.0205 0.1059 3.32% 0.0408 1.23% 4.71% 12.35% 0.35%
9 0.1478 0.0248 0.1064 0.0284 0.1095 0.03% 0.0429 4.05% 1.50% 2.71% 1.03%
10 0.1033 0.0267 0.1100 0.0282 0.1094 0.06% 0.0442 7.09% 2.60% 4.97% 1.79%

Figure 9: Example in Section 4.3.2: PINN results from varying initial guesses using Bayesian optimiza-
tion. The results from three runs of ten initial guesses, plotting the minimum relative error of atarget and Voltarget
so far. (A) The initial guesses of a and σ are chosen randomly from the intervals (0.06, 0.16) and (0.01, 0.04), respec-
tively. (B) The first five initial guesses of a and σ are chosen once again at random from the intervals (0.06, 0.16)
and (0.01, 0.04), respectively. The five guesses afterwards are chosen using Bayesian optimization.

5 Conclusion

In this paper, we proposed a new method for solving economics models with deep learning through physics-
informed neural networks (PINNs). We demonstrated the advantages of this method: generality, simulta-
neous solution and estimation, leveraging the state-of-art machine-learning techniques, and handling large

21

state space. Our proposed method provides a general framework for solving PDEs, whereas in traditional
methods, we usually need to design different algorithms for different problems. Furthermore, the inverse
problem can be solved very easily and is no more than adding an extra loss term for additional information.
We showed the effectiveness of the PINN method in solving two models, each featuring its own challenges.

There are a couple of directions for future research. First, currently we only allow for heterogeneous
agent with stationary population distribution. Our method can be generalized to deal with mean-field games
where the distribution is a state variable that changes over time. Second, we currently only solve exactly
identified estimation problems where the number of moment conditions is equal to the number of parameters
to be estimated. A more generalized method should be able to handle overidentified systems and provide
error bounds on the estimated coefficients, similar to the classical GMM estimations. Finally, our method
can be applied to a broader variety of economics and finance problems.

Acknowledgements

Benjamin Fan, Edward Qiao, and Lu Lu thank the MIT PRIMES program, under which this research was
conducted.

References

[1] Zhiguo He and Arvind Krishnamurthy. Intermediary asset pricing. The American Economic Review,
103(2):732–770, 2013.

[2] Markus K. Brunnermeier and Yuliy Sannikov. A macroeconomic model with a financial sector. American
Economic Review, 104(2):379–421, 2014.

[3] Itamar Drechsler, Alexi Savov, and Philipp Schnabl. A model of monetary policy and risk premia.
Journal of Finance, 73(1):317–373, 2018.

[4] Javier Bianchi and Saki Bigio. Banks, liquidity management and monetary policy. NBER Working
Paper No. 20490, 2018.

[5] Mark Gertler and Nobuhiro Kiyotaki. Banking, liquidity, and bank runs in an infinite horizon economy.
The American Economic Review, 105(7):2011–2043, 2015.

[6] Ji Huang. Banking and shadow banking. Journal of Economic Theory, 178:124–152, 2018.

[7] Sebastian Di Tella. Optimal regulation of financial intermediaries. American Economic Review,
109(1):271–313, 2019.

[8] Arvind Krishnamurthy and Wenhao Li. Dissecting mechanisms of financial crises: Intermediation and
sentiment. Technical report, National Bureau of Economic Research, 2020.

[9] Peter Maxted. A macro-finance model with sentiment. 2020.

[10] Joao Gomes, Leonid Kogan, and Lu Zhang. Equilibrium cross section of returns. Journal of Political
Economy, 111(4):693–732, 2003.

[11] Toni M Whited and Guojun Wu. Financial constraints risk. The review of financial studies, 19(2):531–
559, 2006.

[12] Christopher A Hennessy and Toni M Whited. How costly is external financing? evidence from a
structural estimation. The Journal of Finance, 62(4):1705–1745, 2007.

[13] Gregor Matvos and Amit Seru. Resource allocation within firms and financial market dislocation:
Evidence from diversified conglomerates. The Review of Financial Studies, 27(4):1143–1189, 2014.

22

[14] L. Lu, X. Meng, Z. Mao, and G. E. Karniadakis. DeepXDE: A deep learning library for solving
differential equations. SIAM Review, 63(1):208–228, 2021.

[15] Jesus Fernandez-Villaverde, Galo Nuno, George Sorg-Langhans, and Maximilian Vogler. Solving high-
dimensional dynamic programming problems using deep learning. Unpublished working paper, 2020.

[16] Hui Chen, Antoine Didisheim, and Simon Scheidegger. Deep structural estimation: With an application
to option pricing. arXiv preprint arXiv:2102.09209, 2021.

[17] Victor Duarte. Machine learning for continuous-time economics. Available at SSRN 3012602, 2018.

[18] Jeremy Yu, Lu Lu, Xuhui Meng, and George Em Karniadakis. Gradient-enhanced physics-informed
neural networks for forward and inverse PDE problems. arXiv preprint arXiv:2111.02801, 2021.

[19] Yuyao Chen, Lu Lu, George Em Karniadakis, and Luca Dal Negro. Physics-informed neural networks
for inverse problems in nano-optics and metamaterials. Optics Express, 28(8):11618–11633, 2020.

[20] Alireza Yazdani, Lu Lu, Maziar Raissi, and George Em Karniadakis. Systems biology informed deep
learning for inferring parameters and hidden dynamics. PLoS Computational Biology, 16(11):e1007575,
2020.

[21] Maziar Raissi, Alireza Yazdani, and George Em Karniadakis. Hidden fluid mechanics: Learning velocity
and pressure fields from flow visualizations. Science, 367(6481):1026–1030, 2020.

[22] A. M. Tartakovsky, C. Ortiz Marrero, Paris Perdikaris, G. D. Tartakovsky, and D. Barajas-Solano.
Physics-informed deep neural networks for learning parameters and constitutive relationships in sub-
surface flow problems. Water Resources Research, 56(5):e2019WR026731, 2020.

[23] Georgios Kissas, Yibo Yang, Eileen Hwuang, Walter R. Witschey, John A. Detre, and Paris Perdikaris.
Machine learning in cardiovascular flows modeling: Predicting arterial blood pressure from non-invasive
4d flow mri data using physics-informed neural networks. Computer Methods in Applied Mechanics and
Engineering, 358:112623, 2020.

[24] Francisco Sahli Costabal, Yibo Yang, Paris Perdikaris, Daniel E. Hurtado, and Ellen Kuhl. Physics-
informed neural networks for cardiac activation mapping. Frontiers in Physics, 8, 2020.

[25] Prajit Ramachandran, Barret Zoph, and Quoc V. Le. Searching for activation functions, 2017.

[26] Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. 2014.

[27] Richard H. Byrd, Peihuang Lu, Jorge Nocedal, and Ciyou Zhu. A limited memory algorithm for bound
constrained optimization. SIAM Journal on Scientific Computing, 16(5):1190–1208, 1995.

[28] M. Raissi, P. Perdikaris, and G.E. Karniadakis. Physics-informed neural networks: A deep learning
framework for solving forward and inverse problems involving nonlinear partial differential equations.
Journal of Computational Physics, 378:686–707, 2019.

[29] Lu Lu, Raphael Pestourie, Wenjie Yao, Zhicheng Wang, Francesc Verdugo, and Steven G Johnson.
Physics-informed neural networks with hard constraints for inverse design. SIAM Journal on Scientific
Computing, 43(6):B1105–B1132, 2021.

[30] Jasper Snoek, Hugo Larochelle, and Ryan P. Adams. Practical bayesian optimization of machine learning
algorithms. page 2951–2959, 2012.

[31] H Risken. The Fokker-Planck equation: Methods of solution and applications, volume 18. Springer,
1996.

[32] Ioannis Karatzas and Steven Shreve. Brownian motion and stochastic calculus, volume 113, Graduate
Texts in Mathematics. Springer, 1998.

23

[33] Xavier Gabaix, Jean-Michel Lasry, Pierre-Louis Lions, and Benjamin Moll. The dynamics of inequality.
Econometrica, 84(6):2071–2111, 2016.

[34] Grigorios A Pavliotis. Stochastic processes and applications: diffusion processes, the Fokker-Planck and
Langevin equations, volume 60. Springer, 2014.

Appendices

A Setups for the firm industrial dynamic model

Proposition 1. In bank industrial dynamic models, stationary distribution exists.

Proof. As the volatility σ(z) is constant, and Ornstein–Uhlenbeck process is recurrent, we only need to check
if the linear growth condition for (µe, µz) is satisfied:

||µ⃗(e, z)|| ≤ ||µe(e, z)||+ ||µz(e, z)|| = ||θ0(z − zm)||+ ||π∗(e, z)− 1(et,zt)∈C cκ(ϕe− f(z, l∗))+||
≤ ||θ0(z − zm)||+ ||π∗(e, z)||+ ||κ(ϕe− f(z, l∗))+||
≤ ||θ0(z − zm)||+ ||π∗(e, z)||+ |κ|(||(ϕe)||+ ||f(z, l∗)||)
≤ ||θ0(z − zm)||+ ||π∗(e, z)||+ |κ|(|ϕ||x|+ ||f(z, l∗)||)

We can conclude our proof by noting that both instantaneous profit π∗(e, z), and deposit production f(z, l∗)
are scaled by productivity z.

B Setup and derivations for the macroeconomic model with a
financial sector

The model in [2] considers an economy populated with one unit of experts (indexed by i, i ∈ I = [0, 1]) and
one unit of households (indexed by j, j ∈ J = [1, 2]), in an infinite horizon setup. Time is continuous here.
The physical capital kt held by experts produces output at rate yt = akt, while households produces at rate
y
t
= akt. Denoting the investment rate per unit of capital as ιt, ιt for experts and households respectively

(i.e., ιtkt is the total investment rate of experts), the corresponding capital evolves as{
dkt = (Φ(ιt)− δ)ktdt+ σktdZt,

dkt = (Φ(ιt)− δ)ktdt+ σktdZt,

where Zt here is exogenous aggregate Brownian shocks, Φ(·) is standard investment technology with convex
adjustment costs, i.e., Φ(0) = 0,Φ′(0) = 1,Φ′(·) > 0 and Φ′′(·) < 0, δ, δ are depreciation rate (assume δ > δ),
and σ is the volatility. Experts and households are risk neutral, households have discount rate r and they
may have positive or negative consumption, which means households provide fully elastic lending at risk-free
rate r. The equilibrium market price of capital is postulated as a GBM:

dqt = µqt qtdt+ σqt qtdZt,

where µt can be viewed as the time dependent price drift and σqt is the price volatility. Both µqt and
σqt are determined by market equilibrium. We focus on the case that equilibrium price q ∈ [q, q], where

q = maxι
a−ι

r−(Φ(ι)−δ) and q = maxι
a−ι

r−(Φ(ι)−δ) . The return of the capital managed by experts and households

can then be expressed by

drkt =
dDt + d(ktqt)

ktqt
=

(a− ιt) ̸ kt
̸ ktqt

+ (Φ(ιt)− δ + µqt + σσqt) dt+ (σ + σqt)dZt,

drkt =
dDt + d(ktqt)

ktqt
=

(a− ιt) ̸ kt
̸ ktqt

+ (Φ(ιt)− δ + µqt + σσqt) dt+ (σ + σqt)dZt.

24

The cumulative consumption of a household and an expert are denoted as ct and ct, respectively. Then
utilities are given by

E
[∫ ∞

0

e−rtdct

]
(households) and E

[∫ ∞

0

e−ρtdct

]
(experts).

The net worth of an expert nt evolves as

dnt
nt

= xtdr
k
t + (1− xt)rdt−

dct
nt
,

where xt is the fraction of capital. the first part is return on risky assets, the second part is return on safe
assets, and the third part is consumption. Similarly, for households, we have

dnt
nt

= xtdr
k
t + (1− xt)rdt−

dct
nt
,

where xt is the fraction of capital. Both households and experts maximize their utility. Households can have
negative consumption while experts cannot, i.e., dct ≥ 0. Households and experts’ problems can be written
as

max
xt≥0,dct,ιt

E
[∫ ∞

0

e−rtdct

]
(households), max

xt≥0,dct≥0,ιt
E
[∫ ∞

0

e−ρtdct

]
(experts),

subject to net worth’s equation of motion.
Definition for equilibrium. Given initial wealth distribution, ki0, k

j
0, an equilibrium is described by

the stochastic process {qt, nit, nit ≥ 0, nit, k
i
t ≥ 0, ιit, ι

i
t, dc

i
t ≥ 0, dcit} such that: (1) initial net worth is ni0 =

ki0q0, n
j
0 = kj0q0; (2) each expert and agent solves their problems, given capital price qt; (3) markets for

consumption goods and capital are clear, i.e.,∫
I
dcitdi+

∫
J
dcjtdj =

∫
I
(a− ιit)k

i
tdi+

∫
J
(a− ιjt)k

j
tdj,∫

I
kitdi+

∫
J
kjtdj = Kt, dKt is:

(∫
I
(Φ(ιit))− δ)kitdi+

∫
J
(Φ(ιit))− δ)kjtdj

)
dt+ σKtdZt.

Solution. First, households and experts’ investment choices ιt, ιt are solved by maximizing drkt , dr
k
t , which

means
ιt, ιt ∈ argmax

ι
Φ(ι)− ι/qt ⇒ ιt = ιt = Φ′−1

(1/qt).

Second, denoting ψt as the fraction of capital held by experts, we are led to equilibrium condition Et[drkt]/dt ≤
r, with equality if 1 − ψt > 0. This condition means that when expected return is less than risk-free asset,
households will not hold any capital. Also, risk-neutral households will hold a fraction of capital when the
return equals the risk-free rate.

Third, to solve the experts’ problem, we introduce multiplier θt for experts’ future utility, i.e., θtnt ≡
Et
[∫∞

0
e−ρ(s−t)dcs

]
. Introducing unit worth’s consumption dζt, the experts optimal trading strategy is

ρθtnt = max
x̂t,dζt

ntdζt + Ed[θtnt]

Considering a finite process dθt/θt = µθtdt+ σθt dZt, for optimal strategy, the solution of θt features: (1) it is
always true that θt ≥ 1, dζt > 0 only when θt = 1; (2) µt = ρ− r; (3) either xt > 0 when Et[drkt]/dt− r =
−σθt (σ + σqt) (the risk premium), or xt = 0 when Et[drkt]/dt− r < −σθt (σ + σqt).

Denote the experts’ wealth share as ηt ≡ Nt
qtKt

∈ [0, 1], where all functions can be functions of ηt. By

applying Itô’s lemma, we get (⟨·, ·⟩ is the quadratic variation)

dηt =
dNt
qtKt

+Ntd

(
1

qtKt

)
+

〈
dNt, d

(
1

qtKt

)〉
≡ ηt(µ

η
t dt+ σηt dZt)

⇒ µηt = −σηt (σ + σqt + σθt) +
a− ι(qt)

qt
+ (1− ψt)(δ − δ), σηt =

ψt − ηt
ηt

(σ + σqt).

25

Equilibrium conditions. Optimal strategies of households and experts imply

Et[drkt − drkt]

dt
− σθt (σ + σqt) = 0 ⇒ ψ(η),

which means for experts, the opportunity cost of holding capital is the risk premium, if the equilibrium has
an interior solution. When the implied solution ψ > 1, the above equation does not necessarily hold, as it
is always profit profitable to hold capital in this case. Next, by Itô’s formula, we can solve the equilibrium
price q(η) and multiplier θt from {

µqt q(η) = q′(η)µηt η +
1
2 (σ

η
t)

2η2q′′(η),
µθt θ(η) = θ′(η)µηt η +

1
2 (σ

η
t)

2η2θ′′(η).

Given the stochastic process of dηt = ηtµ
η
t dt+ ηtσ

η
t , the distribution f(η, t) evolves as

∂

∂t
f(η, t) = − ∂

∂η
(µηf(η, t)) +

1

2

∂2

∂η2
(
σ2
η(η)f(η, t)

)
.

Prior to solving the invariant distribution, we need to show that the distribution function exists3.

Proposition 2. In [2], the stationary distribution exists, if 2(ρ−r)σ2 < Λ2,Λ =
Et[drkt−dr

k
t]

dt = a−a
q −(δ−δ).

Proof. Stochastic process ηt’s recurrence is equivalent to the inequality, µη > (ση)2

2 , when η = 0+ (see one
dimensional case in [31]). Asymptotic ansatz when η → 0 (in the online appendix of [2]): µηt = µ̂+o(1), σηt =
σ̂ + o(1), ψ(η) = Cψη + o(η), q(η) = q + Cqη

α + o(ηα), θ(η) = Cθη
−β + o(η−β) (α, β > 0). By plugging into

equilibrium condition, we have σ̂ = Λ/βσ. From the equations for q(η) and θ(η), we find

2
(ρ− r)β2σ2

Λ2
= −β 2µ̂

σ̂2
+ β(β + 1) → 2µ̂

σ̂2
= β + 1− 2(ρ− r)

Λ2
σ2β.

C Order reduction in forward equation

This section is a technical note. We first discuss the structure of Kolmogorov Forward Equation (KFE), and
then give a continuity equation’s interpretation of it. Denote the density function as f ; the KFE can be
heuristically written as

∂

∂t
f = −

∑
i

∂

∂xi
(µi(x)f) +

∑
i,j

∂2

∂xi∂xj

((
σ2
)
ij
(x)f

)
≡ L̂∗f = −∇ · J⃗ ,

where L̂∗ is the Kolmogorov Forward Operator and the density flux J⃗ is defined as

Ji =
∂

∂xi
(µi(x)f)−

∑
j

∂2

∂xi∂xj

((
σ2
)
ij
(x)f

)
, for the i–th column of J⃗ .

To study the stationary distribution we are interested in, we assume the existence of stationary distribution,
which means the following assumption holds.

Assumption 1. Regularity assumptions in 32, Ch. 5.

3For example, consider a Geometric Brownian Motion: dXt = µXtdt+ σXtdZt with reflecting boundary at 0, D,

the stationary distribution solved from Appendix C is: f(x) =
2µ

σ2
−1

D
2µ

σ2
−1
x

2µ

σ2
−2 × 1x∈[0,D], we can see that it cannot be

an invariant distribution when 2µ
σ2 − 1 < 0, as density is negative.

26

1. σ2(x) is uniform elliptic, i.e.
y⃗T [σ2(x)]y⃗ ≥ α|y⃗|2, ∀y⃗ ∈ Rn.

2. Coefficients are smooth and satisfy linear growth conditions

∃M ∈ R, s.t. ||σ2(x)|| ≤M, ||a(x)|| ≤M(1 + ||x||), ||b(x)|| ≤M(1 + ||x||),

where a(x), b(x) are defined as

aj(x) = −µj(x) +
n∑
i=1

∂xi [σ
2(x)]ij ,

bj(x) =
1

2

∑
i,k

∂2xi,xj [σ
2(x)]i,k −

∑
i

∂xiµi(x).

3. The stochastic process Xt is recurrent.

For the reflecting boundary4 in our problem, we have J⃗ · n̂ ≡ 0 at ∂Ω. The solution determination
problem can be formally written as

∇ · J⃗ = 0,

J⃗ · n̂|∂Ω = 0,
Ji = −µi(x)f +

∑
j

1
2
∂
∂xj

((σ2(x))ijf),

with normalization condition
∫
Ω
fdV = 1.

Proposition 3. Under assumption 1, the solution determination problem is equivalent to the problem

J⃗ = 0 and

∫
Ω

fdV = 1.

Proof. We first show that in the one dimensional case5, the probability flux is always zero under the reflecting
boundary condition. This is because

J(x) ≡ −µ(x)f(x) + 1

2

d

dx

(
σ2(x)f(x)

)
=

∫ x

x

L̂∗f(x′)dx′ + J(x) = 0,

where x is the lower boundary.
In higher dimensional cases, σ2(x) is the covariance matrix and µ⃗ is the drift vector. According to [34],

define Q(x) as: Q⃗(x) =
(
σ2(x)

)−1
(2µ⃗(x) −∇σ2(x)), where ∇σ2(x) is defined as

∑
i,j

∂
∂xj

σ2(x)ij e⃗i. Then6

J⃗ ≡ 0 if and only if
∂Qj
∂xi

= ∂Qi
∂xj

, for all x ∈ Ω. The density f can be solved as

f(x⃗) = A exp

(
−1

2

∫ x⃗

x0∈∂Ω
Q⃗ · dx⃗

)
and

1

A
=

∫
Ω

exp

(
−
∫ x

x0∈∂Ω
Q⃗(x⃗′) · dx⃗′

)
dnxxx.

The above formula implies that once we obtain the solution for the KFE with reflecting boundary, we can
conclude the solution is unique if assumption 1 holds here.

4Indifference condition for value function at the boundary implies the reflecting boundary for distribution. Usually
three boundary conditions are considered. They are: (1) refecting boundary J⃗ · n̂|∂Ω = 0; (2) absorbing boundary :
f |∂Ω = 0; (3) periodic boundary : J⃗ |x=a = J⃗ |x=b.

5Also see in [33].
6This condition implies that the path integral exists, or dQ⃗ is integrable. Intuitively, for a constant σ2(x), this

condition means that the drift term is curl-free. Accordingly, a counter example in 2D can be constructed as: µ⃗ = A
r
τ̂ ,

where τ̂ = −y√
x2+y2

e⃗x + x√
x2+y2

e⃗y.

27

	Introduction
	Machine learning for PDEs
	Deep neural networks
	PINNs for solving forward PDEs
	PINNs for solving inverse PDEs
	Implementation

	A model of industrial dynamics with financial frictions
	Problem setup
	Solving the model
	Elimination of m
	Other technical details

	Simultaneously solving and estimating the model
	Elimination of free-entry condition in training
	Estimation of two parameters
	Estimation of three parameters

	A macroeconomic model with the financial sector
	Problem setup
	Solving the model
	Change of variable to deal with singularity
	Explicitly solving for
	Other technical details

	Simultaneously solving and estimating the model
	Estimation of one parameter
	Estimation of two parameters

	Conclusion
	Acknowledgements
	References
	Appendices
	Setups for the firm industrial dynamic model
	Setup and derivations for the macroeconomic model with a financial sector
	Order reduction in forward equation

