
Deep Learning for Solving and Estimating Dynamic Macro-Finance

Models

Benjamin Fan1,†, Edward Qiao2,†, Anran Jiao3, Zhouzhou Gu4, Wenhao Li4, and Lu Lu3,*

1University High School, Irvine, CA
2The Bishop’s School, La Jolla, CA

3Department of Chemical and Biomolecular Engineering, University of Pennsylvania,
Philadelphia, PA 19104, USA

4Marshall School of Business, University of Southern California, Los Angeles, CA
†These authors contributed equally to this work.

*Corresponding author. Email: lulu1@seas.upenn.edu

Abstract

Deep learning has been shown to be an effective method for solving partial differential equa-
tions (PDEs) by embedding the PDE residual into the neural network loss function. In this
paper, we design a methodology that utilizes deep learning to simultaneously solve and estimate
canonical continuous-time general equilibrium models in financial economics, including (1) in-
dustrial dynamics of firms and (2) macroeconomic models with financial frictions. Through
these applications, we illustrate the advantages of our method:

Keywords: Dynamic macro-finance models; Industrial dynamics of firms; Macroeconomic models with
financial frictions; Partial differential equations; Deep learning; Parameter estimation

1 Introduction

Dynamic equilibrium models are the cornerstones of the fast-growing macro-finance literature that tries to
understand how financial frictions and asset prices influence economic dynamics, in addition to addressing
important policy questions including the design and impact of financial regulation, industrial policy, and
monetary policy [1, 2, 3, 4, 5, 6, 7, 8, 9]. These models feature high degrees of nonlinearity originating from
either agents’ financial constraints or preferences, which make the linearization methods widely used in the
macro literature infeasible.

The literature has thus far mostly focused on highly tractable models with a small number of state
variables (typically one or two). Furthermore, since solving these models is quite time-consuming, model
parameters are usually picked by calibration, which involves intensive model evaluation. Matching moments
involves solving the model, simulating the model for a long period and calculating the moment value, and
repeating the same procedure for a large number of parameter combinations. Although simulated methods
of moment have been applied to corporate-finance models [10, 11, 12, 13], those more explicit and standard
methods applied to dynamic equilibrium models are restricted by the curse of dimensionality. Additionally,
taking expectations is typical in dynamic problems, but it incurs a significant computational burden. Fi-
nally, for different problems, researchers typically need to tailor their numerical methods, which limits the
accessibility of the literature, and these methods do not automatically take advantage of the rapidly evolving
computational tools.

In this paper, we apply deep-learning methods for solving partial differential equations [14] to economic
settings, simultaneously solving and estimating model parameters and allowing for heterogeneous agents.

1

Our methods have the following advantages: (1) the model is solved globally; (2) the method allows for
higher dimensionality; (3) deep learning is a proven and e�ective method in solving PDEs; (4) estimation
and solution are in one step; (5) di�erentiation is handled analytically which increases numerical accuracy;
(6) the underlying package automatically applies the state-of-art machine-learning algorithm, so the method
keeps improving itself; (7) the method is versatile and can be applied to a vast variety of problems.

Machine learning (ML) models have already been used in economics and �nance, but mainly for the
purpose of better predicting economic and �nancial outcomes in markets such as stocks, insurance, corpo-
rate bankruptcy, cryptocurrency, etc. Recent papers, including [15, 16, 17], use deep learning methods to
solve economic models. Our paper contributes to this growing literature by combining equilibrium-model
estimation with solution and building on the rapidly-improving deep-learning-based solution methods for
PDEs in physics and science.

The machine-learning method in [14] is a type of physics-informed neural networks (PINNs). PINNs
work by embedding PDE residual into the loss function of the neural network via automatic di�erentiation
[18]. As such, approximating the PDE is no more than minimizing the loss function, which can be done with
gradient descent techniques. This method of solving PDEs is mesh-free and simple, and it can be applied to
a wide variety of PDE types. In addition to solving forward problems, PINNs can be easily implemented to
solve inverse PDE problems. These involve predicting the values of parameters given a set of measurements
of the function. PINNs have achieved success with both forward and inverse problems in a diverse range of
�elds, including optics [19], systems biology [20], uid mechanics [21, 22], and biomedicine [23, 24]. However,
there have been fewer applications to problems in economics, which this paper will explore.

In this paper, we will consider two models. First, we solve a model of industrial dynamics with �nancial
frictions, which considers an industrial equilibrium of a banking sector that takes deposits, makes loans,
and uses labor input to manage deposits and loans. Then, we consider a macroeconomic model with the
�nancial sector featuring binding constraints, non-linear �nancial ampli�cations, and boundary singularity.
We demonstrate the advantage of our methodology in providing a general framework for solving PDEs, as
opposed to traditional methods, which require designing di�erent algorithms for di�erent problems. We
also display the ease of solving inverse problems, in which we assume parameters are unknown and impose
moment conditions. Thus, we are able to simultaneously solve and estimate parameters.

In Section 2, we introduce the physics-informed neural network method for solving both forward and
inverse partial di�erential equations, along with the Python library DeepXDE. Following this introduction,
in Sections 3 and 4 we apply the PINN method to solve several equations in economics.

2 Machine learning for PDEs

We �rst describe general deep neural networks, allowing us to present the framework of physics-informed
neural networks (PINNs), which will be leveraged to solve forward and inverse PDEs (i.e., model solution
and model estimation). Afterward, overview the hyperparameters used in the following sections.

2.1 Deep neural networks

Although there are several di�erent types of deep neural networks, throughout this paper, we use the feed-
forward neural network (FNN). We de�ne an L-layer FNN as a function N L (x) : Rdin ! Rdout and say that
there are L � 1 hidden layers such that the `-th layer has N ` neurons. Clearly, N0 = din and NL = dout .
Furthermore, for each 1 � ` � L , we de�ne a weight matrix W ` 2 RN ` � N ` � 1 and bias vector b ` 2 RN ` .
Then, letting T ` (x) = W ` x + b ` be the a�ne transformation in the `-th layer, for some non-linear activation
function � , we say

N L (x) = TL � � � TL � 1 � : : : � � � T1(x):

A network with L = 4 can be visualized in Fig. 1. There are several possible activation functions� , and in
this paper, we use both the hyperbolic tangent (tanh) and the swish [25] activation functions. The former
is the most typical activation function in machine learning, while the latter can better deal with problems
with steep gradients, which are features of the problems we will discuss.

2

Figure 1: Visualization of a deep neural network described in Section 2.1. In this diagram, the number of
layers L is 4.

2.2 PINNs for solving forward PDEs

We �rst discuss the use of PINNs to solve forward PDEs. Consider the following PDE parameterized by�
with solution u(x; t) for x = (x1; : : : ; xd) over the domain
 � Rd:

f
�

x ;
@u
@x1

; : : : ;
@u
@xd

;
@2u

@x1@x1
; : : : ;

@2u
@x1@xd

; : : : ; �
�

= 0 ; x 2
 (2.1)

with boundary conditions
B(u; x) = 0 on @
 :

To �nd the solution, we create a neural network û(x ; �) with trainable parameters � . When training the
network, we useTf points inside the domain and Tb points on the boundary. Then, the loss function is
de�ned as

L (� ; T) = wf L f (� ; Tf) + wbL b(� ; Tb) (2.2)

with

L f (� ; Tf) =
1

jTf j

X

x 2T f

 f

�
x ;

@̂u
@x1

; : : : ;
@̂u
@xd

;
@2û

@x1@x1
; : : : ;

@2û
@x1@xd

; : : : ; �
�

2

2
;

L b(� ; Tb) =
1

jTbj

X

x 2T b

kB(û; x)k2
2;

for weights wf and wb. Now that we have de�ned a loss function, where the two losses are theL 2 norms of
the residuals, we can train like any normal neural network using gradient-based optimizers such as Adam
[26] and L-BFGS [27]. Training the network produces an approximation ofu(x; t).

2.3 PINNs for solving inverse PDEs

Next, we discuss using PINNs to solve inverse PDEs. Inverse problems involve some unknown parameters�
in Eq. (2.1) to be solved for, but we are given some extra information about some pointsTi 2
 besides the
PDE and boundary conditions [28, 14]:

I (u; x) = 0 for x 2 Ti :

Training the PINN in the inverse method is almost identical to training the forward PINN, except that the
loss function Eq. (2.2) has an extra term:

L (� ; � ; T) = wf L f (� ; � ; Tf) + wbL b(� ; � ; Tb) + wi L i (� ; � ; Ti);

3

where
L i (� ; � ; Ti) =

1
jTi j

X

x 2T i

kI (û; x)k2
2;

the L 2 norm of the residual. Optimizing � and � together, our solution is � � ; � � = arg min � ;� L (� ; � ; T).
The above approach incorporates model solution (solving functionu) and model estimation (solving

parameter �) together in a consistent way. Furthermore, we can easily generalize the above to a PDE system
with multiple functions to be solved.

2.4 Implementation

We will apply PINNs to solve several forward and inverse PDE problems in economics, and we implement
these with the Python library DeepXDE [14]. In all examples, we use the Glorot uniform initializer. In
addition, we occasionally enforce boundary conditions automatically through an output transform [29].
Throughout the paper, we use a learning rate decay with the formula

 n =
 0

1 + �n=S
;

where n is the number of iterations, n is the learning rate after n iterations, 0 is the initial learning rate,
� is the decay rate, andS is the decay step. The other hyperparameters are listed in Table 1.

Table 1: Hyperparameters used for each problem.

Section Depth Width Activation Function Optimizer Learning Rate #Iterations

3.2 7 64 tanh Adam 5� 10� 4 7:5 � 104

3.3.2 7 64 tanh Adam 1� 10� 3 1:5 � 105

3.3.3 7 64 tanh Adam 1� 10� 3 1:5 � 105

4.2 7 128 swish Adam 1� 10� 3, 1 � 10� 5 3:0 � 105

4.3.1 6 64 swish Adam 1� 10� 4 2:0 � 105

4.3.2 6 64 swish Adam 5� 10� 4 1:5 � 105

3 A model of industrial dynamics with �nancial frictions

In this section, we consider an industrial equilibrium of a banking sector that takes deposits, makes loans,
and uses labor input to manage deposits and loans. Labor productivity determines the number of loans and
deposits that each bank can take. Both loan rate and deposit rates are endogenously determined via the
competitive market equilibrium that features bank entry, exit, and equity payouts. The challenges of this
problem are twofold: �rst, banks endogenously determine whether or not to enter or exit the market, so the
problem features endogenous entry and exit boundaries; second, we need to track the entire distribution of
banks in order to clear the market.

3.1 Problem setup

Time evolves continuously. All bank assets and debts are modeled as short-term. Banks can borrow via
deposits at a rate r d, and via capital market at a rate r (think of this as the policy rate, e.g., FFR). Banks
can lend at loan rate r l ; or the capital market rate r . Banks need to hire workers to serve their deposits and
loans. For banks with productivity z, the number of loans that l units of labor can serve is

f (z; l) = zl � ; � 2 (0; 1)

which features decreasing return to scale. A rationale for this assumption is that as banks get bigger, it is
increasingly di�cult to �nd new depositors and new borrowers on which they can earn a pro�t. Similarly,
the amount of deposits that d units of labor can serve is

f (z; d) = zd� :

4

Because banks can borrow and lend freely in the capital market at a rater , they are not constrained by
lending and deposit-taking choices, as long as they are nonnegative.

The stochastic process forzt is given exogenously as

dzt = � (zt)dt + � (zt)dBt ;

with two reecting boundaries z and �z.
Denote bank equity ase. We impose the �nancial friction as follows:

f (z; l) � �e;

f (z; d) � �e:

Banks incur a �xed operating cost cf , and thus the instantaneous pro�t is

� (et ; zt ; l t ; dt) = r l
t zt l �

t| {z }
lending revenue

� r d
t zt d�

t| {z }
deposits interest expense

+ (zt d�
t + et � zt l �

t)r t| {z }
net capital market lending

� wt � (l t + dt)| {z }
labor cost

� cf :
|{z}

�xed cost

To keep the problem simple, we assume full symmetry between the deposit market and the loan market.
Both loan demand and deposit demand functions are in the same form:

r l � r = � (L + L 0) � " ;

r � r d = � (D + D0) � " ;

where D and L are the aggregate amount of deposits and loans, respectively. We assumeL 0 = D0 for
simplicity. Due to the full symmetry, the loan spread is equal to the deposit spread,r l � r = r � r d. In what
follows, we will only use the notations on the loan side.

Since the bank can freely adjust its labor input and scales of operations at each instance, the optimal
decisions are,

l � = d� = min

(�
(r l � r)z�

w

� 1
1 � �

;
�

�e
z

� 1=�
)

:

Therefore, the optimized pro�t function is

� � (e; z) = 2
�
r l � r

�
z (l �) � + e � r � 2wl � � cf :

Denote v(e; z) as the value function for a bank with equity e and productivity z, with v(e) = e the reser-
vation value if a bank exists. We assume that banks pay out equity when they are �nancially unconstrained,
and the equity payout function is

� (e; z) = max f � (�e � f (z; l �)) ; 0g:

In other words, equity payout smoothly increases as the bank gets further away from the �nancial constraint.
Then we can write the bank equity dynamics as

det =
�
� � (et ; zt) � 1(et ;z t)2C c � � (et ; zz)

�

| {z }
� � e (et ;z t)

dt � 1v(et ;z t)<v (et) � et ;

where the last term reects the immediate exit when the bank continuation value is smaller than the liqui-
dation value.

Banks optimize the expected discounted cash ows at the rater . The HJB equation is:

r � v(e; z) = max
�

� � (e; z)(1 + v0
e) + (1 � v0

e)� (e; z)1(e;z)2 C c + v0
z � (z) +

1
2

v00
zz � (z)2; rv (e)

�
;

5

where the set C is the region where the bank is �nancially constrained, and the unconstrained indicator
1(e;z)2 C c is

1(e;z)2 C c = 1

8
<

:

 �
r l � r

�
z�

w

! 1
1 � �

<
�

�e
z

� 1=�
9
=

;
:

At the reecting barriers, we have

@zv(e; z) = @zv(e; �z) = 0 ; for any e:

We also have the boundary condition

v(e; z) = v(e) = 0 :01 whene = 0 :01:

Banks will exit the market with zero equity, becausedet � 0 for et = 0, and � (0) = � cf < 0, i.e., zero equity
is an absorbing state, and continuing the operations when equity is zero will guarantee negative pro�t and
thus is worse than exiting the market.

Finally, we describe entry dynamics. Banks �rst decide whether or not to enter, and then draw their
productivity from the distribution (z). We assume that entry incurs a one-time costce, and each entrant
has the same initial equity of e0. The mass of �rms entering the market is determined by

m = �m exp
�

� M

� ZZ

e;z
v(e; z) (e; z)dzde� ce

��
:

The above is a softer version of the free-entry condition. When� M ! 1 , entry incentive with respect to
entry bene�t is going to in�nity, so the present value of entry must be zero and we arrive at the free-entry
condition ZZ

e;z
v(e; z) (e; z)dzde� ce = 0 :

Solve for invariant distribution and estimation : Denote the stationary bank distribution as g(e; z).
This distribution does not include banks that exit the market, so we have

g(e; z) = 1 v(e;z)>v (e) g(e; z);

where the assumption is that when banks are indi�erent between staying or exiting the market, they choose
to exit the market.

The Kolmogorov Forward Equation (KFE) for the stationary distribution in banking industrial dynamic
model is

0 = �
@
@z

(� z (z)g(e; z)) �
@
@e

(� e(e; z)g(e; z)) +
1
2

@2

@z2
�
� (z)2g(e; z)

�
+ m (e; z); v(e; z) > v (e): (1)

With the stationary distribution, we can get the aggregate loan

L =
ZZ

g(e; z)f (z; l � (e; z))dzde:

Furthermore, the equilibrium loan spread is determined by the household loan demand function,

r l � r = � (L + D0) � " (2)

for D0 =
RR

e;z d(e; z)g(e; z)dzde (here g is not normalized), where d = z(l �) � . We assume that (e; z) is a
truncated normal distribution (�(�) is the c.d.f. of normal distribution)

 (e; z) =
1

�e � (�(z� zm
�

) � �(z� zm

�
))

1
q

2�� 2

exp

�
(z � zm)2

2� 2

!

� 1e< �e � 1z2 [z;z]

6

Boundary conditions : (1) Banks exit at v(e) = e (absorbing boundary), which meansg(e; z) = 0 when
v(e; z) = e. (2) Reecting boundary for stochastic productivity z: � � z (z)g(e; z) + 1

2
@

@z(� (z)2g(e; z)) = 0,
when z = z; z.

Speci�cation : Model parameter speci�cations are shown in Table 2, and additional problem setup
details can be found in Appendix A.

Table 2: Parameter speci�cation of model in Section 3.1.

Description Value

Bank equity payout rate � = 0 :005
Share of labor � = 0 :3
Leverage constraint parameter � = 10
Benchmark interest rate r = 0 :03
Fixed operating cost cf = 0 :03
Entry cost ce = 0 :1
Boundary and mean of productivity z = 0 :2; z = 10; zm = 5
Lower and upper bound of state space emin = 0 :01; emax = 1 :2
Drift and volatility of z � (z) = � 0:005(z � zm); � (z) = 0 :08
Deposit/Loan supply function's constant D0 = L 0 = 1 :0
Entrance distribution parameters � = z� z

4 ; �e = 0 :15; �m = 0 :1.
Entrance elasticity � M = 1 � 103

3.2 Solving the model

Our goal is to solve for v(e; z) and g(e; z). To do so, we employ a technique simplifying the model by
eliminating the role of m from training.

3.2.1 Elimination of m

The only equation in which m directly shows up is the KFE (Eq. (1)), in which g(e; z) scales linearly in m.
Linear scaling of g(e; z) does not a�ect the values of the moment targets becauseg(e; z) is normalized in
those calculations. However, scalingg(e; z) a�ects Eq. (2), in which

L =
ZZ

e;z
g(e; z)f (z; l � (e; z))dzde

is scaled by the same factor. Our goal is to exactly satisfy Eq. (2) by scalingg(e; z). Afterwards, in order
to still satisfy the KFE, we scale m by the same factor. To implement this idea with a PINN, we �x m = 1
throughout training. After training, let Ng(e; z) be the PINN-predicted value of g(e; z). We calculate

NL =
ZZ

e;z
Ng(e; z)f (z; l � (e; z))dzde:

To automatically satisfy Eq. (2), we set m to be

r l � r = � (NL m � D0) � "

=) m =
�

r l � r � D0

L
;

in which we use" = 1. After solving for m, our �nal prediction of g(e; z) is g(e; z) = mNg(e; z).

7

3.2.2 Other technical details

We solve the model with the unknown endogenous boundaryr l . When training the PDE, we enforce the
Dirichlet boundary condition on v via a soft boundary condition and the Dirichlet boundary condition on g
through a hard boundary condition. Furthermore, we enforce the Neumann boundary condition ong via a
soft boundary condition. We use loss weights of 106 for the HJB residual, 5 � 104 for the KFE residual, 103

for the free-entry condition, 102 for the Dirichlet boundary condition on v, 103 for the Neumann boundary
condition on v, and 105 for the Neumann boundary condition on g.

Additionally, we train with 2 16 training points sampled inside the domain, 210 training points sampled
on the boundary, and 216 points sampled inside the domain for testing. When estimatingr l , we scale it up
100 times while training and scale it back down afterwards. Lastly, we use a learning rate scheduler, with
an initial learning rate of 5 � 10� 4, decay rate 1:0, and decay step 6000.

The training results are displayed in Fig. 2 while the predicted value ofr l and m after training is displayed
in Table 3. The training loss decreases steadily (Fig. 2A), and the endogenous variabler l converges to its
true value. The L 2 relative errors for v and gc

1 are 0:54% and 4:32%, respectively.

Figure 2: Example in Section 3.2: PINN results for forward HJB equation. (A) The trajectory of train
loss throughout training. (B) The convergence ofr l throughout training. (C) 2D heatmap for predicted solution for
v using PINN. (D) 2D heatmap for reference solution for v using Matlab. (E) 2D heatmap for predicted solution for
g using PINN. (F) 2D heatmap for reference solution for g using Matlab.

Table 3: Example in Section 3.2: Predicted values of endogenous variables r l and m after training.

Variable True Value Predicted Value Error

r l 0.043337 0.043343 0.01%
m 0.2194 0.2242 2.12%

3.3 Simultaneously solving and estimating the model

In practice, we may want to estimate some unknown parameters of the model, which requires additional
information in the form of moment targets. First, we describe techniques which will make estimation easier.

1gc is de�ned as the c.d.f of g, i.e., gc(e; z) =
Rz

z

Re
0 g(e0; z0)de0dz0.

8

3.3.1 Elimination of free-entry condition in training

In Subsections 3.3.2 and 3.3.3, we predict the value ofce, along with several other parameters. Note thatce

only appears in the free-entry condition. To take advantage of this, we train the PINN without the free-entry
condition, and after training, we predict ce by calculating

ce =
ZZ

e;z
v(e; z) (e; z)dzde:

3.3.2 Estimation of two parameters

In this example, we estimate the two parameters� and ce. De�ne the density g0(e; z) as maxf g(e; z); 0g dis-
counted by normalization factor2: 1RR

e;z max f g(e;z) ;0gdzde , representing the normalized density. In estimation,

we adjust the unknown parameters to match the average productivityztarget and average laborl �
target :

ztarget =
ZZ

e;z
zg0(e; z)dzde;

l �
target =

ZZ

e;z
l � g0(e; z)dzde:

When training the PDE, we enforce the Dirichlet boundary condition on v via a soft boundary condition
and the Dirichlet boundary condition on g through an output transform. Furthermore, we enforce the
Neumann boundary condition on g via a soft boundary condition. We use loss weights of 106 for the HJB
residual, 5� 104 for the KFE residual, 101 for ztarget , 106 for l �

target , 102 for the Dirichlet boundary condition
on v, 103 for the Neumann boundary condition on v, and 105 for the Neumann boundary condition on g.
Furthermore, we train with 2 14 training points sampled inside the domain, 29 training points sampled on the
boundary, and 214 points sampled inside the domain for testing. When estimating� , we scale it up 10 times
while training and scale it back down afterwards. Force, we employ the technique described in Section 3.3.1.
Lastly, we use a learning rate scheduler, with an initial learning rate of 10� 3, decay rate 1:0, and decay step
2500.

The training results are displayed in Fig. 3. In addition, the predictions and errors for ce and � are
displayed in Table 4, along with the predictions and errors forztarget and l �

target . The training loss decreases
steadily (Fig. 3A), and the L 2 relative error of v ends at 3:28%. The trajectory of � is displayed in Fig. 3B.
As shown in Figs. 3C and D, the PINN predicts the solution for v accurately. Furthermore, Figs. 3E and
F demonstrate that the PINN predicts the solution for g accurately. The errors of both the predicted
parameters and the moments of the predicted solution are under 5% (Table 4). Finally, theL 2 relative
errors of v and gc are 3:28% and 4:24%, respectively.

2As KFE operator L̂ � is the Markov process's generator, the distribution is always positive when evolving over
time. However, in numerical exercise, g(e; z) at some point can be negative.

9

Figure 3: Example in Section 3.3.2: PINN results for inverse HJB equation with estimation of two
parameters. (A) The trajectory of train loss throughout training. (B) The convergence of � throughout training.
(C) 2D heatmap for predicted solution for v using PINN. (D) 2D heatmap for reference solution for v using Matlab.
(E) 2D heatmap for predicted solution for g using PINN. (F) 2D heatmap for reference solution for g using Matlab.

Table 4: Example in Section 3.3.2: PINN results for inverse HJB equation with estimation of two
parameters. Both unknown parameters ce and � and moment targets ztarget and l �

target are shown.

True Value Predicted Value Error

ce 0.1 0.0959 4.10%
� 0.3 0.299 0.31%

ztarget 7.524 7.611 1.15%
l �target 0.00647 0.00637 1.46%

3.3.3 Estimation of three parameters

Now, we estimate three parameters:�; c e; and cf . We will match four moment conditions: average equity
etarget , average productivity ztarget , average leveragè target , and average laborl �

target . They are de�ned as

etarget =
ZZ

e;z
eg0(e; z)dzde;

ztarget =
ZZ

e;z
zg0(e; z)dzde;

` target =
ZZ

e;z

f (z; l � (e; z))
e

g0(e; z)dzde;

l �
target =

ZZ

e;z
l � g0(e; z)dzde:

When training the PDE, we enforce the Dirichlet boundary condition on v via a soft boundary condition
and the Dirichlet boundary condition on g through an output transform. Furthermore, we enforce the
Neumann boundary condition on g via a soft boundary condition. We use loss weights of 106 for the HJB
residual, 5� 104 for the KFE residual, 102 for etarget , 101 for ztarget , 100 for ` target , 106 for l �

target , 102 for the

10

	Introduction
	Machine learning for PDEs
	Deep neural networks
	PINNs for solving forward PDEs
	PINNs for solving inverse PDEs
	Implementation

	A model of industrial dynamics with financial frictions
	Problem setup
	Solving the model
	Elimination of m
	Other technical details

	Simultaneously solving and estimating the model
	Elimination of free-entry condition in training
	Estimation of two parameters
	Estimation of three parameters

	A macroeconomic model with the financial sector
	Problem setup
	Solving the model
	Change of variable to deal with singularity
	Explicitly solving for
	Other technical details

	Simultaneously solving and estimating the model
	Estimation of one parameter
	Estimation of two parameters

	Conclusion
	Acknowledgements
	References
	Appendices
	Setups for the firm industrial dynamic model
	Setup and derivations for the macroeconomic model with a financial sector
	Order reduction in forward equation

